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SUMMARY

The primary study of this thesis is the non-equilibrium dynamics of a quantum

inverted pendulum as examined in the collective spin dynamics of a spin-1 Bose-

Einstein condensate. The measurements build on the success of previous experiments

that studied spin mixing and spin-nematic quadrature squeezing, and improved on

the theoretical model used to describe the system evolution. The major contribution

of this thesis is the in-depth study and experimental realization of the non-gaussian

evolution of a quantum inverted pendulum. Additionally, in order to compare exper-

imental results with the simulation past the low depletion limit, current simulation

techniques needed to be extended to model atomic loss. These extensions show that

traditional measurements of the system evolution (e.g. measuring the mean and stan-

dard deviation of the evolving quantity) was insufficient in capturing the quantum

nature of the evolution. It became necessary to look at higher order moments and

cumulants of the distributions in order to capture the quantum fluctuations. Extend-

ing the implications of the loss model further, it is possible that the system evolves

in a way previously unpredicted. Spin-mixing from a hyperbolic fixed point in the

phase space and low noise atom counting form the core of the experiment to mea-

sure the evolution of the distributions of the spin populations. The evolution of the

system is also compared to its classical analogue, the momentum-shortened inverted

pendulum. The other experimental study in this thesis is mapping the mean-field

phase space. The mean-field phase space consists of different energy contours that

are divided into both phase-winding trajectories and closed orbits. These two regions

are divided by a separatrix whose orbit has infinite period. Coherent states can be

xiii



created fairly accurately within the phase space and allowed to evolve freely. The

nature of their subsequent evolution provides the shape of the phase space orbit at

that initial condition. From this analysis a prediction of the nature of the entire phase

space is possible.

xiv



CHAPTER 1

INTRODUCTION

The simple pendulum, like the harmonic oscillator, is an example of a well-known

classical system that can be extended to the quantum limit to serve as a model for

more complicated systems. In fact, the simple pendulum reduces to the harmonic

oscillator for small initial displacements from its equilibrium position. However, the

harmonic oscillator approximation for a simple pendulum is not valid for a pendulum

prepared in its inverted state. The inverted state of the simple pendulum corresponds

to a hyperbolic fixed point in the pendulum’s phase space. As the equilibrium position

is meta-stable, any single perturbation to the system will cause the pendulum to fall.

The early dynamics of its evolution are extremely sensitive to its initial conditions. In

the quantum limit, the precision of the initial preparation of the inverted pendulum

is limited by the Heisenberg uncertainty principal, resulting in inevitable evolution

regardless of the care of state preparation.

The non-equilibrium dynamics of a quantum inverted pendulum has an important

role in a wide range of physical systems, specifically those in which a hyperbolic fixed

point is found in the phase space. Though an appropriately-sized quantum inverted

pendulum has not been demonstrated, the dynamics can be closely modeled in a

spin-1 BEC. This thesis will examine the dynamics of a quantum inverted pendulum

as studied in a spin-1 BEC. This chapter will provide a brief review of the key devel-

opments in BEC work over the last nearly twenty years to highlight the distinctive

properties of this unique form of matter, and the applicability of the spinor BEC in

particular for studying a quantum inverted pendulum.
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1.1 Historical Overview of Bose-Einstein Condensates

Since the first Bose-Einstein Condensates (BEC) in dilute atomic gases were observed

[1–3], the field of atomic and condensed matter physics has erupted into a plethora of

experimental and theoretical work. It was the culmination of over 20 years of work

dating back to the 1970s with atomic hydrogen [4, 5] and later with the laser cooling

of alkali atoms [6, 7]. Bose-Einstein condensation is a second-order phase transition in

which bosons macroscopically occupy the ground state of the trapping potential when

the temperature falls below the critical temperature. This is when the inter-particle

spacing is less than the thermal de Broglie wavelength of the particles. In terms of

the particle density, this can be expressed as nλ3
dB = 2.612, where n is the particle

density and λdB = h/
√

2πmkBT is the thermal de Broglie wavelength. The thermal

de Broglie wavelength at room temperature is smaller than the size of an atom,

and increases as the temperature is reduced. However, in order to prevent normal

condensed states (e.g. solid, liquid) as the temperature is lowered, the atoms must

be kept at low densities under ultrahigh vacuum. Under these conditions, the atoms

need to be cooled to the sub-microKelvin regime in order to undergo Bose-Einstein

condensation.

Bose condensed atoms posses identical spatial wavefunctions, and the superpo-

sition of these wave functions produces a macroscopic coherent matter wave. The

coherent matter wave is the quintessential characteristic of a BEC, and several of the

early key experiments were devoted to studying this phenomenon. Coherence in a

macroscopic matter wave was first demonstrated by the group at MIT by interfering

two independent BEC’s [8]. The Munich group performed two different experiments

with double-slit interference, one with a BEC and one with a thermal cloud above the

BEC transition temperature. The result demonstrated that the BEC had a long-range

phase coherence, while the thermal cloud did not [9]. The tunneling of macroscopic

2



wavefunctions between adjacent potential wells was also demonstrated [10, 11]. Addi-

tionally, condensates loaded in 3D lattices have been observed transitioning between

the Mott-Insulator phase and the superfluid phase [12], demonstrating phase coher-

ence transference through the tunneling of wavepackets between lattice sites. Another

interesting observation was that of an atom laser, where atoms from a Bose conden-

sate are selectively removed from the trapping potential, analogous to coherent optical

fields producing lasers [10, 13–15].

For the first five years condensates were created only in magnetic traps. Atoms

were laser cooled to the µK temperature, then evaporative cooling was used to bring

the atoms below the critical temperature. The use of magnetic traps limited the study

of BECs to systems that could be described by a scalar order parameter, ψ (~r, t) whose

dynamics are governed by the Gross-Pitaevskii equation [16]. This trap configuration

was adequate for studying the weak inter-atomic interactions that also make atomic

BECs unique. These interactions, typically elastic inter-atomic collisions, are neces-

sary for the atoms to reach thermal equilibrium and for evaporative cooling below the

critical point. These interactions also affect the ground state and dynamical prop-

erties of the BEC [17, 18], and repulsive interactions are required to prevent large

condensates from collapsing [19, 20]. Additionally, weak atomic interactions are re-

sponsible for the superfluid behavior of the gas such as quantized vortices [21–23] and

superfluid sound waves [24–26].

Another trapping technique involves creating a condensate in a magnetic micro-

trap constructed with lithographically patterned wires on a solid-state chip. Though

this technique allows for miniaturization of the BEC set-up and provides the ability

to study interactions between ultracold atoms and the chip surface [27, 28], it is

still limited in that the use of magnetic trapping limits the study of the internal

interactions which will be addressed in the next section.
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1.2 Spinor BEC

The use of a magnetic trap for the creation of BECs has limited the experimental

work to primarily single species and single component systems. The atoms are con-

fined to one Zeeman sub-level in the ground state hyperfine manifold. Development

of trapping methods that were not so limited represented a new avenue of BEC re-

search, extending into multi-species and multi-component systems where coupled,

interacting quantum fluids could be explored. Of particular note, spinor condensates,

or atomic BECs with internal spin degrees of freedom, offered a new form of coherent

matter with internal quantum structures. These BEC systems are related to other

macroscopic quantum systems in which internal degrees of freedom play a prominent

role [29–34]. The investigations in this thesis build upon previous work in this lab

on multi-component spinor condensates confined in optical traps, in which the first

ferromagnetic condensate was realized [35], the first quantitative validation of the

mean-field theory of spin-1 condensates was provided [34], coherent spin oscillations

and coherent control of spinor dynamics were demonstrated [36], and sub-Poissonian

fluctuations [37] and spin-nematic quadrature squeezing [38] were observed. The main

goal of this thesis is to explore the non-equilibrium dynamics of a quantum inverted

pendulum as seen in a spin-1 condensate. The purpose of these explorations is to ex-

perimentally measure the intricate quantum nature of the pendulum evolution from

both classically stable state and other prepared states.

1.2.1 Spinor BEC Experiments

The first spinor condensates were investigated by experimentalists at MIT using

sodium condensates confined in optical traps [39]. Their studies included the ob-

servation of spin-mixing in initially excited spin states [32], and the formation and

dynamical evolution of spin domains in large extended condensates [40–42]. Based on

these observations, it was determined that the spin-1 23Na condensates demonstrated

4



anti-ferromagnetic ordering of the spins in low magnetic field, and thus had a positive

value for the spinor dynamical energy [32]. These experiments used a magnetic trap

to initially trap the atoms, then transferred them to an optical trap.

The first all-optical trapping techniques for creating BECs were developed in our

lab using 87Rb [35]. Similar to techniques used in the MIT experiments, the conden-

sate is prepared in the mf = 0 state using a high magnetic field. The magnetic field is

quickly lowered (a process called a “quantum quench” [43]) to study the subsequent

evolution [34]. The equilibrium populations measured were in good agreement with

the phase diagram of the ground states [32] and exhibited the predicted quantum

phase transition at the critical value of the magnetic field (relative to the spinor dy-

namical energy) [34, 43]. The Hamburg group reported similar results for the f = 2

manifold, as well [33].

Later work in our lab studied the coherent evolution and control of a spinor system

for the first time, providing the first validation of the mean-field theoretical treatment

of dynamics [36]. This work demonstrated both low and high field oscillations, as well

as control of the spin dynamics through magnetic field pulses to shift the spinor phase.

The Hamburg group performed similar work with the f = 2 manifold of 87Rb [44, 45],

and the group at NIST performed similar work with f = 1 23Na [46].

Spinor condensates also exhibit unique spatial excitations and structures. Our

lab showed the formation of spin domains in spinor condensates [47]. The Berkeley

group observed spontaneous symmetry breaking across the phase transition through

measurements of the transverse magnetization using large 87Rb condensates in quasi

2-D extended systems [48]. They also demonstrated that dipolar effects could be ob-

served in the formation of helical spin textures [49]. Other groups have demonstrated

the spontaneous breaking of spatial and spin symmetries (Hannover, [50]), skyrmions

(Rochester, [51]), and quantum phase transitions in Na (Georgia Tech, [52]).

The previously listed spinor work focused on the mean-field limit, but beyond
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mean-field explorations have also been conducted. Observations of super-Poissonian

noise as a result of vacuum fluctuations was observed by several groups [53? , 54].

However, development of low-noise atom detection techniques capable of detecting

sub-Poissonian quantum correlations allowed for the observation of sub-Poissonian

fluctuations and spin-nematic squeezing [38, 52, 55].

1.2.2 Spinor Theory

As previously discussed, spinor BECs [31, 35, 39, 56] differ from the single-component

BECs in that there are internal collisional interactions amongst the atoms that pro-

duce interesting dynamics. The small spin dependence of the collisional interaction

energy results in an interplay of different atomic spin orientations [29, 30]. Com-

pared to the total interaction energy, the spin dependent interaction energy is small

(∼ 0.5% in 87Rb), and is a manifestation of the difference between the s-wave scat-

tering lengths into the allowed angular momentum channels (See Chapter 2). The

sign (positive or negative) of the difference determines the properties of the spin-1

system, ferromagnetic or anti-ferromagnetic. The ground state is determined by a

combination of the collective spinor energy and the per-particle energy in a finite

magnetic field, which is discussed in more detail in Section 2.5.

One of the consequences of the spin-dependent interactions is a process called

spin-mixing, where the spin components can coherently exchange populations. This

is when two mf = 0 atoms collide to produce an mf = 1 and an mf = −1 atom.

The process is reversible, and magnetization (M = Nmf=1 − Nmf=−1) is conserved.

This process is analogous to optical four-wave mixing whereby two pump photons are

converted into two outgoing modes with opposite momenta and frequency shift inside

a non-linear crystal with a χ3 term [57]. Spin-mixing is the critical component in many

of the theoretical investigations for spin-1 condensates, as well as the experiments

discussed earlier.
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Theoretical exploration of spinor condensates have taken two main paths: mean-

field [58–60] and quantum [61–63]. The mean-field approach has worked well for

calculating spatial excitations of the spinor order parameter and for the dynamics of

the internal modes of classical states which evolve periodically [59, 62, 64]. However,

the mean-field approach breaks down for classically stable states, such as the pure

mf = 0 initial state used in our experiment. The quantum approach captures the

evolution of the mf = 0 state.

The quantum approach is also necessary to account for discrepancies with exper-

imental results by investigating the effects of particle number and magnetic fields

[65, 66]. Ultimately, through use of the quasi-probability distribution to capture

the quantum evolution of the system for the mean-field approach, solid agreement

between the two approaches has been shown [57], and either can now be used to

compare with experimental results from our lab.

The effects of atomic loss are not incorporated into any current theoretical pub-

lications. However, atomic loss is a major factor in our experimental measurements,

since the trap lifetime is ∼1.8 s and we have made spin-mixing measurements out to

4 s. As a result, a theoretical model for atomic loss was developed in this thesis to

allow for comparisons at much later evolution times.

1.3 Thesis Contributions and Organization

This thesis describes two sets of experimental results along with improvements to the

theory that are critical to longer time matching of experiment and simulation. The

first set of experimental results describe the mapping of the semi-classical phase space

of the system. It uses the results of coherent oscillations to effectively map the phase

space in two ways. First, the periods of the oscillations are used to locate the sepa-

ratrix. Second, the coherent oscillations are fitted to simulated results to match the

fractional population to a spinor phase, and these results are used to plot individual
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energy contours in the phase space. The results provided in this thesis are provided by

the current experimental apparatus that has been improved to provide better control

than was available to previous students in this lab. Additionally, our understanding

of the phase space and state preparation techniques is far more advanced.

The second set of experimental results are the measurements of the non-Gaussian

evolution of the spin-1 ferromagnetic 87Rb condensate. This work builds on the work

of previous doctoral students. The original all-optical BEC experiment and the flexi-

ble control system employed were developed for the thesis work of Dr. Murray Barrett

[67]. That system was used by Dr. Ming-Shien Chang for the exploration of coher-

ent spin-mixing [47]. Dr. Chang developed the basic spin-mixing measurement tools

and the microwave system used for state manipulation. While measuring the relative

number squeezing generated by coherent spin-mixing, Dr. Eva Bookjans [68] devel-

oped the low-noise imaging techniques used by our group, along with demonstrating

the first use of RF rotations to calibrate atom counting. In Dr. Chris Hamley’s the-

sis, a deeper theoretical understanding of the spin-mixing process demonstrates how

spin-nematic squeezing is generated, as well as the development of measurement pro-

tocols involving microwaves and RF manipulations combined in new ways to measure

states previously unmeasurable. Also, it provided a better conceptual understanding

of the phase spaces involved, allowing for development of simulation techniques with

accurate initial conditions for mf = 0 condensates in the semi-classical picture. This

thesis contributes a detailed experimental realization of the dynamical evolution of a

quantum inverted pendulum as explored in a spin-1 BEC. The highly non-Gaussian

evolution of the system as predicted by simulation required thousands of data points

to obtain statistically reliable results. Additionally, the loss model used for the dy-

namical simulations provides a first-order correction for atomic loss as a result of

finite trap lifetimes.
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This thesis is organized into eight chapters, with Chapter 1 being the introduc-

tion. Chapter 4 gives a discussion of the simple pendulum and provides insights that

will be used in later chapters. Chapter 2 discusses the spinor BEC theory. This

includes the development of quantum and mean-field theoretical approaches as exem-

plified by several of the key papers on the topic. Chapter 3 provides an overview of

the dynamical simulation techniques used for comparison with experimental results.

Chapter 5 gives a brief description of the experimental apparatus. This has been

covered in detail previously, but the key components of the experimental apparatus

are discussed again. Chapter 6 prepares states using RF and microwave rotations

that are then used to effectively map the phase space. In Chapter 7 the evolution of

the system under spin-mixing from a pure mf = 0 initial condition is studied. The

probability distributions of ρ0 are measured, and the distributions are characterized

by calculating the central moments and cumulants. Chapter 8 explores some of the

implications of the loss model. Chapter 9 contains concluding remarks and possible

future experiments.
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CHAPTER 2

SPINOR BOSE-EINSTEIN CONDENSATE THEORY

This chapter will summarize the key results from earlier papers [29, 30, 59, 61, 62,

64, 69]. Specifically, the literature review will focus on the application of the theory

to the evolution of a ferromagnetic 87Rb condensate from the classically stable initial

state of F = 1, mf = 0. The system can either be left to freely evolve (spin mixing)

or be prepared into a specific initial state after the magnetic field quench. Theoretical

discussions of spinor condensates have largely fallen into one of two main categories:

mean-field or quantum. The mean-field approach results in dynamical equations that

do not evolve for an exact mf = 0 condensate. However, when one accounts for

quantum fluctuations in the initial state, the mean-field approach yields appropriate

evolution that is consistent with the quantum theory [57]. The quantum theory

has shown slow immediate evolution with critical dampening leading to the ground

state populations [61, 62, 64]. This thesis incorporates a viable loss model to allow

simulation comparison with data for longer times. With the inclusion of the loss

model, the mean-field and quantum theory more closely match with experimental

results at longer times [70], and shows a slow initial evolution followed by under-

damped oscillations in the mf = 0 fractional population that is consistent with earlier

experiments [34].

2.1 Gross-Pitaevskii Equation

The Gross-Pitaevskii equation derives the Hamiltonian for a quantum system of iden-

tical bosons by applying the Hartree-Fock approximation and using a pseudo-potential
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to describe the interaction between particles using the scattering lengths.

H =
N∑
i=1

−∇
2

2m
+ VT (ri) + U (ri, rj) . (2.1)

For a spinor BEC with spin-1, there are two scattering channels, one for a total spin

of F = 0 and one for a total spin of F = 2. For the low-temperature limit there

is only s-wave scattering, and the spin-mixing interaction, U (ri, rj), is modeled as a

contact pseudo-potential in two body collisions [61, 62, 64]. The interaction between

two atoms in a collision is given by [61, 62]:

U (ri, rj) = δ (ri−rj)
2∑

F=0

gF

F∑
MF=−F

|F,MF 〉 〈F,MF | (2.2)

where gF = 4π~2aF/m is the coupling strength of the total spin F channel, aF is the

s-wave scattering length, and m is the particle mass. The scattering channels can be

rewritten in terms of the |f = 1,mf〉1 ⊗ |f = 1,mf〉2 basis of the colliding atoms as

in [61]. The double sum in Eqn. (2.2) then becomes

2∑
F=0

gF

F∑
MF=−F

|F,MF 〉 〈F,MF |

= g2(Ψ̂†1Ψ̂†1Ψ̂1Ψ̂1 + 2Ψ̂†1Ψ̂†0Ψ̂1Ψ̂0 +
2

3
Ψ̂†1Ψ̂†−1Ψ̂1Ψ̂−1 +

2

3
Ψ̂†0Ψ̂†0Ψ̂0Ψ̂0

+
2

3
Ψ̂†1Ψ̂†−1Ψ̂1Ψ̂−1 +

2

3
Ψ̂†0Ψ̂†0Ψ̂1Ψ̂−1 + 2Ψ̂†0Ψ̂†−1Ψ̂0Ψ̂−1 + Ψ̂†−1Ψ̂†−1Ψ̂−1Ψ̂−1)

+ g0(
4

3
Ψ̂†1Ψ̂†−1Ψ̂1Ψ̂−1 +

1

3
Ψ̂†0Ψ̂†0Ψ̂0Ψ̂0 −

2

3
Ψ̂†1Ψ̂†−1Ψ̂0Ψ̂0 −

2

3
Ψ̂†0Ψ̂†0Ψ̂1Ψ̂−1) (2.3)

where Ψ†α → |f = 1,mf = α〉 has been substituted for brevity. For reasons which will

be obvious later, it is useful to rearrange the Hamiltonian (Eqn. (2.1) with Eqn. (2.3))

into symmetric and asymmetric portions. The kinetic energy term of the Hamilto-

nian is symmetric under exchange of indices, and we will assume that the trapping

potential is also symmetric. The spin-independent part is also symmetric under in-

terchange of indices and has a coupling strength which is the weighted average of the

channel strengths (λs = (2g2 + g0)/3 ). The spin-dependent part is asymmetric under

exchange of indices and has a couplling strength that is proportional to the difference
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of the channel strengths (λa = (g2− g0)/3). The symmetric and asymmetric portions

of the Hamiltonian are given by [61]:

HS =
∑
i

∫
d3rΨ†i

(
−~2∇2

2m
+ VT

)
Ψi +

λs
2

∑
ij

∫
d3rΨ†iΨ

†
jΨiΨj (2.4)

HA =
λa
2

∫
d3r
(

Ψ†1Ψ†1Ψ1Ψ1 + Ψ†−1Ψ†−1Ψ−1Ψ−1 − 2Ψ†1Ψ†−1Ψ1Ψ−1

+ 2Ψ†1Ψ†0Ψ1Ψ0 + 2Ψ†−1Ψ†0Ψ−1Ψ0 + 2Ψ†0Ψ†0Ψ1Ψ−1 + 2Ψ†1Ψ†−1Ψ0Ψ0

)
(2.5)

The Hamiltonian above can be referred to as the spin-mixing Hamiltonian. The

spin-independent portion (Eqn. (2.4)) will determine the overall spatial and motional

wavefunction, while the spin-dependent asymmetric portion (Eqn. (2.5)) allows in-

terchange of hyperfine states during collisions while preserving the overall spin. It is

this portion of the Hamiltonian that drives spin-mixing.

2.2 Single Mode Approximation

This thesis seeks to study the internal dynamics of the system without worrying about

spin waves, vortices, skyrmions, and the like. The spin-mixing Hamiltonian, despite

having been separated into a portion that is spin independent that determines the

spatial modes and a spin-dependent portion that governs the internal modes, nothing

prevents energy from being exchanged between the two. Fortunately, the strength of

the two interactions in the Hamiltonian provide two length scales for the BEC. The

single mode approximation (SMA) takes advantage of these different length scales to

remove the complication of energy exchange between the spatial/motional modes and

the spin internal modes. These two length scales are given by ξi = 2π~/
√

2m |λi|n ,

where n is the density. For bosons such as 87Rb and 23Na, λs � λa making the

spin independent length scale much smaller than the spin dependent length scale.

Consequently, if one can make a condensate where the density drops to zero in a

region smaller than the spin modes can vary, then all of the mf components will have
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the same spatial wavefunction. This approximation is what is known as the SMA. In

the previous section we assumed that the trapping potential, VT , was symmetric. In

a shallow, linearly polarized dipole force trap such as the one used in our experiment,

the trapping potential is not dependent on the spin component. If the magnetic field

gradient is also small such that the overall trapping potential is the same for all three

spin components, then the approximation made in the previous section is indeed

valid. As a result, one can decouple the spatial structure from the internal dynamics.

The symmetric portion of the Hamiltonian will be dominant and will determine the

overall spatial wavefunction φ (r) which is the solution to the mean-field scalar Gross-

Pitaevskii equation for HS [61]:(
−∇

2

2m
+ VT + λsN |φ|2

)
φ = µφ,

∫
d3r|φ (r)|2 = 1 (2.6)

with µ being the chemical potential. As previously stated, this spatial wavefunction

is common to all of the mf projections. This simplification separates the internal dy-

namics from the spatial dynamics. These conditions are possible to achieve through

the use of cross traps or lattices to tightly confine the condensate in all three dimen-

sions.

For a large number of atoms, the scalar Gross-Pitaevskii equation is typically

solved using the Thomas-Fermi approximation. The kinetic energy term is neglected,

and Eqn. (2.6) yields φ (r) =
√

µ−VT
Nλs

. For a trapping potential approximated by a

three dimensional harmonic oscillator, the chemical potential is given by [47]:

µ =

(
15~2m1/2

25/2
Nω̄ā

)2/5

(2.7)

where ā = (2a2 + a0)/3 is the mean scattering length and ω̄ is the geometric mean

of the harmonic oscillator frequencies. The density is given by [47]

N |φ (r)|2 ≈ nTF (r) =
15N

8πR1R2R3

max

[
1−

3∑
i=1

r2
i

R2
i

, 0

]
(2.8)
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where Ri =
√

2µ/mω2
i are the Thomas-Fermi radii with ωi the characteristic frequen-

cies of the three dimensional harmonic oscillator potential. It is clear from Eqn. (2.8)

that the peak density, then, will be n0 = 15N/8πR1R2R3 .

By approximating the internal modes of the condensate in the SMA as Ψ̂α ≈

âαφ (r), where α = 0,±1, and integrating over the spatial portions, the symmetric

and asymmetric portions of the Hamiltonians simplify to [61]:

Ĥs = µN̂ − λs′N̂
(
N̂ − 1

)
(2.9)

Ĥa =λa
′
(
â†1â

†
1â1â1 + â†−1â

†
−1â−1â−1 − 2â†1â

†
−1â1â−1

+ 2â†1â
†
0â1â0 + 2â†−1â

†
0â−1â0

+2â†0â
†
0â1â−1 + 2â†1â

†
−1â0â0

)
. (2.10)

Here âα is the bosonic annihilation operator and follows the usual commutation rela-

tion
[
âα, â

†
β

]
= δαβ. Additionally, 2λi

′ = λi
∫ ∣∣φ(r)4

∣∣ d3r and N̂ = â†1â1+â†0â0+â†−1â−1

are the spatially integrated interaction strength and total number of atoms, re-

spectively. Using the Thomas-Fermi approximation, the density squared integral∫ ∣∣φ(r)4
∣∣ d3r evaluates to 4

7
n0

N
[47], and as a result the spatially integrated interaction

strengths λi
′ scale with the number of atoms as N−3/5 . Furthermore, with no atom

loss or change in trapping potential one can see that Ĥs is constant, and all of the

dynamics happen in Ĥa.

The experimental values for some of the different quantities discussed in this

section are included in Table 2.1.

2.3 Quantum Analysis of the Spin Mixing Hamiltonian

Looking only at the asymmetric spin-mixing Hamiltonian, one can rewrite it in an

eigenbasis of angular momentum states [62]:

Ĥa = λa
′
(
Ŝ2 − 2N̂

)
(2.11)
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Table 2.1: Experimental values of various theoretical quantities.
Symbol Theoretical Quantity Value Units
N Number of Atoms 45, 000 atoms
ωi Trap Frequencies 2π(200, 200, 200) rad/s
Tc Critical Temperature 321 nK
µ Chemical Potential 1.94764× 10−30 Joules

2939.35 Hz
Ri Thomas-Fermi Radii (4.13, 4.13, 4.13) µm
ξs Spin Healing Length 12.71 µm
no Thomas Fermi Peak Density 3.801× 1014 cm−3

λ′a Inter-Spin Energy 2π(8.61× 10−5) rad/s/atom
c Spinor Dynamical Rate 2π(7.75) rad/s

where Ŝ2 = Ŝ2
x + Ŝ2

y + Ŝ2
z , and the second quantized form of the components of the

total spin angular momentum are used (See Table A.1). Eqn. (2.11) readily shows

that the eigenstates of the spin-mixing Hamiltonian are total spin angular momentum

states |S,MS〉 with energy:

Ea
S = λa

′ [S(S + 1)− 2N ] . (2.12)

At this point it is instructive to examine the ground state of the spin-mixing

Hamiltonian. For an anti-ferromagnetic condensate (e.g. 23Na), λa
′ > 0), the energy

is minimized by minimizing S. This happens globally when S = 0 (S = 1) for even

(odd) N . The resulting mf values for the ground state are 〈N−1〉 = 〈N0〉 = 〈N1〉 =

N/3 . Conversely, for a ferromagnetic condensate (e.g. 87Rb), λa
′ < 0 and the

resulting minimum of the energy occurs when S is maximized. The maximum value

of S is N , and this state will have 2N + 1 degenerate ground states, one for each

value of the conserved magnetization. If you consider the MS = 0 state, the ground

state populations of the mf states are 〈N−1〉 = 〈N1〉 = N/4 and 〈N0〉 = N/2 .

The evolution of an initial state is achieved by first expanding the initial state

onto each of the eigenstates and evolve their phases for each eigenvalue e−iE
a
St/~ :

|ψ(t)〉 = e−iθN (t)

N∑
S=0

CSe
−iλa′S(S+1)t|S,MS〉. (2.13)
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Here, CS ≡ 〈ψ(0)|.S,MS〉, and the common part of the eigenvalue due to the atom

number has been pulled from the sum, θN = −2Nλa
′t/~ . Since Eqn. (2.9) commutes

with both N and Ŝz, the number of atoms and the magnetization are both conserved.

When conducting an experiment, the common initial state is where all of the atoms

are in the mf = 0 hyperfine state. We represent this as a Fock state (|N1, N0, N−1〉)

where N1 = N−1 = 0 and N0 = N . To analyze the evolution the angular momentum

states are expanded into the Fock basis, which are constructed as in [57, 65].

2.4 Mean Field Analysis of the Spin-Mixing Hamiltonian

Another evaluation technique for the spin-mixing Hamiltonian is to use a mean-field

approach. In addition to the mean-field approach already used to calculate the spatial

modes in the SMA, another mean-field approximation can be used on the internal

states. The first step is to derive a set of coupled dynamical equations for Ĥa by using

the Heisenberg equation of motion. Substitution of the spin dependent Hamiltonian

(Eqn. (2.10)) into the Heisenberg equation of motion for each mf state gives the

coupled equations [57]:

i~
∂â1

∂t
= 2λa

′
(
â†1â1â1 − â†−1â1â−1 + â†0â1â0 + â†−1â0â0

)
(2.14a)

i~
∂â0

∂t
= 2λa

′
(
â†1â1â0 + â†−1â0â−1 + â†0â1â−1

)
(2.14b)

i~
∂â−1

∂t
= 2λa

′
(
â†−1â−1â−1 − â†1â1â−1 + â†0â0â−1 + â†1â0â0

)
. (2.14c)

The mean field approximation can be made when there a large number of atoms.

In this limit, the quantum fluctuations can be ignored, and the field operators can

be replaced with complex numbers to represent the classical field amplitudes and

phases of the internal modes: (âα →
√
Nζα, â†α →

√
Nζ∗α with ζα = |ζα| eiθα and
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∑
α ζ
∗
αζα = 1). This approximation makes the dynamical equations

i~ζ̇1 = c
[
(ρ1 + ρ0 − ρ−1) ζ1 + ζ2

0ζ
∗
−1

]
(2.15a)

i~ζ̇0 = c [(ρ1 + ρ−1) ζ0 + 2ζ1ζ−1ζ
∗
0 ] (2.15b)

i~ζ̇−1 = c
[
(ρ−1 + ρ0 − ρ1) ζ−1 + ζ2

0ζ
∗
1

]
(2.15c)

where c = 2λa
′N and ρi = |ζi|2 = Ni/N .

It is useful to attempt to reduce the number of parameters for the mean-field

dynamical equations. In general, the three complex numbers representing the classical

fields for the three components,

ψ = (ζ1, ζ0, ζ−1)T ,

has six parameters. However, the constraint that
∑

α ζ
∗
αζα = 1 reduces the number

of parameters to four. Going one step further, one can re-parameterize using ζ1 =√
1−ρ0+m

2
eiχ+ , ζ0 =

√
ρ0, and ζ−1 =

√
1−ρ0−m

2
eiχ− , (where χ± = θ±− θ0 = θs±θm

2
, and

m = (N1 −N−1)/N ). The phase combinations θs = θ+ + θ−− 2θ0 and θm = θ+− θ−

are called the spinor phase and magnetization phase, respectively. What makes this

parameterization useful is that the mean field spinor energy depends on the spinor

phase but not the magnetization phase. Taking advantage of this fact, and changing

to a rotating frame to remove the magnetization phase (ζ±1
′ → e∓θm/2 ζ±1) [57], the

equations simplify to just two dynamical variables, ρ0 and θs:

ρ̇0 =
2c

~
ρ0

(√
(1− ρ0)2 −m2

)
sin θs (2.16a)

θ̇s =
2c

~

(1− 2ρ0) +
(1− ρ0) (1− 2ρ0)−m2√

(1− ρ0)2 −m2

cos θs

 (2.16b)

For the case of m = 0 these dynamical equations are readily identifiable as being

that of a non-rigid pendulum [59]. By making the same mean field substitutions into

Eqn. (2.10) one can readily obtain the mean-field spinor energy functional per particle
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(it is necessary to divide through by N):

E =
c

2
m2 + cρ0

[
(1− ρ0) +

√
(1− ρ0)2 −m2 cos θs

]
(2.17)

It is interesting to note that Eqn. (2.16) could have been obtained using the Hamilto-

nian equations of motion, ρ̇0 = −2
~
∂E
∂θs

and θ̇s = 2
~
∂E
∂ρ0

. This demonstrates that ρ0 and

θs are canonically conjugate variables. There are two additional canonically conjugate

variables, m and θm, but since the energy functional does not depend on θm, ṁ = 0,

meaning that magnetization is conserved [64, 71].

As with the quantum Hamiltonian, it is instructional to identify the ground states

for the mean-field energy functional. For the anti-ferromagnetic ground states (c > 0),

the ground states are when m = 0 and either θs = ±π or ρ0 = 0, 1. This ground

state does not lend itself to direct comparison to the quantum ground state for the

anti-ferromagnetic case. For the ferromagnetic ground states (c < 0), the energy

functional is minimized when θs = 0 and ρ0 = (1−m2)/2 . For m = 0 it is clear that

the ground state populations for the mean-field energy functional are the same as for

the quantum Hamiltonian. The solutions to the mean-field dynamical equations are

oscillatory in nature, similar to experimental results. However, what is not seen with

the mean-field solutions is the apparent dampening that the experiment shows. A

general solution using Jacobian elliptic functions can be found in Ref. [59]. For the

ferromagnetic system, the period is dependent on the displacement from the ground

state. For small displacements from the ground state, the period is approximately

T ≈ 1/(2 |c|) . As stated previously, the experiment is often initialized in the mf = 0

state where ζ±1 = 0 and ζ0 = 1. Inspection of Eqn. (2.15) shows that the time

derivatives for this initial state are all zero, and hence the pure mf = 0 state does not

evolve from the mean-field equations. This is obviously in conflict with the quantum

simulation and the experimental measurements. It is for this reason that a quasi-

probability distribution of initial states that replicate the Fock state |0, N, 0〉 must be

used [57].
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2.5 Magnetic Fields

Thus far, the effects of magnetic fields have been neglected. The Zeeman energies

have been calculated explicitly in Ref. [57], which resulted in the well-known Breit-

Rabi formula for the hyperfine ground states [72]. This formula is expanded into a

power series giving the linear Zeeman effect and a quadratic Zeeman effect for low

fields. Furthermore, in the SMA, only the energy difference of the mf states affects

dynamics [57]. This energy difference is given by Eα−E0 = pα+ qα2, where α = ±1,

p = µBBzgf is the linear Zeeman contribution, q = µ2
BB

2
z/(~2EHFS) is the quadratic

Zeeman contribution, gf is the Land g-factor, and EHFS is the ground state hyperfine

splitting [62, 63, 73]. The total magnetic field energy is given by

EB = E1N1 + E0N0 + E−1N−1

= E1N1 + E0 (N − (N1 +N−1)) + E−1N−1

= (p+ q)N1 + (−p+ q)N−1 + E0N

= p (N1 −N−1) + q (N1 +N−1) + E0N (2.18)

The first term in Eqn. (2.18) shows that the linear Zeeman shift is proportional to

Sz = (N1 −N−1), where each atom contributes an energy of pmf . What is less obvious

is the contribution of the quadratic Zeeman effect. It is convenient to introduce the

spin-1 quadrapole operators. Table A.2 shows the spin-1 quadrapole operators in

both matrix form and in terms of the bosonic operators for the different mf states.

The matrix form of the operators are in a spherical polar basis.

The quadrapole operator Qzz can be easily rewritten in terms of the mf component

populations:

Qzz

2
= 1

3
N1 + 1

3
N−1 − 2

3
N0

= 1
3

(N1 +N−1)− 2
3

(N −N1 −N−1)

= (N1 +N−1)− 2
3
N (2.19)
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One can neglect the constant term at the end of Eqn. (2.19), along with the constant

term at the end of Eqn. (2.18), since they do not affect the dynamics. The resulting

magnetic field energy contribution to the Hamiltonian, neglecting the constant terms,

is EB = pSz + q
2
Qzz.

2.5.1 Quantum Approach with Finite Magnetic Field

The spin-mixing Hamiltonian, then, for a single mode, spin-1 condensate in a finite

magnetic field takes the basis independent form

Ĥa,B = λa
′
(
Ŝ2 − 2N̂

)
+ pŜz +

q

2
Q̂zz. (2.20)

The choice of basis now becomes important. Sz commutes with the entire Hamil-

tonian, but Q̂zz and Ŝ2 do not commute. This complication makes it difficult to

solve the evolution using the angular momentum formulation. However, Fock states

are eigenstates of both Sz and Q̂zz. Additionally, the angular momentum basis has

already been projected onto the Fock basis [65].

As an alternative, the spin-mixing Hamiltonian (Eqn. (2.20)) can be evaluated

using techniques provided in Refs. [63, 66, 74], which provides a Fock state basis as a

number of pairs of mf = ±1 in a vacuum state of atoms with mf = 0. A Fock state

can be enumerated as |N1, N0, N−1〉 as was discussed earlier. However, an equivalent

enumeration is |N,M, k〉, where N = N1 + N0 + N−1 is the total atom number,

M = N1−N−1 is the magnetization, and k is the number of pairs of ±1 atoms. Since

the spin-mixing Hamiltonian conserves total number, N , and magnetization, M , the

only evolution for this basis will be in k. In this basis the spin-mixing Hamiltonian acts

as a hopping Hamiltonian, jumping between numbers of pairs and can be represented

by a tri-diagonal matrix. [38] Eqn. (2.10) can be rearranged by taking advantage of

the bosonic operator commutation relationships, thus pairing mode operators into
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number operators. The result is

Ĥa = λa
′
((

N̂1 − N̂−1

)2

+
(

2N̂0 − 1
)(

N̂1 + N̂−1

)
+ 2â†1â

†
−1â0â0 + 2â†0â

†
0â1â−1

)
.

(2.21)

With this change, adding the effects of a finite magnetic field is not difficult since it

is diagonal in this basis. As Eqn. (2.18) indicates (after taking the E0 as the zero

point for the quadratic Zeeman energy), the magnetic field contribution to Ĥa is

p
(
N̂1 − N̂−1

)
+ q

(
N̂1 + N̂−1

)
. For ML = 0 the spin-mixing Hamiltonian with a

finite magnetic field can be evaluated for numbers of pairs, yielding the following

matrix elements [38, 63]:

H̃k,k′ = {2λa′ (2 (N − 2k)− 1) + 2qk} δk,k′

+ 2λa
′
{

(k′ + 1)
√

(N − 2k′) (N − 2k′ − 1) δk,k′+1

+ k′
√

(N − 2k′ + 1) (N − 2k′ + 2)δk,k′−1

}
. (2.22)

For q = 0 Eqn. (2.22) takes the form of the matrix elements for Eqn. (2.12), and

the eigenvalues are the same for both. The eigenvectors are the angular momentum

states projected onto the Fock basis as described earlier, and the exact solution follows

rather trivially. For q 6= 0 the eigenstates are a mix between the angular momen-

tum basis and the Fock pairs basis, and the matrix elements of Eqn. (2.22) can be

diagonalized to get an exact solution [66]. The eigenspectrum for both ferromagnetic

and anti-ferromagnetic condensates can be seen in Ref. [38]. For low magnetic fields

the eigenenergies vary quadratically with index because the eigenstates are angular

momentum states. On the other hand, the eigenenergies vary linearly with index for

high magnetic field because the eigenstates are Fock states. The ground state in high

magnetic field is the lowest energy eigenstates of Qzz, which is the |0, N, 0〉 Fock state

equivalent to the mf = 0 polar state, regardless of the sign of λa
′ [58].
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2.5.2 Mean-Field Equations with a Finite Magnetic Field

The mean field dynamical equations (Eqn. (2.15)) are easily modified to include a

finite magnetic field:

i~ζ̇1 = E1ζ1 + c
[
(ρ1 + ρ0 − ρ−1) ζ1 + ζ2

0ζ
∗
−1

]
(2.23a)

i~ζ̇0 = E0ζ0 + c [(ρ1 + ρ−1) ζ0 + 2ζ1ζ−1ζ
∗
0 ] (2.23b)

i~ζ̇−1 = E−1ζ−1 + c
[
(ρ−1 + ρ0 − ρ1) ζ−1 + ζ2

0ζ
∗
1

]
. (2.23c)

With the same parameterization and change of variables as before, the simplified

dynamical equations become

ρ̇0 =
2c

~
ρ0

(√
(1− ρ0)2 −m2

)
sin θs (2.24a)

θ̇s = −2q

~
+

2c

~

(1− 2ρ0) +
(1− ρ0) (1− 2ρ0)−m2√

(1− ρ0)2 −m2

cos θs

 . (2.24b)

The energy functional takes the form

E =
c

2
m2 + cρ0

[
(1− ρ0) +

√
(1− ρ0)2 −m2 cos θs

]
+ pm+ q (1− ρ0) (2.25)

The dynamical equations developed in Sections 2.5.1 and 2.5.2 will be further

examined in Chapter 3.

2.5.3 Mean-Field and Spin-Nematic Phase Spaces

The system can be represented in the spin-nematic phase space using the operators of

Tables A.1 and A.2. The mean-field energy functional of Eqn. (2.25) can be re-written

as:

E =
c

4

(
1− x2

)
(1 + cos θs) +

q

2
(1− x) (2.26)

where x = 2ρ0−1. Because of the added complexity that a finite magnetic field adds,

only m = 0 is considered.
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Furthermore, the expectation value for several of the spin and quadrapole opera-

tors can be calculated using the matrix representation of Tables A.1 and A.2 and the

parameterizations of order parameter ψ = (ζ1, ζ0, ζ−1)T from Section 2.4:

〈Sx〉 = 2
√
ρ0(1− ρ0) cos

θs
2

cos
θm
2

〈Qyz〉 = 2
√
ρ0(1− ρ0) sin

θs
2

cos
θm
2

〈Sy〉 = −2
√
ρ0(1− ρ0) cos

θs
2

sin
θm
2

〈Qxz〉 = −2
√
ρ0(1− ρ0) sin

θs
2

sin
θm
2
.

where all of the values range from −1 → 1. For convenience, the expectation values

with subscripts x and y can be combined into expectation values that are perpendic-

ular to the z operators:

〈S2
⊥〉 = 〈S2

x〉+ 〈S2
y〉 = 4ρ0 (1− ρ0) cos2 θs

2

= 2ρ0 (1− ρ0) (1 + cos θs)

=
1

2

(
1− x2

)
(1 + cos θs)

〈Q2
⊥z〉 = 〈Q2

xz〉+ 〈Q2
yz〉 = 4ρ0 (1− ρ0) sin2 θs

2

= 2ρ0 (1− ρ0) (1− cos θs)

=
1

2

(
1− x2

)
(1− cos θs)

and, as a result

〈S2
⊥〉+ 〈Q2

⊥〉+ x2 = 1.

The energy functional can be rewritten in terms of these new expectation values:

E =
c

2
〈S2
⊥〉+

q

2
(1− x).

The spin-nematic phase space can be represented as a sphere with energy contours

given by the energy functional, similar to Refs. [38, 57], where x takes the place

of Qzz. Fig. 2.1 shows the ferromagnetic mean-field and spin-nematic m = 0 phase

space for several different values of magnetic field energy.
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Figure 2.1: Mean-field and spin-nematic phase space in a finite magnetic field for a
ferromagnetic condensate. Magnetic field energy q is |3c|, |2c|, |c|

2
, and 0 in (a)−(d),

respectively. The mean-field phase space represents a Mercator projection of one
hemisphere of the spin-nematic phase space.
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2.6 Quantum Phase Transition in a Quenched 87Rb BEC

In nature, phase transitions are of many kinds are associated with changes in the

thermodynamic properties of matter, such as temperature, pressure, etc. Indeed,

quantum many-body systems such as a Bose gas undergoes a thermodynamic phase

transition during evaporative cooling leading to Bose-Einstein condensation[75]. At

zero temperature, however, these phase transitions no longer occur. Instead, there

are quantum phase transitions (QPT). A quantum phase transition is a change in the

character of a system’s ground state which occurs as some parameter of its Hamilto-

nian passes critical value [75–77]. In Sections 2.5.1 and 2.5.2 the addition of a finite

magnetic field in the quantum and mean-field Hamiltonian made the ground state

conditional upon the value of the magnetic field. This phenomenon will be briefly

explained in more detail here.

The ground state phase is a result of the competition between the ferromagnetic

energy, E = λ′aŜ
2 = c

2N
Ŝ2, and the quadratic Zeeman interaction, Eq = qQ̂zz [75].

At high magnetic fields, the Hamiltonian of multi-component fluids such as the 87Rb

condensate are dominated by the quadratic Zeeman energy, favoring the polar state

of mf = 0, or |ψGS|2 = (0, 1, 0)T as the ground state. Conversely, at low fields the

fluids are characterized by a contact interaction that favors a ferromagnetic phase.

[78]

Fig. 2.1 shows the quantum phase transition as the field is quenched through

the critical point. As the magnetic field is decreased for the m = 0 ferromagnetic

condensate, the ground state goes from the pure polar state of mf = 0 to a mixed

ferromagnetic state (a state that involves the mf = ±1 Zeeman sub-levels). When

the decreasing field reaches the critical value(qc = 2|c|), the separatrix first appears,

signifying the change in the ground state (Fig. 2.1 (b)). For values above qc the

quadratic Zeeman energy dominates, while below qc the collisional interactions are

dominant, resulting in a grounds state of |ψGS|2 = (1
4
− q

8|c| ,
1
2

+ q
4|c| ,

1
4
− q

8|c|)
T .
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During the conduct of the experiment the system is initialized at high field and

rapidly quenched through the phase transition point. The ground state of the high

field preparation is a hyperbolic fixed point in the phase space of the low-field system,

and evolves analogous to the evolution of the simple pendulum studied in Chapter

4. Other publications have studied various facets of the dynamics of a quenched

spinor condensate such as spontaneous symmetry breaking, formation of spin textures,

ferromagnetic domains, and magnetization fluctuations [43, 48, 75, 76]. This thesis

will instead study the evolution of the Fock state coefficients of the condensate.

26



CHAPTER 3

DYNAMIC SIMULATIONS

The equations developed in Chapter 2 provide the necessary tools to simulate the

experiment and to make predictions, both qualitative and quantitative, about the ex-

perimental results. This chapter will discuss the details of the dynamical simulations,

including the mathematical methods of evolving the dynamical equations, the nature

of the initial conditions, the method used for modeling loss, and the general predic-

tions about experimental results. Rather than dedicating equal time to ferromagnetic

and anti-ferromagnetic condensates, this chapter will spend much of its time using

the conditions that are relevant to the experiment, to wit: a ∼ 40, 000 atom 87Rb

(ferromagnetic) condensate initialized in a high magnetic field (∼ 2G) and quenched

to a final magnetic field value of approximately 200 mG. Though this system has

been shown to generate squeezing in the low-depletion limit for early time [38], this

chapter will not discuss the squeezing in any detail. Instead, this chapter will focus

on dynamics well past the low depletion limit. These simulations will be used in the

following chapters for comparison of experimental results and for the illustration of

conceptual results. The fully quantum simulations of the dynamical equations devel-

oped in Section 2.5.1 will be used for comparison of all experimental output, while

the mean-field simulations of the dynamical equations developed in Section 2.5.2 will

be used to illustrate the conceptual results.

3.1 Quantum Dynamical Simulations

The quantum Hamiltonian in the pairs basis given by Eqn. (2.22) could be diagonal-

ized, finding the eigenenergies and eigenvectors and come up with an exact solutions
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[65, 66]. However, this method is impractical for a large number of atoms. An ad-

vantage of this Hamiltonian, though, is that it is simple to numerically integrate the

Schrödinger equation for the initial state using the tri-diagonal matrix without ever

solving the exact eigenvalue problem. This method also adds the ability to include

a time-varying magnetic field, which is the case for the experiment. The simulation

for the state ψ is represented as a vector of the complex coefficients of the Fock

states starting with ψ0 = 1 and all other ψk 6=0 = 0 as the initial mf = 0 state. The

Schrödinger equation is numerically integrated using Eqn. (2.22) for H̃:

ψ̇ (t) =
i

~
H̃ · ψ (t) (3.1a)

ψ̇0

ψ̇1

...

ψ̇k
...

ψ̇kmax


=



H̃00 · ψ0 + H̃01 · ψ1

H̃10 · ψ0 + H̃11 · ψ1 + H̃12 · ψ2

...

H̃k(k−1) · ψk−1 + H̃kk · ψk + H̃k(k+1) · ψk+1

...

H̃kmax(kmax−1) · ψkmax−1 + H̃kmaxkmax · ψkmax


(3.1b)

ψ (t+ ∆t) = ψ (t) + ∆t · ψ̇ (t) (3.1c)

The Schrödinger equation is iterated as many times as needed to achieve the desired

evolution time.

3.1.1 Mean-Field Dynamical Equations

The quantum dynamical simulations discussed in the previous section yield the means

of comparing the experimental data to the theory, and generally speaking they pro-

vide all of the experimentally obtainable values for comparison. However, what the

quantum simulations do not provide is an intuitive means of analyzing the phase

space that the mean-field dynamical equations provide. As was seen in Chapter 4,

visualizing the evolution of the system overlaid on the phase space was quite illustra-

tive. However, as was previously mentioned, these mean-field dynamical equations for
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a classically meta-stable state such as a pure mf = 0 state will not evolve. Just as in

Chapter 4, where a quasi-probability distribution was chosen to replicate a quantum-

like pendulum evolution, a similar technique can be used to initialize the mean-field

dynamical equations such that evolution will occur. This is a common technique

used in quantum optics [79], where a distribution of classical states is created and the

mean-field dynamics are calculated for each state. In the case of Chapter 4, the dis-

tribution was a simple Gaussian centered on the hyperbolic fixed point. For a spin-1

ferromagnetic condensate initialized in the mf = 1 hyperfine state, the distribution

is less straight forward.

3.1.1.1 Quasi-Probability Distribution for Mean-Field Dynamics

The quasi-probability distribution is obtained using the techniques found in [57],

which will be highlighted here. In general, the product of two variances of operators

Â and B̂ is given by the familiar relationship 〈(∆Â)
2
〉〈(∆B̂)

2
〉 ≥ 1

4
|[Â, B̂]|

2
. Using

an initial Fock state of |0, N, 0〉 and Table A.3, only two pairs of operators have a

non-zero expectation value of their commutator: 〈0, N, 0| [Sx, Qyz] |0, N, 0〉 = −2iN

and 〈0, N, 0| [Sy, Qxz] |0, N, 0〉 = −2iN . The product relationship for the variances

of each is, then, 〈(∆Ŝx)
2
〉〈(∆Q̂yz)

2
〉 ≥ N2 and 〈(∆Ŝy)

2
〉〈(∆Q̂xz)

2
〉 ≥ N2. For the

uncorrelated initial state, the variance is split equally between each of the operator

pairs. Furthermore, the expectation value for each operator is zero for the mf = 0

state. Therefore, normal distributions for Sx, Sy, Qyz, and Qxz are generated that

meet these criteria, where Sx, Sy, Qyz, and Qxz are scaled by the number of atoms.

These are then used to generate a quasi-probability distribution (QPD) of the classical

field variables ρ0, m, χ+, and χ− that are needed for the semi-classical simulations.

Using ψ =
(√

ρ1e
iχ+ ,
√
ρ0,
√
ρ−1e

iχ−
)T

, and the matrix form of the operators in Table

A.1 and Table A.2, the expectation values in terms of the classical field variables can

be derived. These equations can be inverted and used to obtain the initial values of
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the vector order parameter from the uncorrelated distributions of Sx, Sy, Qyz, and

Qxz:

χ+ = tan−1

(
−Sy +Qyz

Sx +Qxz

)
(3.2)

χ− = tan−1

(
Sy −Qyz

Sx −Qxz

)
(3.3)

ρ0 =
1

2
+

√√√√1

4
− 1

8

((
Sx +Qxz

cosχ+

)2

+

(
Sx −Qxz

cosχ−

)2
)

(3.4)

m =
1

8ρ0

((
Sx +Qxz

cosχ+

)2

−
(
Sx −Qxz

cosχ−

)2
)

(3.5)

These different values of ρ0, m, χ+, and χ− are used in the dynamical equations to

show the evolution of each set of initial conditions.

3.1.2 Convergence of the Quantum and Mean-Field Approaches

The quantum and mean-field dynamical simulations are compared in Fig. 3.1. The

simulations in Fig. 3.1 were conducted using conditions expected in the experiment:

45, 000 atoms initialized in the mf = 0 at a magnetic field of 2 G. The system is

quenched at t = 0 by rapidly decreasing the magnetic field from its initial value

to its final value of ∼ 200 mG with a decay constant of τB = 1 ms. The spinor

dynamical rate for the two simulations was also chosen to match experimental con-

ditions, c = −2π~ × 7.5 Hz. The red line represents the mean value of 〈N̂0〉/N (or

ρ0, interchangeably) and the shaded regions represent the standard deviation. Ini-

tial inspection of the two results show very good agreement. In fact, closer analysis

shows that the two results differ by < 0.5% for the mean and < 1% for the standard

deviation. This deviation is likely due to the finite number of samples used in the

ensemble for the semi-classical simulation (5000).

3.1.3 Effects of Magnetic Field on Evolution

In Chapter 2, two different sets of dynamical equations were derived, one for the ab-

sence of a field (Eqn. (2.11)), and one for the presence of a finite magnetic field(Eqn. (2.20)).
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Figure 3.1: Comparison of the quantum and semi-classical simulations.
Shown here are the mean (solid red line) and standard deviation (shaded region) of
〈N̂0〉/N for the (a) quantum simulation and ρ0 for the (b) semi-classical simulation.

The results of simulations of each Hamiltonian are shown in Fig. 3.2. The no-field

simulations (left column) show an almost immediate evolution out of the mf = 0

initial state. The evolution reaches a single minimum, then gradually climbs to the

equilibrium value. The results of the evolution with a finite magnetic field (right

column) show a major change in the dynamics for a magnetic field of 200 mG. Ini-

tially the population evolves slowly, as in the zero-field case. However, near 200 ms

rapid population dynamics occur with one oscillation followed by seemingly damped

oscillations. For higher fields, the onset of oscillation would occur sooner, and the

depth of the oscillation would be reduced. At q = 2|c|, the evolution would show no

oscillation since that is the value of the critical point where the ground state of the

system changes to the polar state.

3.1.4 Effect of Atomic Loss on the Simulation

For times less than ∼ 200 ms, the dynamical simulations have been shown to reason-

ably reflect the experimental results [38, 57]. However, at later times the experiment

tends to oscillate in a coherent fashion immediately after the first revival in ρ0, while

the simulation pauses at the first revival, similar to the way an inverted pendulum
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Figure 3.2: Comparison of dynamic evolution with and without a magnetic
field. Shown here are the results of simulations for a magnetic field of 0 mG (left)
and 200 mG (right). Simulations for 45, 000 atoms, and c = −2π × 7.75 Hz. Atomic
loss has not been accounted for in these simulations.

32



0 1 2

1

2

3

Time Ht�ΤBL

NH0L�N
cH0L�c
Λa

' H0L�Λa
'

Figure 3.3: Time scaling for atom number and dynamical simulation values.
Shown here is the time scaling of the atom number, N (red), inter-spin energy,λa

′

(blue), and the spinor dynamical rate, c (black).

slows near the top of an orbit. One possible explanation for this discrepancy is that

the dynamical equations developed in Chapter 2 do not account for the effect of

atomic loss [70]. The trap lifetime of the condensate is ∼ 2s, less than an order of

magnitude larger than the simulation times past 250 ms, so it is not unreasonable

to expect the loss to make a difference. For this thesis, the effects of loss were im-

plemented into the dynamical equations in two ways, and will be explained in the

following sections. Previous experimental groups have implemented atomic loss into

their simulations differently, with some success [36, 46].

3.1.4.1 Modeling Loss by Varying the Spinor Dynamical Rate

In Section 2.2, the spatially integrated interaction strength, or inter-spin energy,

λi
′ = 1

2
λi
∫ ∣∣φ(r)4

∣∣ d3r was determined to scale with the total atom number as N−3/5

for the quantum derivation of the dynamical equations. For the mean field equations,

the spinor dynamical rate, c, was related to the inter-spin energy by c = 2λa
′N , so

c scales with the total atoms number as N2/5 . The inter-spin energy and the spinor
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dynamical rate as a function of time are shown in Fig. 3.3, along with the atom

number. By numerically integrating the same dynamical equations, only taking into

account the effect of atom loss on the density of the condensate, and therefore the

values of λi
′ and c, the simulation results can be made to more accurately model the

experimental results. (See Chapters 6 and 7).

3.1.4.2 Modeling Loss with a Quantum Monte Carlo Simulation

An alternate calculation of the effects of atom loss is to use a quantum Monte Carlo

simulation. The quantum Monte Carlo is implemented similar to Refs [70, 80–82].

The atoms are assumed to be lost one at a time and the process of losing an atom

effectively measures its mf state and so the collapse operators are simply related to

the annihilation operators for the modes of the condensate. The numerical integration

of the k coefficients is performed with an effective Hamiltonian given by:

Heff = HSMA − i
2

∑
i

C†iCi (3.6)

= HSMA − i
2τ
N̂ (3.7)

where Ci =
√

1/τ âi are the collapse operators for each mode (i = −1, 0, 1) and τ is

the condensate lifetime. During the time interval ∆t of the numerical integration each

atom has a probability e−∆t/τ of remaining. For each atom a random number in the

range 0 to 1 is generated to stochastically determine how many atoms to annihilate

in each mode. If this number is greater than e−∆t/τ , then the appropriate collapse

operator is applied to the state vector. The number of atoms for each mode is given

by 〈N̂i〉. After the collapse operators have been applied the k coefficients are re-

normalized and the next step of the numerical integration is performed with updated

values for N and M . Results are obtained from the quantum Monte Carlo simulation

by taking the average of quantum expectation values from many runs with the same

initial conditions but a uniquely seeded sequence of random numbers to determine
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the annihilation probabilities. In effect, the results of the quantum Monte Carlo

simulation are the average of many quantum trajectories.

At first glance the quantum Monte Carlo is a daunting task since in general it

should be necessary to use a basis spanning every possible value of N(t), M(t), and

k(t) which scales as N3. However the action of the collapse operators shifts the

state vector from N(t) and M(t) to N(t+ ∆t) and M(t+ ∆t) while modifying the k

coefficients in a well characterized way. At any given step of the calculation there is

only one value forN andM . So for any step of the calculation the basis is proportional

to N(t) and is completely described with the current values of N , M , and the complex

coefficients for the k index.

The results for the quantum Monte Carlo simulation are nearly identical to those

produced by the scaling of the spinor dynamical rate. Through the remainder of this

thesis, the quantum Monte Carlo simulation is used for comparison of all experimen-

tally obtained values, except where specifically indicated.

Fig. 3.4 shows the comparison of the dynamical simulations for the system without

loss (left column) and with atomic loss(right column). The obvious difference between

the two sets of simulations occurs at the first revival of the system (t ∼ 250 ms). The

simulation without loss shows a long pause (∼ 150 ms) followed by dampened, multi-

frequency oscillation. The simulation that incorporates loss, on the other hand, shows

no noticeable pause. Instead, it continues oscillating with approximately a single-

frequency. There is slight dampening of the evolution, as well.

3.2 Evolution of the Probability Density

The previous simulation results for ρ0 only showed the mean and standard deviation

of the evolution. However, as with simple inverted pendulum, the spin-1 BEC shows

detailed non-Gaussian distributions in the evolution of ρ0 as shown in Fig. 3.5, where

loss is included. The values for the simulation were chosen to match experimental
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Figure 3.4: Comparison of dynamic evolution with and without loss. Shown
here are the results of simulations without (left) and with (right) atomic loss accounted
for. Simulations for 45, 000 atoms, B = 220 mG, and c = −2π × 7.75 Hz.
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Figure 3.5: Evolution of the probability density of ρ0. The black line represents
the mean value of ρ0 and the blue lines represent ±σ, the standard deviation.

conditions (N = 45, 000 atoms, B = 220 mG, |c| = 2π7.75 Hz, τB = 1.8 s). Notice

how the system pauses in the initial state for ∼ 100 ms before beginning rapid os-

cillations. This is similar to how an inverted pendulum has a long pause before it

begins rapid oscillations. Just as the simple pendulum’s pause time is logarithmically

sensitive to the size of its initial uncertainty, so too is the spin-1 BEC. For larger

condensates the pause time scales logarithmically with the number of atoms. In the

loss-less model, the spin-1 BEC also showed a pause after the first revival, just as in

the inverted pendulum. In the model that includes loss, though, there is no subse-

quent pauses. Fig. 3.5 also shows how the probability of ρ0 tends to bunch near the

turning points in the evolution. At these times one can see that the mean of ρ0 is not

close to point of maximum probability. This is a good indication that there is a skew

in the distribution, an inherently non-Gaussian feature. More on the non-Gaussian

evolution of the spin-1 BEC will be discussed in Chapter 7.
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CHAPTER 4

SIMPLE PENDULUM THEORY

The mean-field equations of motions developed in Chapter 2 take the form of a non-

rigid, momentum-shortened pendulum. Though it is difficult to contrive a macro-

scopic physical system that models the many-body BEC system, much insight can be

gained from first looking at the simple pendulum (e.g. The behaviour of the simple

pendulum near the hyperbolic fixed point, mapping of the phase space, etc.). This

chapter will explore the simple pendulum, (including the classical, semi-classical, and

quantum model systems), the phase space, the equations of motion, and the simula-

tion results. The concept of quadrature squeezing will also be studied with the simple

pendulum.

It is important to note, however, that even though the Hamiltonian for a simple

pendulum is similar in form to the Hamiltonian for the mean-field formulism of a

spinor BEC, there are subtle differences in the phase spaces and dynamics of the two

that make direct comparison limited. Moving forward, it is a caution to the audience

not to read too much into any direct comparisons between the two systems. The

systems are analogous, but not identical.

4.1 The Simple Pendulum, Classical Picture

A simple pendulum consists of a point mass m at the end of a massless, rigid rod

of length L. Its angular position, θ, will be measured from the upward vertical (See

Fig. 4.1). The Hamiltonian and corresponding equations of motion for the pendulum
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Figure 4.1: The simple pendulum. The simple inverted pendulum consists of
a point mass m affixed to a rigid, massless rod of length L. Its angular position is
measured from the upward vertical and the zero point for potential energy is when
θ = π

2
.

are:

H =
pθ

2

2mL2
+mgL cos θ (4.1a)

ṗθ = −∂H
∂θ

= mgL sin θ (4.1b)

θ̇ =
∂H

∂pθ
=

pθ
mL2

(4.1c)

where the zero point of potential energy was chosen to be θ = π/2 . The Hamiltonian

in Eqn. (4.1a) can be used to plot the corresponding phase space and energy contours.

The phase space is divided into two regions: a region of closed orbits (red) where

the pendulum oscillates back and forth, and a region of phase winding orbits (blue)

where the pendulum undergoes complete loops. The two regions are divided by the

separatrix, which indicates the region of the phase space with total energy equal to

mgL. The simple pendulum has ground state locations at (θ = ±nπ, pθ = 0), as well

as hyperbolic fixed points located at (θ = ±2nπ, pθ = 0) (See Fig. 4.2).

If the pendulum has energy larger than mgL, it will undergo phase winding orbits,
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Figure 4.2: Simple inverted pendulum phase space. The phase space for the
simple pendulum is depicted. The energy contours are shown with arrows indicating
direction of dynamic evolution. The thick black line represents the separatrix, the
red lines are energy contours for closed orbits, and the blue lines are energy contours
for phase-winding orbits.

but if it has energy less than mgL, it will undergo oscillating orbits. If the pendulum

is prepared in an initial configuration with a total energy exactly equal to mgL, it

will evolve from its start point along the separatrix with just enough momentum to

reach one of the hyperbolic fixed points in the phase space, where it comes to rest.

If the pendulum could be prepared perfectly at one of the hyperbolic fixed points,

it would not evolve in the classical limit. Such an initial state is not physically

possible, however, due to thermal fluctuations and inevitable imprecisions in the

initial conditions.

The types of orbits for each region are shown in Fig. 4.3. Fig. 4.3 (a) shows

the commonly visualized pendulum motion, where the pendulum oscillates back and

forth in coordinate space, and the phase-space trajectory is a closed orbit inside the

separatrix. The parametric plot of the angular displacement for this orbit is shown

in the right column.
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Figure 4.3: Closed and winding orbits. The two main types of orbits for a
simple inverted pendulum. The left column for rows (a) and (b) is the coordinate
space representation, and the center column is the orbit depicted on the phase space.
The right column shows the parametric plot of the orbit. (a) shows a pendulum with
a total energy less than mgL. The pendulum oscillates back and forth in coordinate
space between a minimum angle and maximum angle. Orbits in this category have
angular displacements between 0 and 2π. (b) shows a pendulum with a total energy
greater than mgL. This pendulum makes complete circular paths in coordinate space,
and its angular displacement keeps increasing by 2π with each orbit.
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Figure 4.4: Period of oscillations for different energies. Both phase winding
and closed orbits of different energies. The time for each plot is relative to the period
for small oscillations, T0 = 2π

√
L/g.

Fig. 4.3 (b) shows the phase-winding orbit, where the pendulum undergoes com-

plete circles in coordinate space, and the phase-space trajectory is outside of the

separatrix. The parametric plot of the angular displacement for this orbit is shown

in the right column, as well.

The parametric and phase space plots of Fig. 4.3 provide several useful insights

for the many-body quantum system. First, one can estimate where in the phase

space an orbit begins based on the shape of the parametric plot for the angular

displacement. Looking at Fig. 4.3 (a) one can see that the dashed red line starts at

rest at a maximum and moves to a minimum, where it again stops momentarily and

changes direction. This can be seen in the phase space, as well. The same can be

done for the phase-winding orbits in Fig. 4.3 (b). This technique can be employed for

many different oscillations and one can effectively map the phase space by observing

oscillations of different initial conditions, which will be done in Chapter 6.

Second, the period of the orbit decreases as you move further from the sepa-

ratrix. Fig. 4.4 shows orbits at different energies on a common time scale, where

T0 = 2π
√
L/g is the period of oscillation for small displacements near the ground

state. The dashed lines in each are the orbits furthest from the separatrix, and the
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Figure 4.5: Cross-section of simple pendulum phase space. The period is
measured for different values of the initial angular momentum for an angular dis-
placement of π. (Indicated by a green line in the phase space.) The separatrix is
indicated with dashed red lines, and the ground state location is labeled with a green
dot.

solid lines are the orbits closest to the separatrix. It is clear that the closer to the sep-

aratrix the orbit, the longer the period, with the separatrix having an infinite period.

This is helpful in verifying the map of the phase space. Consider, for example, the

green line in Fig. 4.5, that cuts across the phase space for different initial values of

angular momentum at a fixed value of the angular displacement, in this case, θ0 = π.

The period for the different orbits is plotted in Fig. 4.5. The separatrix is clearly visi-

ble at the points where the period asymptotically approaches infinity, and the ground

state is easily identifiable in this case because the initial angular displacement passes

through where one expects to find the ground state. This can be done for several

similar cuts along both directions to quickly verify the map the phase space, as well.

4.1.1 The Simple Inverted Pendulum

This subsection will consider the simple pendulum initialized to points near the hyper-

bolic fixed point, where (θ0, pθ0) ∼ (0, 0). Fig. 4.6 shows the evolution of an inverted

pendulum with initial conditions (θ0, pθ0) = (0.025, 0) (Red line). As expected, the
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Figure 4.6: Displacement of a simple inverted pendulum. The displacement of
a simple inverted pendulum is shown for several initial states near the hyperbolic fixed
point. The red line is for (θ0, pθ0) = (0.025, 0). The blue line is for (θ0, pθ0) = (10−4, 0).
The green line is for (θ0, pθ0) = (10−6, 0). The pendulum spends much of its time in
the inverted state, and quickly falls through its minimum, returning to the inverted
position where it again slows at the top. The initial delay before evolution increases
as the initial state of the pendulum approaches the hyperbolic fixed point at (0, 0).

pendulum stays balanced in the inverted position for a finite period of time before

it rapidly falls through its lowest point. The pendulum returns to its start position,

slowing down considerably near the top. For pθ0 = 0, as θ0 → 0, the initial pause

goes to infinity, as can be seen from Fig. 4.6 (Blue line- (θ0, pθ0) = (10−4, 0), Green

line- (θ0, pθ0) = (10−6, 0)).

4.2 The Simple Pendulum, Semi-Classical Picture

A semi-classical approach to the simple pendulum can be used (in lieu of a fully

quantum approach) when quantum mechanical effects become important [83]. In the

semi-classical approach, the quantum nature of the system is captured with a quasi-

probability distribution (QPD) representing the initial state. Each initial condition

from the QPD is then separately evolved in time using the classical equations of
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motion.

Quantum mechanical effects must be considered when the system size is compara-

ble to the deBroglie wavelength. The dimensionless quantity α = 4m2gL3/~2, where

√
α is the ratio of pendulum length to the reduced deBroglie wavelength [83], will

aid in this determination. For α � 1 the classical approach discussed in the previ-

ous section is sufficient to describe the dynamics. However, when α ≤ 1 quantum

mechanics are needed to describe the evolution. A simple method for implementing

the quantum mechanical nature of the evolution is to use the semi-classical approach

that both captures the quantum dynamics for α ≤ 1 and yet also works for larger α.

When initializing the pendulum, regardless of how careful the preparation, there

must be an uncertainty in the initial angular position, ∆θ. In the quantum limit, the

uncertainty principle dictates that there is a corresponding minimum uncertainty in

the angular momentum, ∆pθ, given by 1

∆θ∆pθ ≥ ~. (4.2)

Since ∆pθ = mL2∆θ̇, the resulting uncertainty in the initial angular velocity is then

∆θ̇ ≥ ~/(mL2∆θ) .

In general, the uncertainty in preparation will result in equal uncertainties in the

potential and kinetic energy, which provides the relationship 1/α ' (∆θ)2 sin (∆θ
2

)2.

This relationship can be used to calculate ∆θ for any value of α. As an example,

consider a classical pendulum with m = 0.1 kg and L = 1.0 m, α = 3.5 × 1067 and

∆θ = 1.8 × 10−17 radians. On the other hand, for a quantum system where α = 1,

∆θ ∼ 1.5 radians.

A quasi-probability distribution for θ and θ̇ is constructed using a normalized

Gaussian centered on (θ, θ̇) = (0, 0), using uncertainties as calculated above [83].

This ensemble is then propagated forward in time using any number of techniques.

1Ref. [84] provides a more rigorous restatement of the uncertainty principle that accounts for the
periodicity of θ. However, for ∆θ � 2π, ∆θ∆pθ ≥ ~ is an acceptable approximation [83].
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Figure 4.7: Simple pendulum probability density evolution. The evolution
of the initial state is shown for various time steps. The system starts as a Gaussian
distribution centered on the hyperbolic fixed point.

Since the initial condition of the pendulum is represented by a probability distri-

bution, one can expect that subsequent measurements of the system evolution will

also result in a distribution of the angular displacement for different times. The

evolution of the a simple inverted pendulum for several different times is shown in

Fig. 4.7. ∆θ = 0.05, well in the classical regime (α ∼ 106), was chosen for illustrative

purposes.

The ensemble of systems is initialized with a distribution centered on the hyper-

bolic fixed point at (0, 0). The evolution of each system in the ensemble follows the

appropriate classical energy contours based on the initial conditions. This evolution

causes the ensemble to symplecticly2 squeeze [85, 86] along the separatrix in the first

2Hamiltonian systems such as the simple pendulum are well known for having a symplectic phase
space. In a symplectic phase space, the area is preserved under transformation. So the area of the
distribution at t = 0 would be the same as the area of the distribution at t > 0. Depending on the
initial conditions, this concept is what produces quadrature squeezing in Hamiltonian systems.
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Figure 4.8: Simple pendulum cylindrical phase space. The phase space of the
simple pendulum can be mapped to a cylinder where the contour lines meet at ±π.

and third quadrant of the phase space. The evolution continues, with the closed or-

bits completing their orbits inside the separatrix and the winding orbits continuing

to acquire phase. The simulations used to make Fig. 4.7 reset the winding phase

trajectories to the opposite side of the phase space (e.g. θ ≥ π → θ − π ) in order

to continue to track the evolution graphically. An alternative phase space is shown

in Fig. 4.8, where the phase space of Fig. 4.7 is wrapped around a cylinder such that

contour lines meet at ±π.

4.2.1 Non-Gaussian evolution of the simple inverted pendulum

Another way of following the evolution of the inverted pendulum’s probability distri-

bution is to look only at the magnitude of the angular displacement from the inverted

position. This method does not distinguish between positive and negative displace-

ment. The results of this method are shown in Fig. 4.9. The system is initialized

at t = 0 narrowly distributed about (θ = 0, pθ = 0). As the system evolves, the

different ensembles have different periods based on their location in the phase space.

For portions of the evolution time the mean of |θ| does not pass through the point
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Figure 4.9: Probability distribution evolution of |θ|. The evolution of the
probability distribution |θ| is shown. The black line represents the mean value of |θ|,
while the blue lines represent the bounds of the standard deviation.

of highest probability of the system. Additionally, the distribution for |θ| appears to

be sharply skewed from the mean at certain times in the evolution. It appears that

the mean and the standard deviation may not be adequate in fully describing the

evolution of the initial distribution.

To fully characterize the distributions, it is convenient to calculate the cumulants.

The first cumulant represents the mean of the distribution. The second cumulant

represents the standard deviation of the distribution. The third cumulant is related

to the skew (or the asymmetry, which direction the data is weighted relative to the

mean) of the distribution. A positive third cumulant means that the majority of the

values in the distribution are ‘to the left’ of the mean. The fourth cumulant is loosely

related to the pointed-ness of the data. Cumulants, κn, should not be confused with

central moments, un = 〈(x− x̄)n〉. Though the first through third cumulants are the

same as the central moments, the fourth and higher cumulants differ. The cumulants

have the advantage of being independent of each other, while central moments are
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Figure 4.10: First through sixth cumulants of |θ|. The evolution of the first
through sixth cumulants of |θ| are shown, with the odd cumulants on the top row,
and the even cumulants on the bottom row.

not. (e.g. The higher central moments may be dominated by terms from the lower

moments, whereas cumulants subtract the contributions from lower cumulants from

the higher cumulants.) The first through sixth cumulants are derived in Appendix B.

Fig. 4.10 shows the first six cumulants for the evolution of the inverted pendulum.

The cumulants provide some interesting insights. First, the second cumulant, or

the standard deviation, shows a double-peaked structure that repeats itself during

the evolution. What is more interesting, though, is the low points in the standard

deviation. For each successive oscillation the minimum standard deviation increases.

This is due to the dispersion of the system, which is visible in Fig. 4.7. Due to the

different periods of neighboring orbits, the system will eventually spread out along

the entire phase space trajectories.

The non-Gaussian nature of the evolution is visible in the third and fourth cu-

mulants. For a Gaussian distribution, the third cumulant and fourth cumulants are

zero. However, the third and fourth cumulants for the simple pendulum are clearly not
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zero, which indicates non-Gaussian activity at the extremes of the pendulum’s motion.

The fifth and sixth cumulants also show structure in the evolution of the pendulum.

These same traits of the evolution can be seen in the non-rigid, momentum-shortened

pendulum in Chapter 7.

4.3 The Simple Pendulum, Quantum Solution

The time-independent Schrödinger wave equation for the simple pendulum is given

by

− ~2

2mL2

∂2ψ

∂θ2
+mgL cos θψ = Eψ.

The variable substitution θ = 2z, a = −8mL2E/~, and α = 4m2gL3/~2 provide the

standard form of Mathieu’s equation:

∂2ψ

∂z2
+ (a− 2α cos 2z)ψ = 0. (4.3)

The solutions to Eqn. (4.3) are the periodic Mathieu sine and cosine functions,

sen(z, α) and cen(z, α) with eigenvalues an(α) and bn(α) for even n, respectively.

The initial condition, ψ (0) =
(

1
2π∆θ2

) 1
4 exp (θ2/2∆θ2 ) (where ∆θ is obtained from

Eqn. (4.2)) is expanded on to the Mathieu cosine functions since it is an even function.

The time evolution becomes:

ψ (r, t) = ψ (r) e−iEt/~ =
∑
n,even

γncen exp [iant/~]

where γn are the expansion coefficients of for the initial conditions, cen are the periodic

Mathieu cosine functions, and an are the respective eigenvalues.

An alternative approach is to simply numerically integrate the time-dependent

Schrödinger equation:

− 2

α

∂2ψ

∂θ2
+ cos (θ)ψ =

2i√
α

∂ψ

∂s

where the dimensionless s =
√
L/gt was introduced.
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Figure 4.11: Quadrature squeezing in a simple pendulum. The results of
simulating the quadrature squeezing in the simple inverted pendulum. (a) shows
the evolution of the maximum predicted squeezed and anti-squeezed quadrature for
the system. (b) shows the squeezing parameter for different quadrature angles and
evolution times.

4.4 Quadrature Squeezing in the Simple Pendulum

Quadrature squeezing is typically discussed in systems other than the simple pendu-

lum. For example, squeezing has been studied for spin systems by using interactions

with squeezed light [87], repeated Quantum Non-Demolition measurements [88, 89],

light in cavity modes [90, 91], and by collisional interactions [92, 93]. More recently,

Refs. [38, 57] studied spin-nematic squeezing using the same spin-1 system discussed

in this thesis. The idea of squeezed light, spin-squeezing, and squeezing in quantum

systems is theoretically well understood [79, 94, 95]. However, the systems stud-

ied in the above references are not required to gain an understanding of quadrature

squeezing. The concept of quadrature squeezing in classical systems has been used

for decades to improve precision measurements [96–98]. The simple pendulum, by the

very nature of its Hamiltonian and resulting behavior near a hyperbolic fixed point,

demonstrates quadrature squeezing. Quadrature squeezing in a quantum simple pen-

dulum is discussed in great detail in Ref. [99]. This section will address the concept

of quadrature squeezing for the classical simple pendulum (α ∼ 1067).

51



It is well known that Hamiltonian systems provide a symplectic3 phase space

[85, 86, 100–104]. The benefit of the symplectic phase space is that the area of the

phase space is conserved under transformation, such as time evolution. In other words,

if a system, described by a Hamiltonian such as Eqn. (4.1a), is initialized in a state

described by a probability distribution such as was done in Section 4.2.1, then the

area of that probability distribution will remain constant during time evolution. When

looking at Fig. 4.7 one can see that if the area of the distribution is conserved, then

for later times during the evolution, the distribution must squeeze in the direction

perpendicular to the flow in phase space. If the system could be prepared in a

minimum uncertainty state, then the uncertainty of the quadrature perpendicular to

the flow would obviously fall below the standard quantum limit.

In order to quantify the amount of squeezing, a squeezing parameter is defined

for the simple pendulum system. Section 4.2 gave the uncertainty relationship for

the simple pendulum at the Heisenberg limit as ∆pθ∆θ ≥ ~. However, quadrature

squeezing can be demonstrated for any initial state where ∆pθ∆θ = ∆̄. Using this

relationship, a squeezing parameter is defined in terms of the quadratures of θ and

pθ:

ξφ = 〈(∆((cosφ)θ + (sinφ)pθ))
2〉/(∆̄2) (4.4)

with φ as the quadrature angle. Squeezing in the simple pendulum system will be

indicated by the value of ξφ < 1 for some value of φ.

The results of the quadrature squeezing simulations are in Fig. 4.11. Fig. 4.11 (a)

shows the squeezing parameter at the predicted maximum squeezed and anti-squeezed

quadrature. While the variance of the result drops for squeezing, the variance in the

3The word symplectic, used for the first time with its modern mathematical meaning by Hermann
Weyl (1885 1955) in his book first published in 1939, derives from a Greek word meaning complex.
Weyl used it because the word complex, whose origin is Latin, had already a different meaning in
mathematics. [100]
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other quadrature is increasing such that their product remains constant. Fig. 4.11

(b) shows how the squeezing parameter changes for different quadrature angles.

4.4.1 Ways to Produce Squeezed States for the Inverted Pendulum

In previous classical squeezing examples [96–98], parametric amplification of the po-

tential energy was used to generate the quadrature squeezing. The basic principle

is that the shape of the phase space is changed and the system is allowed to evolve

in the new phase space until its squeezed state is appropriately positioned, then the

phase space is returned to its original state and the new system evolves from an initial

configuration that is squeezed in one quadrature.

For a simple pendulum, an analogous technique can be used. Instead of a point-

mass system under the influence of gravity, consider a charged particle pivoting on a

rigid, massless rod in the presence of an external electric field perpendicular to the

rotation axis of the particle. The equations of motion would be virtually identical, but

the direction of the electric field could be changed when desired. If the system begins

as in Fig. 4.12 (a), the probability distribution of the system will squeeze along the

separatrix as previously discussed. At some later time t the direction of the electric

field is changed. They system then resembles Fig. 4.12 (b). In the new phase space,

the probability distribution will rotate around the ground state until it is oriented in

the preferred direction. The electric field can be changed back to its original direction,

and the ”new” initial conditions will evolve as before, but one of the quadratures will

be squeezed. (See Fig. 4.12 (c).)

4.5 Concluding Remarks

The similarities between the mean-field equation for the spin-1 BEC and the simple

pendulum make a strong understanding of the simple pendulum very useful when

working with the spin-1 BEC. Using the shape of the parametric plots and the period

measurements to map the phase space in a simple pendulum has direct applications
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Figure 4.12: Creating squeezed quadratures in a simple pendulum. The
creation of squeezed quadratures for improved measurements is shown. In each row,
the first figure is the model system with the electric field direction indicated. The
middle figure is the initial state of the system. The right column is the system after
a finite evolution time. The distribution size has been exaggerated for clarity. (a)
shows the initial squeezing of the system along the separatrix. In (b), the direction of
the electric field is changes, changing the shape of the phase space. The probability
distribution rotates clock-wise around the phase space until a later time when it is
oriented in the desired direction. In (c), the electric field is changed back to its
original orientation, and the squeezed state is allowed to evolve.
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to mapping the phase space for the spin-1 BEC. Additionally, the uncertainty in the

initial conditions for a simple pendulum leading to a probability distribution at later

times also lends directly to the BEC experiment, as do the semi-classical solution

techniques. Lastly, the concept of quadrature squeezing found in novel systems can

be conceptually explained using the simple pendulum example.

Despite the differences between the two systems, much of the basic physics between

the two is the same, particularly near the hyperbolic fixed point, which is the starting

point for all of our experimental procedures. Chapter 6 will explore the phase space

of the spin-1 BEC using similar techniques outlined here. Chapter 7 will examine the

non-Gaussian evolution of the BEC in a similar fashion to the methods shown in this

chapter.
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CHAPTER 5

EXPERIMENTAL APPARATUS

A basic top-down view of the schematic of the experimental chamber can be found

in Fig. 5.1, where the acceleration due to gravity points into the page. The chamber

contains rubidium atoms in ultra-high vacuum (UHV), and the chamber is designed

for ample optical access (seven 2.75” flanges and two 6” flanges). Near resonant light

for the magneto-optical trap (MOT) is directed through orthogonal view ports in

three dimensions where the intersect in the center of the chamber. The MOT beams

in the gravity direction are not shown. Additionally, the repump transition beams are

not shown, as they are directed along the same path as the MOT beams in the gravity

direction. Around the chamber are the optics associated with directing and focusing

the dipole force trapping lasers. The main trapping laser is a CO2, and a cross trap

laser at 852 nm is not shown because it is above the chamber and out of the plane

of the schematic. The trapping lasers are directed to overlap the center of the MOT

in the chamber. There are three lenses in the chamber: two ZnSe lenses are used for

focusing the CO2 trapping laser, while the third lens is for imaging. Three orthogonal

magnetic bias coils are mounted directly to the chamber that are used for nulling out

the Earth’s magnetic field and applying the desired experimental bias field. There

are three sets of gradient coils as well. Two are oriented along the CO2 axis, one

for zeroing the gradient in that direction, and the other for applying a Stern-Gerlach

separation force for imaging of the mf states. The third set of gradient coils provides

the magnetic field gradient for the MOT. They are not shown in the schematic, but

are located above and below the chamber oriented such that the gradient produced is

parallel to the gravity direction. Also not shown in the schematic are the microwave
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Figure 5.1: Diagram of the BEC chamber. Shown here is the BEC chamber,
along with the CO2 path, four of the six MOT beams, the gradient and bias coils,
and the imaging axis.

horn (pointing into the chamber from above) and the RF coil (sits on top of the upper

window).

5.1 Vacuum System

The experimental chamber is a stainless steel octagon from Kimball Physics main-

tained at UHV by an ion pump and a titanium sublimation pump. The octagon

has two large glass windows mounted to 6” flanges, and five smaller glass windows

mounted on 2.75” flanges. All of the glass windows are anti-reflective coated for

broad-band near infra-red. Of the remaining three 2.75” ports, two are mounted

across from each other with zinc selenide (ZnSe) windows to allow the CO2 trapping

laser (λ = 10.6 µm) to pass through. The final 2.75” flange, which is located opposite

the imaging axis of the experiment, is connected to the vacuum pumps. As stated
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above, there are two ZnSe lenses inside the chamber for focusing the main trapping

laser and a high-aperture laser objective (HALO) lens for imaging (Fig. 5.1).

The rubidium in the chamber comes from two sources. The first is from getters

that are mounted on electrical feed-throughs of the chamber. The rubidium is released

into the chamber by passing current through the feed-through, heating up the getter

and releasing the rubidium. The second source of rubidium for the experiment is the

left-over rubidium already in the chamber. It is recycled using light intensity assisted

de-adsorption (LIAD) [105] which involves illuminating the chamber windows with

high intensity blue LEDs (∼ 455 nm). These lights are very efficient at the de-

absorption of the rubidium from the glass windows and provide a reliable source for

loading the MOT. The de-absorption of the rubidium increases the pressure in the

chamber during loading; however, the rubidium quickly re-absorbs when the lights

are turned off so the pressure drops once the trap is loaded.

5.2 87Rb Energy Level Structure

The electronic ground state structure of rubidium is [Kr]5s1, indicating a single va-

lence electron. Since the remaining electrons are in closed shells, they do not con-

tribute to the total angular momentum of the atom. As a result, rubidium has a

hydrogen-like electronic structure. The fine structure from spin-orbit coupling splits

the excited 5p state into two levels with total electronic angular momentum, j = l+s,

having values of 1
2

and 3
2

where l is the electronic orbital angular momentum and s

is the electronic spin angular momentum. In the standard Russell-Saunders notation

these are designated 52P1/2 and 52P3/2, while the ground state is designated as 52S1/2.

The transition to these two states from the ground state are known as the D lines.

The transition from 52S1/2 to 52P1/2 is known as the D1 line (λ = 794.9 nm) and

the transition from 52S1/2 to 52P3/2 is known as the D2 line (λ = 780.241 nm). The

remainder of this section will discuss the D2 line, since it is the relevant transition for
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laser cooling and imaging of 87Rb. It is depicted in Fig. 5.2.

When one takes into account the coupling of the nuclear spin, i, with the total

electronic angular momentum, the 52S1/2 and 52P3/2 states split into states of total

atomic angular momentum, f = i + j. The nuclear spin of 87Rb is 3
2
, giving the

52S1/2 electronic ground state two hyperfine states with a total atomic spin of f =

1 and f = 2. Similarly, 52P3/2 has hyperfine states of f ′ = 0, 1, 2, 3 [72, 106].1

Dipole-allowed transitions between the ground and excited state manifolds are used

for laser cooling. The strongest transition of the manifolds is the σ+ polarization

transition connecting the |f = 2, mf = 2〉 state to the |f ′ = 3, m′f = 3〉. Atoms in

the |f ′ = 3, m′f = 3〉 state can only decay to the |f = 2, mf = 2〉 state, allowing for

the continuous cycling on this transition. It is for this reason that it is called the

cycling transition. Optical pumping tends to move the atomic states towards the

cycling transition in mf states. However, the cycling on this transition is not perfect

since there is a non-zero probability of off-resonant excitation to the f ′ = 2 state.

The unfortunate consequence of this excitation is that the f ′ = 2 state has a 50%

probability of decaying to the f = 1 ground state. The result is that the off-resonant

transition probability for the cycling transition light to excite the atom back into

the excited state manifold is negligible. The off-resonant excitation of atoms to the

f ′ = 2 manifold is often called the depumping transition since it removes atoms from

the cycling transition. Fortunately, a second laser can be used to excite the f = 1

to f ′ = 2 transition to repump the lost atoms back into the optical pumping scheme

leading to the cycling transition. The cycling transition and repump transition are

the two most important laser frequencies needed for the MOT and for imaging.

1Excited state f numbers are typically denoted with primes.
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Figure 5.2: 87Rb D2 line. Shown here is the D2 line for 87Rb. The ”repump”
transition is from the f = 1 to the f ′ = 2 line, and the ”cycling” transition is from
the f = 2 to the f ′ = 3 line.
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5.3 Magneto-Optical Trap

The MOT is formed using a set of anti-Helmholtz coils and lasers near the 87Rb D2

line cycling and repump transitions. The cycling transition lasers are in a σ+ − σ−

configuration on three orthogonal axes using retro-reflected beams [106]. The typical

laser power per beam at the chamber is 30 − 35 mW, collimated with a ∼ 15 mm

waist, and clipped into a top-hat profile with a diameter of ∼ 25 mm. The repump

laser has the same top-hat profile, but it is only on the up/down (gravity) axis of the

MOT beam configuration and has ∼ 15 mW of power. The repump is combined with

the cycling transition using a polarizing beam cube, so its circular polarization is the

opposite of the cycling transition.

5.3.1 MOT Laser Set-up

Saturated absorption spectroscopy is used to stabilize the lasers to the frequencies

of the atomic transitions [107], which uses a strong pump pump beam counter-

propagating with a weak probe beam to overcome the Doppler broadening in a room

temperature vapor cell used as the atomic reference. This technique provides a nar-

row peak for each transition frequency on top of the Doppler absorption feature.2

A useful feature of saturated absorption spectroscopy is that halfway between each

pair of transitions is a cross-over peak. These peaks are usually larger in amplitude

than the peaks of the actual transitions and provide excellent locking points. The

saturated absorption spectrum is converted into an error signal via frequency modu-

lated spectroscopy (FM spectroscopy), and that error signal is used to lock the laser

directly on the peaks of the spectroscopy [107].

The lasers for the cycling transition employ a complicated frequency shifting

scheme using an optics setup depicted in Fig. 5.4 in order to produce the relatively

2The narrowness of the saturated absorption peak is limited by the transition linewidth of ∼ 6
MHz but is typically a few times larger. This is still much narrower than the Doppler profile which
is ∼ 1 GHz for rubidium at room temperature.
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large range of detunings required by the experiment. Laser light from an external

cavity diode laser (ECDL) master oscillator is frequency shifted up 160 MHz by an

acousto-optic modulator (AOM) (Fig. 5.3 red arrow, Fig. 5.4 AOM 1) which is used

to offset the lock of the master laser from the lock point of the f ′ = 1 − f ′ = 3

crossover resonance.

The beam from the master laser is then double-passed through variable frequency

AOM (Fig. 5.3 green arrow, Fig. 5.4 AOM 3) to seed an injection locked diode laser

(ILDL). The frequency shift from AOM 3 varies from 2× 140 MHz to 2× 238 MHz.

The ILDL is then used as the seed for the tapered amplifier (TA). The output of

the TA is passed through a final AOM to control the power and is divided into three

fibers going to the experimental chamber. This AOM also shifts the frequency of the

light down 110 MHz (Fig. 5.3 purple arrows, Fig. 5.4 AOM 4). A low power probe

beam for absorptive imaging is also derived from frequency shifting the master laser.

It is switched on and off using a double-passed AOM operating at 186 MHz (Fig. 5.3

orange arrows, Fig. 5.4 AOM 2).

A second ECDL seeds another ILDL used for repump laser light (Not shown

in Fig. 5.3 or Fig. 5.4.) The power from this ILDL delivered to the experiment is

controlled by an AOM. The frequency of the repump laser is far simpler than that

of the cycling transition. The lock used for the repump is shifts the laser light 80

MHz from the resonance. The control AOM then shifts the light 80 MHz back to

resonance.

All of the light beams have a shutter to eliminate any light that may leak through

the AOMs at undesired times. This setup is essentially unchanged since circa 2001

[47, 67]. In summary, the result of the laser setup is light on the 87RB D2 manifold

connecting the ground state electronic state 52S1/2 to the excited state 52P3/2. The

MOT cycling transition master laser varies from ∼ 6 MHz red of the cycling transition

52S1/2 f = 2→ 52P3/2 f
′ = 3 to ∼ 200 MHz to the red. (which is also ∼ 65 MHz blue
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Figure 5.3: Frequency shifts for the MOT laser lock. Shown here are the
different frequency shifts for the MOT laser lock. Each shift is labeled with the
appropriate AOM responsible for the shift in Fig. 5.4. A double arrow represents a
double-passed AOM, while a single arrow represents a single frequency shift.
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of the depumping transition 52S1/2 f = 2 → 52P3/2 f
′ = 2). The weak absorptive

probe is on the cycling transition to within 0.1 MHz. The repump laser stays on

resonance for the 52S1/2 f = 1→ 52P3/2 f
′ = 2 transition.

5.4 Dipole Force Trapping

The dipole force trapping laser is an Coherent GEM series industrial CO2 laser at 10.6

µm with a 100 W continuous output power. The trap operates in the regime of the

quasi-electrostatic trap (QUEST) where the AC polarizability of the trapped atom

is approximately the DC polarizability [47, 67, 108]. The CO2 laser power delivered

to the experiment is controlled by an AOM. The beam is aligned through the ZnSe

optics of the chamber in a horizontal direction. The AOM control of the laser power is

carefully calibrated in order to control the main trapping beam power from 5 mW to

50 W of power going through the chamber. The beam path incorporates a telescope

with a motor-actuated zoom lens that allows for the size of the beam waist at the

focusing lens to be varied, thus varying the waist of the trap at the focus inside the

chamber. The waist size varies from ∼ 20 − 120 µm, depending on the stage of the

experiment. Further details of dipole force trapping with the CO2 laser are described

in Ref. [47].

In Section 2.2 the single mode approximation was made which made the deriva-

tions of the dynamical equations easier. In order to create the tightly confined traps

that make the SMA a valid assumption, a second dipole force trapping laser oriented

perpendicular to the main CO2 trap is required. This second dipole force trapping

laser is an 852 nm diode laser that provides up to 30 mW of power at the experi-

mental chamber. The light from the 852 nm cross trap is in the far off resonant trap

(FORT) regime [108]. Like many of the other lasers, its power is controlled by an

AOM and it has a shutter to block leakage during imaging. The 852 nm cross trap

is fiber coupled to a fixed-focus setup aligned across the main trapping beam. The
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beam alignment is very delicate, as the cross trap has a waist of 20 µm, and its focus

must cleanly intersect the 20 µm waist of the main trapping beam at its focus. The

combination of the two dipole force trapping lasers at the proper power produces a

nearly spherical trap geometry with nearly equal trap frequencies in each direction.

Additionally, its size is such that the SMA is valid.

5.5 Microwave and RF Systems

The lasers described in Section 5.3.1 primarily interact with the electric dipole mo-

ment of the valence electron. However, the experiment requires transitions between

sublevels that are electric dipole forbidden, so alternative techniques are needed to

excite these transitions. Oscillating magnetic fields can be used to interact with the

magnetic dipole moment of the valence electron. Within the electronic ground state

hyperfine manifold the magnetic dipole transitions are accessible by using microwaves

which connect the f = 1 to f = 2 (red, green, and blue arrows in Fig. 5.5) and RF

which connect Zeeman sub-levels within the same f state (gray arrows in Fig. 5.5).

Access to these transitions is useful for magnetic field measurements, state prepara-

tions, and the measurement used to reconstruct the phase space.

The general schematic for the microwave system is shown in Fig. 5.5. The mi-

crowave system starts by taking frequency reference from a GPS receiver which pro-

duces a 10 MHz reference signal. The reference signal is taken by a Hewlett Packard

E442B frequency synthesizer set to one half of the microwave frequency of 6.835 MHz.

This is done for two reasons: the synthesizer used was limited to 4 GHz in output, and

the Mini-Circuits ZASWA-2-50DR RF switch used to control the synthesizer leaks

above 5 GHz. After the switch, the frequency is doubled using a MARKI Microwave

D0204LA passive doubler. The signal then passed through a Midisco M314080 isola-

tor enroute to an ALGA Microwave 12 W amplifier. After the amplifier the signal is

sent to the microwave horn located above the experimental chamber. The microwave
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Figure 5.5: Microwave and RF transitions. Shown here are the different fre-
quency shifts for the microwave and RF transitions. The transitions between the
f = 1 and f = 2 levels are indicated as differences from the clock transition, while
the transitions within the sublevels (e.g. f = 1, mf = 0 to mf = 1) are given as the
resonant frequency.
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Figure 5.6: Schematic of the microwave and RF control system. Shown here
is the microwave and RF control schematic. Each system is referenced to a 10 Mhz
signal provided by GPS.
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horn is a right circular cylinder of copper with a diameter 1.5”. The microwave sys-

tem is capable of Rabi rates of 20 kHz when driven at the maximum amplifier output

power of 12 W.

The general schematic for the RF system is also shown in Fig. 5.5. The Stanford

Research Systems DS345 function generator for the RF uses the same 10 MHz GPS

reference. The function generator drives the RF coil directly through a Mini-Circuits

ZYSWA-2-50DR RF switch. Though the power is limited to 100 mW by the switch,

the system is capable of obtaining Rabi rates of 2.5 kHz. The RF is coupled to the

atoms by a simple two-turn coil placed on top of the chamber centered on the large

window. The required frequency for the RF transitions varies with the magnetic

field (∆1 = 700 Hz/mG). For the typical magnetic field bias used in this experiment

the RF frequency was ∼ 200 mG × 700 Hz/mG ∼ 150 kHz. The amplitude of the

oscillating magnetic field is increased by operating the coil in parallel with a 90 nF

capacitor. The capacitor is tuned such that coil-capacitor circuit forms a resonator

at the desired operation frequency
√
LC = (2π × 150kHz)−1. This results in a ring

up/down time of ∼ 10 µs, which is small compared to the typical pulse time of ∼ 100

µs.

5.6 Imaging System

The imaging configuration used to take all of the data in this thesis is a 4f imaging

system. The primary type of imaging used was fluorescence imaging, while absorptive

imaging was used for certain diagnostics. The details of these techniques, along with

their noise and calibration, are covered extensively in Ref. [68].

5.6.1 Fluorescence Imaging

For fluorescence imaging, resonant or near resonant laser beams are directed at the

atoms from the side of the imaging path (See Fig. 5.7 (a)). When the light interacts

with the atoms, they fluoresce. The fluorescence is collected by the imaging system so
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Figure 5.7: Imaging configurations. Shown here are the imaging configurations
used in the experiment. (a) shows the configuration for fluorescence imaging, while
(b) shows the configuration for absorptive imaging. All of the data in the results
portion of this thesis used fluorescence imaging. Absorptive imaging was used for
experimental diagnostics.

Figure 5.8: Fluorescence image of BEC. Fluorescence image of a spin-1 BEC. The
component clouds are forced apart using a Stern-Gerlach field during time-of-flight
expansion. The condensate is fluoresced with resonant light for 400 µs.
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that the scattered photons can be counted. Here the two lenses merely act to image

the fluorescing atoms onto the CCD camera. The collection efficiency is limited by

the apertures of the system. Spatial resolution is limited by atomic motion due to

heating and pushing from the beams used to fluoresce the atoms. This is a more

significant problem for fluorescence imaging as compared to absorptive imaging since

the exposure to the resonant light usually needs to be longer than absorptive imaging

to collect enough photons. Also, fluorescence imaging is more sensitive to light scat-

tering into the imaging path that is not from fluorescing of the atoms. This technique

does not, however, suffer from interference noise typical of absorptive imaging since

the fluoresced light is not phase coherent. This technique is very good at counting

atoms due to its linear response to the number of atoms.

5.6.2 Absorptive Imaging

For absorptive imaging, a probe beam of resonant light is directed towards the imaging

system from behind the atoms (See Fig. 5.7 (b)). The atoms absorb the light and

cast a shadow. This shadow propagates as a combination of modes subtracted from

the probe beam. The image of the shadow of the atomic cloud is compared to a

reference image of the probe light when no atoms are there in order to determine the

optical depth of the atomic cloud. The optical depth is related to the column density

of the atomic cloud, which can be summed to determine the number of atoms. The

determination of the optical depth, however, is non-linear in the column density and

depends on the probe beam intensity. The absorptive imaging technique has a high

spatial resolution, though, because the atoms do not move much during the imaging

since the probe pulses are short. Another short-coming of absorptive imaging is that

the laser light passes through multiple optical elements, and as a result interference

patterns may result which could limit final image quality.

Both of these techniques use resonant light on the cycling transition. However,
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the majority of the atoms being imaged are in the f = 1 state. Consequently, in

order to image the atoms in the f = 1 state as well, the repump beam is turned

on at the same time as the probe/fluoresencing beams so that the f = 1 atoms will

absorb/fluoresce with the f = 2 atoms. In the event that one only wanted to count

the atoms in the f = 2 state, then (e.g. when doing microwave spectroscopy), the

repump would be turned off such that only the f = 2 atoms would absorb/fluoresce.

5.7 The Control System

The control system of the experiment was complete redesigned in the last two years.

The control computer was upgraded to a new Windows 7 machine employing a Core i-

7 processor with twelve threads and 16 GB of RAM. The control computer was moved

away from the control center to make room for a relocated to accommodate the addi-

tion of a Magma 7-slot PCI chassis for controlling the numerous PCI cards needed for

the experiment. All of the control cables were rerouted using cable trays a reasonable

distance from electrical lighting to reduce noise from that source. The information

display system was also upgraded with two stacked 24” wide-screen monitors.

The experimental sequence is controlled using Labview software to control the

National Instruments analog and digital output cards in the PCI chassis. The entire

Labview control software was upgraded when the new control computer was brought

online, simplifying control of the entire experiment. The system has two analog out-

put boards with a total of 16 channels. The analog boards control various signals

such as the bias and gradient coil currents, laser detuning and power, and getter

current. The system has one digital output card with 24 channels. The digital chan-

nels control various RF switches, shutters, triggers for cameras, and pulse generators,

amongst other things. The control computer is connected to function generators,

pulse generators, and lens movers through GPIB and RS-232 controllers for updating

the values. Additionally, a frame grabber captures a digital images from an analog
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camera for use in trap loading diagnostics. The values of each channel are updated

using a spreadsheet interface that allows for flexibility and adaptability to the large

number of experiments conducted in the lab.

5.8 Basic Experimental Sequence

The spreadsheet interface used to update channel values discussed Section 5.7 controls

every aspect of the experimental sequence. The general sequence contained in the

spreadsheet is summarized below.

The experimental sequence begins by loading the main optical dipole force trap.

This starts with the MOT laser light and coils on, the blue LED lights on, and the

CO2 trapping laser on at full power with the zoom lens positioned such that the

dipole trap has a large waist to maximize overlap. The MOT loads for 15 s, at which

point the number of atoms in the MOT saturates. Once this happens, the atoms

are loaded into the optical dipole trap using a temporal dark MOT sequence. The

MOT gradient coil current is cut in half, the cycling transition laser power is halved,

the repump power is lowered to a few tens of µW, and the detuning of the cycling

transition laser is adjusted as far to the red as the control system will allow.3 While

in this transient condition, the MOT collapses along the direction of the repump

light (gravity direction) into a pancake shape. The exact location it collapses to is

sensitively dependent on the final repump power.4 The final cloud loads the optical

dipole force trap with 10-15 million atoms at ∼30 µK with an equal distribution of

mf states within the f = 1 manifold.

With the optical dipole force trap loaded, all resonant light is extinguished and

3The optimization of the temporal dark MOT sequence is empirically determined. The final
gradient and cycling transition intensity both have some effect on loading and the optimum values
vary from no change to half of their MOT values. The effect on the loading from the detuning is
stronger and has always been optimized for the farthest red from the cycling transition as the control
system can reliably produce.

4The efficiency of the loading is very sensitive to the final power for the repump laser, which has
to be checked daily.
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evaporative cooling begins. Evaporation is accomplished in two ways. The trap

power is lowered slowly (compared to the inverse of the trap frequencies), allowing

the hotter atoms to escape, thereby lowering the overall temperature. If this were the

only technique used for a dipole force trap with a large waist, the re-thermalization

rate, and hence the evaporative cooling rate, would slow too much and there would

be insufficient cooling to reach the BEC transition temperature. So the zoom lens

moves simultaneously, changing the geometry of the trap to a smaller waist which

maintains the radial trap frequencies and thus re-thermalization rate. This creates a

BEC with over 100,000 atoms after 2 s of evaporative cooling.

During evaporation, magnetic biases and gradients are typically applied to influ-

ence the mf populations of the final BEC. In order to create a mf = 0 condensate, a

relatively large gradient of 20 G/cm is applied along the weak trapping direction of

the main trapping beam. This pulls the mf = ±1 components towards more weakly

trapped regions, causing them to be lost preferentially while maintaining thermal

equilibrium with the other mf states. To crate a condensate of mf = ±1, the gra-

dient is oriented along the gravity direction, and depending on its direction, one of

the states is levitated against gravity and the other is pushed with it, causing the

levitated state to be kept preferentially. In this case of the mf = 0 component is

neither levitated or pushed down and usually leave some residual amount. It is pos-

sible to selectively push out this residual component using microwave transitions and

resonant light.

After the gradient is ramped down, the secondary dipole force trap, if used, is

ramped up. For the cross trap configuration, the secondary dipole force trap remains

on throughout the remainder of the experimental sequence. Further evaporation cools

the atoms to well below the BEC transition temperature whereby the ground state

of the trapping potential is macroscopically occupied.

Dynamical evolution of the internal states of the BEC would occur ever before
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evaporation is complete unless it is prevented. During the creation of the BEC a

bias field of 2 G is applied to prevent this dynamical evolution. Evolution of the

condensate is initiated by rapidly lowering the magnetic field bias. After the bias is

lowered, the initial state can be further prepared by performing microwave and RF

manipulations, as necessary. These manipulations are not performed until the ramp is

complete since the microwave and RF frequencies are magnetic field dependent. The

field ramp takes 10-15 ms to reach the necessary stability of ∼ 200 mG to use the

microwaves and RF. The manipulations themselves take a few hundred microseconds.

Most of the experiments in this thesis use an initial state of mf = 0 with no state

preparation. After the preparation, the BEC is allowed to evolve freely in the trap

for time intervals varying from 0 to a several seconds. Following this evolution, the

the microwaves and RF may again be used to prepare the state for measurement.

At this point, the trapping lasers are shut off and the atoms are allowed to fall and

expand for 5-20 ms. During this time of flight (TOF), a gradient is turned on again

to spatially separate the final mf projections. At the end of this expansion one of the

two imaging techniques discussed in Section 5.6 is used to count and spatially resolve

the expanded atom clouds. The system is then reset for another data run. In total,

the experimental procedure just described takes ∼25 s.
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CHAPTER 6

MAPPING THE PHASE SPACE

This chapter will focus on the key observations made in Section 4.1 when discussing

the simple classical pendulum. Those observations were that one can estimate where

in the phase space that orbit is at any time based on the shape of the parametric plot

of the angular displacement, and that the period of the orbit decreases as you move

away from the separatrix.

In this chapter, the conjugate variables of the fractional population in the mf = 0

sublevel, ρ0, and the spinor phase, θs, for the condensate will take the place of the

angular displacement, θ, and the angular momentum, pθ, for the simple pendulum.

Using these variables, the spin-1 phase space for the ferromagnetic 87Rb looks as

depicted in Fig. 2.1 in Chapter 2. The results presented in this chapter help show

the shape of the phase space by using the techniques demonstrated with the simple

pendulum.

The mean-field phase space is used to demonstrate dynamics in several exper-

imental papers involving spin-1 BECs, and more generally for the Bose-Hubbard

double-well potential and internal Bosonic junctions [36, 109–111]. The shape of the

phase space was used to portray the measured evolution of the system. Here, the

measured evolution of the system is used to portray the shape of the phase space.

6.1 State Preparation and Measurement Protocol

As was discussed in Chapter 5, the condensate is initialized in a pure mf = 0 state.

In Chapter 7, the system was allowed to freely evolve from this state through spin

mixing. However, for the experiments in this chapter, the evolution of the system

needed to be measured from different points in the phase space. As a result, the
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Figure 6.1: Phase space schematic of state preparation. The state preparation
of the condensate for the phase space mapping begins (a) with the condensate in the
mf = 0 state. (b) Shows an RF rotation that then takes the state from ρ0 = 1 with
random θs to the desired value of ρ0 with θs = π. (c) Shows the final step in the
process, an off-resonant microwave pulse to shift the condensate to the desired θs.

initial mf = 0 state had to be arbitrarily shifted to the desired state when needed.

This was done with a series of RF rotations and microwave spinor phase shifts.

The general process for state preparation is to first initialize the system in the

mf = 0 state by preparing the condensate in a high magnetic field (∼ 2 G) where the

ground state is mf = 0. Then, the magnetic field is rapidly lowered to the final value

(∼ 200 mG), leaving the system in the mf = 0, which is at a hyperbolic fixed point

in the spin-nematic phase space. In the ρ0 − θs phase space this corresponds to the

initial distribution being spread across the top of the phase space (ρ0 = 1, while θs is

random, see (See Fig. 6.1 (a)).

State preparation begins once the magnetic field reaches stable levels (∼15 ms

after the quench). First, the system undergoes an RF rotation to shift the value of

ρ0 from 1 to the desired ”final” value, in the process it picks up a spinor phase of

π (See Fig. 6.1 (b)). Then, the spinor phase is adjusted to its ”final” value with an

off-resonant microwave pulse (See Fig. 6.1 (c)). In total, this process takes less than

∼150 µs. The system is then allowed to freely evolve.

Measurement of the system is done at varying evolution times, usually every 10−15
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Figure 6.2: Changing θs to survey the phase space. (a) The ρ0 − θs phase
space was surveyed across the ρ0 ∼ 0.6 line by measuring the period of oscillations
at different locations. (b) shows the results of the measurements compared to the
dynamical simulations. T0 is the period of oscillations for orbits slightly displaced
from the ground state, T0 ∼ 75 ms.

ms in accordance with the imaging techniques discussed in Chapter 5. The results

are then compared to dynamical simulations under the same conditions.

6.2 Surveying the Phase Space by Changing θs

In Section 4.1 the period of the simple pendulum was measured for different values

of the angular momentum at a fixed value of the initial angular displacement. The

location of the separatrix was clearly visible in Fig. 4.5. The ρ0 − θs phase space can

be similarly surveyed. The first such survey consisted of a series of measurements of

the period of orbit across a horizontal line at ρ0 ∼ 0.6 (See Fig. 6.2 (a)). The results

of the period measurement are shown in Fig. 6.2 (b). The location where the survey

crosses the two manifolds of the separatrix are clearly visible.

In addition to identifying the location of the two manifolds of the separatrix, the

period measurements can be used to map the energy contours they follow. By aligning
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the data points with simulation results, a spinor phase can be directly inferred from

the shape of the parametric plot, just as in Section 4.1 with the simple pendulum.

The results for five of the survey points are shown in Fig. 6.3. For each block of the

figure, the left image shows the fitting of the parametric plot of ρ0 to the simulation.

The right block then shows the location of one orbit of data points with its’ inferred

spinor phase on the ρ0 − θs phase space, along with the simulation trajectory.

6.3 Surveying the Phase Space by Changing ρ0

The second survey of the phase space consisted of a series of measurements of the

period of orbit along a vertical line at θs ∼ 0 (See Fig. 6.4 (a)). The results of the

period measurement are shown in Fig. 6.4 (b). The location where the survey crosses

the main manifold of the separatrix is clearly visible.

In addition to identifying the location of the main manifold of the separatrix, the

period measurements can be used to map the energy contours they follow. By aligning

the data points with simulation results, a spinor phase can be directly inferred from

the shape of the parametric plot, just as in Section 4.1 with the simple pendulum.

The results for five of the survey points are shown in Fig. 6.5. For each block of the

figure, the left image shows the fitting of the parametric plot of ρ0 to the simulation.

The right block then shows the location of one orbit of data points with its’ inferred

spinor phase on the ρ0 − θs phase space, along with the simulation trajectory.

6.4 Concluding Remarks

In all of the plots contained in this chapter, there is reasonable agreement, with some

trajectories showing better agreement than others. Experimental runs initialized near

the separatrix were difficult to plot since there is a large standard deviation for these

states due to dispersion caused by differing periods. The simulations also showed this

same effect, with large standard deviations in ρ0 being not uncommon.

As stated, the results shown are in good overall agreement with the predictions of
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Figure 6.3: Mapping the phase space energy contours 1. The left column of
each section shows the parametric plot of ρ0 fit to the simulation. The right column
of each section shows the measured trajectories and the simulation results overlayed
on to the ρ0− θs phase space. Each trajectory follows an energy contour in the phase
space, so the measurements are effectually mapping the energy contours directly.
The trajectories shown are for initial spinor phase values of: (a) θs ∼ −0.85π, (b)
θs ∼ 0.75π, (c) θs ∼ −0.40π, (d) θs ∼ 0.20π, and (e) θs ∼ π.
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Figure 6.4: Changing ρ0 to survey the phase space. (a) The ρ0 − θs phase
space was surveyed across the θs ∼ 0 line by measuring the period of oscillations
at different locations. (b) shows the results of the measurements compared to the
dynamical simulations. T0 is the period of oscillations for orbits slightly displaced
from the ground state, T0 ∼ 75 ms.

the dynamical simulation. However, it is important to point out that the simulation

results shown are not at the exact experimental conditions. A small discrepancy be-

tween the measured magnetic field in the experiment and the ”best-fit” magnetic field

for the simulations was found. The magnetic field for the experiment was measured

using RF spectroscopy, and found to be ∼210 mG. The best fit for the simulation

with the data was with a magnetic field of 165 mG.

There are several possible explanations for the discrepancy. The first is that the

magnetic field changes throughout the day, and may have been measured at a point of

high field in the lab. This explanation may account for ∼ 5−10 mG of the difference,

as the field has been known to fluctuate on that order throughout a measurement

cycle (∼ 1− 2 days).

A second possibility is that there were fluctuations in the trapping laser power

throughout the measurement cycle, which would cause the spinor dynamical rate to
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Figure 6.5: Mapping the phase space energy contours 2. The left column of
each section shows the parametric plot of ρ0 fit to the simulation. The right column
of each section shows the measured trajectories and the simulation results overlayed
on to the ρ0− θs phase space. Each trajectory follows an energy contour in the phase
space, so the measurements are effectually mapping the energy contours directly.
The trajectories shown are for initial ρ0 values of: (a) ρ0 ∼ 0.85, (b) ρ0 ∼ 0.40, (c)
ρ0 ∼ 0.25, (d) ρ0 ∼ 0.15, and (e) ρ0 ∼ 0.10. The discontinuity in the phase space
plot of (e) is due to effects of the loss model used in the simulation.

81



change. A lower trapping laser power would result in a less-tightly confined conden-

sate, and hence a lower spinor dynamical rate. A lower spinor dynamical rate will have

the same effect on the phase space map as a lower magnetic field (See Eqn. (2.25)).

This may account for ∼ 5 mG of the discrepancy.

A final possibility is that there was an alignment error with the 852 nm cross-trap

laser. The misalignment could be either in the pointing of the beam or the location of

the focus, both of which would result in a less-tightly confined trap and lower spinor

dynamical rates. Another alignment concern for the cross-trap is the alignment of the

polarization axis of the beam. There exists the possibility of a tensor light shift from

the cross trap that would impart an effective magnetic field on the atoms. However,

the effect would be small. Measurements of the effective magnetic field using RF

spectroscopy for different polarization orientations of the cross-trap showed only a

∼ 5− 10 mG change in measured magnetic field.
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CHAPTER 7

NON-GAUSSIAN EVOLUTION OF THE QUANTUM

INVERTED PENDULUM

In this chapter the main experimental results of the thesis are presented. The analy-

sis of the inverted simple pendulum in Section 4.1.1 highlighted several features of a

quantum inverted pendulum that are observable spin-1 BEC. The simple pendulum

was prepared in an inverted state corresponding to a probability distribution cen-

tered on a hyperbolic fixed point in its phase space. The pendulum was allowed to

freely evolve and its angular position was measured at a later time. The subsequent

measurements would create a probability distribution of the angular position for each

evolution time. Fig. 4.7 and Fig. 4.9 illustrate this point clearly. The evolution of the

quantum inverted pendulum is shown to be rich in non-Gaussian distributions at dif-

ferent evolution times. The same non-Gaussian evolution can be demonstrated in the

dynamics of a spin-1 BEC. The evolution of the fractional population of atoms in the

mf = 0 state is measured starting from a pure mf = 0 state. The rich non-Gaussian

dynamics are shown to be qualitatively similar to what is seen for a quantum inverted

pendulum.

The analysis of the evolution of probability distributions has been studied in

several experiments [111–114]. The general purpose of these experiments was to

determine the overall change in the nature of the distribution as its respective system

evolved. The measured distributions in these experiments are used to provide a direct

measure of the two-point correlation function, or to provide a probe of non-local

correlations and entanglements in a system. This thesis will measure the evolution

of the spin-1 population in the mf = 0 state in order to demonstrate the detailed
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distribution of ρ0 as the system evolves.

7.1 Phase Spaces, Initial Conditions, and Evolution

The quantum Hamiltonian for the system is the spin-mixing Hamiltonian, given by

Eqn. (2.20): Ĥa,B = λa
′
(
Ŝ2 − 2N̂

)
+pŜz + q

2
Q̂zz. The mean-field Hamiltonian of the

system is given by Eqn. (2.26) (for m=0): E = c
4
(1− x2)(1 + cos θs) + q

2
(1− x) This

Hamiltonian is in the same form as a non-rigid, momentum-shortened pendulum of

length
√

1− x2, where x is the conjugate momentum, similar to Hamiltonians used in

double-well systems such as Bosonic Josephson junctions [115–118]. Section 3.1.1.1

showed that the mf = 0 minimum uncertainty initial state of the experiment can be

represented as a quasi-probability distribution. This initial distribution is shown in

the different phase spaces of the system in Fig. 7.1 (Left). The distribution has a

standard deviation ∼ 1√
N

, so for 45, 000 atoms the distribution would 1/200 atoms

wide, too small to see in the figure. The illustrations shown are for 30 atoms in order

to exaggerate the distribution.

The bottom phase space depicted in each figure is the traditional ρ0 − θs phase

space with which many in the field are familiar. It is shown to be a Mercator projection

of one of the hemispheres of the spin-nematic Bloch sphere representation of the phase

space introduced in Refs. [38, 57]. The top phase space depicted is a polar projection

of the spin-nematic phase space. Both the Bloch sphere and the spin-nematic polar

projection both clearly show the initial state of the system as a probability distribution

centered on the hyperbolic fixed point of the phase spaces.

As with the simple pendulum, the system here evolves along the diverging man-

ifolds of the separatrix as shown in Fig. 7.1 (Right). The subsequent measurements

of the system, then, should reflect a probability distribution in ρ0.

Fig. 7.2 shows the measured evolution of the system. The figure represents the

result of the collection of ∼ 10, 000 individual data points collected over the span of
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Figure 7.1: Different representations of the relevant phase spaces. The
different phase spaces are shown for the system. The center represents the spin-
nematic phase space used extensively in Refs. [38, 57]. The top represents the polar
projection of the Bloch sphere spin-nematic phase space. The hyperbolic fixed point
is clearly visible in both phase spaces. The bottom of the illustration shows the
familiar ρ0 − θs phase space as a mercator projection of one of the hemispheres of
the spin-nematic Bloch sphere. The left side shows the system at t = 0, where it has
been initialized at the hyperbolic fixed point. The right side shows the system after
some evolution. The distribution has been exaggerated for illustrative purposes.
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Figure 7.2: Measured evolution of the probability density of ρ0. The mea-
sured evolution of the probability density of ρ0 is shown. The black line represents
the mean value of ρ0 and the blue lines represent ±σ, the standard deviation.
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one week. For each data points, the system was initialized in the mf = 0 state and

allowed to freely evolve for different time intervals. At the end of the evolution time,

the condensate was released and allowed to expand in a Stern-Gerlach field, separating

the different mf components for imaging. After 22 ms of free-fall, the condensate was

imaged using fluorescence imaging for 400 µs and the different components counted

using Andor imaging software. At each evolution, at least 50 sample were taken

to allow the data to be binned. At several times, large sample sizes (≥ 900) were

collected to produce very detailed histograms of the distribution, shown in Fig. 7.3.

Several observations can be immediately made in looking at Fig. 7.2. First, there

is a long pause at the onset of evolution where the condensate does not appear to

evolve, similar to the simple inverted pendulum. After 100 ms, the system begins

oscillations, nearly reviving to ρ0 = 1 at 250 ms. Without noticeable pause, the

condensate then continues to oscillate with a regular period. The long pause, and

general oscillatory nature of the data is matched by the simulation results of Fig. 3.5

to good estimate for the period. The subsequent oscillations of the data do exhibit

more dampening than the simulation, but otherwise, the two appear to be in good

agreement, especially for the first oscillation.

The second observation that can be made from Fig. 7.2 is that, just as was seen

for the simple pendulum and in the dynamical simulations, for the majority of the

evolution, the mean does not pass through the point of highest probability density.

Instead, the measured values appear to be skewed from the mean. Additionally, at

times, the data appears to be very sharply peaked around the maximum or minimum

values at the turning points of the oscillation.

7.2 Origins of ρ0 Probability Distributions

When looking to understand the reason for the distributions that arise from the

system evolution, it is convenient to look at the ρ0 − θs mean-field phase space.
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Figure 7.3: Phase space and ρ0 distributions. The evolution of the system is
shown on the ρ0 − θs phase space (left) for various evolution times. The black dot
represents the mean value of (ρ0, θs). The right column shows a histogram of the ρ0

values for the given evolution time. The bars are the binned data points from over 900
experimental observations per evolution time, and the purple bar represents the bin
containing the mean value of ρ0. The red line is the histogram from the simulation.
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Fig. 7.3 (Left) shows the mean-field phase space for several different evolution times.

On each of the energy contours the probability density of the simulated system at

that time is shown, as well as the location of the mean value of ρ0 and θs (black dot).

Shown next to each phase space diagram is the histograms for the data (bars) and the

simulation (red line). The purple bar in each histogram represents the bin containing

the mean of ρ0 for that time step.

When examining the energy contours and the probability densities, one can see

that at t = 15 ms, the system is primarily distributed along the ρ0 = 1 point, and

consequently the histogram for ρ0 is binned there, as well. As the system converges

to the separatrix and begins to evolve along it, the probability density of the system

starts to dip lower into the ρ0 values. This is mirrored in the histograms which

gradually shift probability density from ρ0 = 1 to lower values. This trend continues

until the system reaches the lowest point in the phase space that it can travel at

around 170 ms. The shape of the phase space is such that the system is distributed

along a relatively wide range of θs and a wide range of ρ0, but most of the system is at

the bottom. The result is that the histogram shows a skew below the the mean with

a sharp peak. The system then returns to the top where it again distributes itself

over a relatively wide range of θs for a small range of ρ0, resulting in the same relative

shape as at the bottom of the phase space, only skewed in the opposite direction.

7.3 Higher-Order Analysis of ρ0 Distributions

When attempting to characterize a distribution, the most common attributes used

in the description are the mean and the standard deviation. For a Gaussian distri-

bution, the mean and standard deviation are all that is needed to characterize the

shape. However, throughout the evolution of ρ0, the distribution takes on highly non-

Gaussian shapes. At times, the maximum probability density is skewed to the right

of the mean, and others it is skewed to the left. Additionally, there are times where
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Figure 7.4: Central moments for spin mixing evolution. The first through
sixth central moments are shown for the evolution of ρ0. The top row has the odd
moments, the bottom row has the even moments. The error bars for the data were
calculated using a common bootstrap algorithm.

the data is sharply peaked at a value, and at others it is not. For these reasons, it is

clear that the mean and standard deviation alone are not sufficient in characterizing

the distribution.

7.3.1 Central Moments

The mean and the standard deviation are just the first two of a series of quantities

that describe the nature of a distribution. The mean, or first moment1, describes the

center point of the distribution, while the standard deviation, or second moment2,

describes the width of the distribution.

The third moment is the skewness, which indicates the asymmetry of the distri-

bution. A positive skew has the area of highest probability density to the left of the

mean, while a negative skew has the area of highest probability density to the right

of the mean. For a normal distribution, the skew is zero.

1Use of the term ”nth-moment” in this chapter will be used to mean both the nth central moment
and the nth standardized moment. The definitions for each are: nth-central moment- un = 〈(ρ− ρ̄)

n〉.
nth-standardized moment=un

σn For the purposes of this section, it is not important which is used.
2The second moment is actually the variance, σ2, however, it is more intuitive to discuss the

standard deviation because its units are the same as those of the mean.
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Figure 7.5: Data cumulants for spin mixing evolution. The first through sixth
cumulants are shown for the evolution of ρ0. The top row has the odd cumulants,
the bottom row has the even cumulants. The error bars for the data were calculated
using a common bootstrap algorithm.

The fourth moment is the kurtosis. The kurtosis measures the pointedness of a

distribution. The kurtosis for a normal distribution is three, which makes it more

convenient to look at the kurtosis excess which subtracts three from the kurtosis

so that a normal distribution has a kurtosis excess of zero. The more pointed a

distribution, the higher its kurtosis excess, while the flatter a distribution is the

smaller its kurtosis excess.

Higher-order central moments have no physical significance, but structure in the

higher order moments indicates strong trends in the data at lower moments. The

results of the measured central moments of ρ0 are shown in Fig. 7.4.

7.3.2 Cumulants

A drawback of central moments is that they are not independent of each other. As

a result, it is often preferred to use cumulants instead of central moments. Though

the first three cumulants are the same as the first three central moments, the fourth

and higher cumulants correct for the contributions of lower central moments in their

calculation by subtracting them out. However, the physical interpretation of the

fourth cumulant, for example, still applies.
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Figure 7.6: Long-term evolution of ρ0. The measured evolution of ρ0. The solid
line is the mean, the shaded region is ±σ.

There is no closed form for the nth cumulant (κn) as there is for un, instead, they

must be derived from a generating function. Most mathematics software have a built

in function for their calculation, which is what was used for the results in Fig. 7.5.

Additionally, deriving a closed form for the standard error of the cumulants is a non-

trivial task. Standard error prorogation techniques [119] are impractical. Instead, a

technique called bootstrapping, while imperfect [120, 121], was used to calculate the

error bars.

Fig. 7.5 shows the evolution of the first six cumulants. The mean is shown with

the standard deviation for its error bars, while the remaining cumulants error bars are

calculated as described in the previous paragraph. All of the cumulants show good

quantitative agreement with the simulation results, especially the first, second, and

third cumulants. For the fourth through sixth cumulants, the general trend of the

data matches the simulation, but the timing and amplitude begin to differ slightly.

The standard deviation clearly shows the first dip in ρ0 where the standard devi-

ation reaches a maximum, and then the first revival where the system returns to the

mostly ρ0 = 1 state. The system then repeats the process for subsequent oscillations.

The first dip and subsequent revival is also clearly visible in the third cumulant, which

indicates the asymmetry of the distribution. As the system bottoms out in the phase

space, the distribution is positively skewed, then the skew quickly changes direction
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at the first revival. This pattern repeats for subsequent oscillations.

The fourth cumulant shows the pointedness of the turning points quite clearly, as

one would expect from looking at Fig. 7.3. The fifth and sixth cumulants also show

structure in the data that closely matches the simulation.

7.4 Long Term Evolution

The long-term evolution of the system is shown in Fig. 7.6. The also show a fairly

consistent frequency of oscillations, though the oscillations break down after ∼ 1.5 s.

This is close to the trap lifetime of τB = 1.8 s. Also, the standard deviation of ρ0

remains fairly constant. When compared to the long-term evolution of the dynam-

ical simulations in Fig. 3.4, the oscillatory nature of the measured ρ0 more closely

resembles that of the simulation with the loss model. However, the experimental

results show significantly greater dampening than the simulation results. This would

indicate that the chosen model is incomplete, but serves as an acceptable first-order

correction to account for loss. The possibility exists that the loss model is wrong,

however, so further study of incorporating loss should be considered for future work.

7.5 Impurity Analysis

Some of the dynamics observed in the experiment could be described by impurities

in the initial state of the system. In this section, the effects of spin impurities in

the initial state preparation are discussed, and the impurity limits determined by the

experiment. The experiment uses condensates containing 4 × 104 atoms, initialized

in the f = 1,mf = 0 hyperfine state with measured impurities in the mf = ±1 states

(limited by the atom counting noise [38]) below < 30 atoms or 0.1% of the total

population.

Spin evolution from the metastable state is a parametric amplification process

whose early-time dynamics are logarithmically sensitive to initial population in the

mF = ±1 states [54]. Hence, any impurities in the initial state preparation will
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Figure 7.7: Analysis of Impurities. Upper bound from direct measure of im-
purities at 15 ms of evolution, gray shaded region. Measurement of first minimum
of ρ0, orange shaded area. Simulation with polluting atoms for a spinor dynamical
rate of |c|/(2π~) = 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, and 8.0 Hz (blue lines top to bottom).
The values between 7-8 Hz are most consistent with the long term dynamics and are
shaded blue.

certainly effect the timescale of the initial pause and first oscillation minimum. Im-

portantly though, as shown in [122], the overall character of the evolution, including

the intricate evolution of the quantum spin fluctuations, is robust to impurities even

up to the few percent level, which is an order of magnitude larger than our measured

bound.

In order to analyze the quantitative effect of impurities, we perform simulations

with two types of impurities: an initial non-zero magnetization and an initial non-

zero number of pairs of mf = ±1 atoms. The results of these calculations are nearly

identical for the same number of impurity atoms with the non-zero magnetization

results shown in Fig. 7.7 for various levels of impurities and for a range of spinor

dynamical rates determined from the long time evolution of the experiment (blue

shaded region) as well as several other values (blue lines). These are compared to

experimental measurements in order to ascertain an upper bound on the impurities

in the experiment.
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The first time at which the atom populations are measured is 15 ms after the

beginning of the magnetic quench, which provides an upper bound on the impurities

present at t = 0. The population in the mF = ±1 states at this time is < 30 atoms,

which is shown as the gray shaded region in Fig. 7.7. Also plotted in Fig. 7.7 is the

measured time that the mf = 0 population reaches a minimum value. This time

is logarithmically sensitive to impurity atoms and, for both magnetization and pair

impurities, reduces similarly for the same number of impurity atoms. The experi-

mental measurement of this time plus and minus one standard deviation is shown as

the orange shaded region. The shaded regions overlap only in the limit of very little

pollution of the initial state.

The overlap region is consistent with no pollution and is inconsistent with pollution

of the magnetization of greater than 5-10 atoms and pair pollution of greater than

3-5 pairs of ±1 atoms, even for significantly different spinor dynamical rates than the

evolution suggests. While it is conceivable to trade off between measured values of

the spinor dynamical rate and pollution, the dynamics of the quadrature squeezing

measurement reported previously [38] indicates that the value of spinor dynamical

rate estimated from the long term population dynamics is more consistent with the

available data. The analysis presented here along with the non-Gaussian nature of

the fluctuations and the squeezing dynamics reported previously make an effective

argument for the initial state preparation producing a very pure mf = 0 state.

7.6 Concluding Remarks

This chapter described the major experimental results of this thesis. It showed the

summary of over 10,000 data points to demonstrate the non-gaussian evolution of

the spin-1 Bose condensate. The large numbers of samples were used to gain reliable

statistics of the results. These results included the traditionally measured mean and

standard deviation of ρ0, but went further in the analysis by including the third
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through sixth central moments and cumulants. Additionally, very large samples were

taken for various time points and detailed histograms of the distributions were shown

to be in very good agreement with simulations.

The inclusion of a loss model allowed for comparison with simulations for longer

evolution times than previously reported, and showed reasonable match in the higher

order moments. Furthermore, the effect of impurities in the initial state was shown

to be an unlikely cause of the dynamics. In general, this chapter demonstrates that

the loss model used is a reasonable first order correction to the dynamical equations

of Chapter 2.
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CHAPTER 8

IMPLICATIONS OF THE LOSS MODEL

The addition of a loss model in Chapter 3 greatly improved the quantitative agreement

between the data and the simulation. The data-simulation agreement prior to the loss

model was good for ∼ 250 ms, but quickly diverged from there, with the simulation

remaining in the ρ0 ∼ 1 area for an extended pause while the data showed no pause

before continuing oscillations. The loss model eliminated the long pause at the top of

the first revival in the simulation, and also demonstrated the same oscillatory pattern

as the data. The loss model employed two different techniques, both of which captured

the dynamics of the system fairly well. This chapter will explore the implications of

the loss model. Specifically, what happens to the phase space of the system if the

spinor dynamical rate changes as atoms are lost, and what impact does that have on

the long-term evolution of the system.

8.1 Changing of the Phase Space

8.1.1 Simulation Results- No Loss

The dynamical simulations without the loss model show a pause at the first revival,

then the system quickly takes on a multi-frequency oscillation pattern with increased

standard deviation (See Fig. 7.6). The primary cause of this pattern is the dispersion

of the system near the separatrix due to the diverging periods of orbits. After a

short period of time, and intermittently thereafter, the system is almost completely

dispersed in a ring round the separatrix See Fig. 8.1, (b), (d), and (f)). At other times

the mean of ρ0 shows small oscillations as the different trajectories revive at near

simultaneous times, similar to beat notes (See Fig. 8.1, (a), (c), and (e)). The result

of the diverging orbital periods and consequential dispersion make for a complicated
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Figure 8.1: System evolution without loss. The evolution of the probability
density of ρ0 is displayed on the mean-field phase space for several different times.

oscillatory pattern for ρ0.

8.1.2 Simulation Results- With Loss

The dynamical simulations that incorporate the loss model do not show the pause at

the first revival, nor do they show multi-frequency oscillations. Instead, ρ0 oscillates

in an apparently coherent fashion with a regular period and slight dampening (See

Fig. 7.6). This pattern is consistent with the data and other comparisons between

the data and simulations indicate that the loss model is, at least to first order, valid.

The question then is what does the probability of ρ0 look at different times on the

mean-field phase space?

Fig. 8.2 shows the system evolution at two times that illustrate the key difference
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Figure 8.2: System evolution with loss on fixed phase space. The evolution
of the probability density of ρ0 is displayed on the mean-field phase space at two
illustrative times. The value of the spinor dynamical rate for the simulation is changed
as the atoms are lost, but the phase space remains constant. (a) shows the system
at the first revival, t ∼ 260ms. (b) shows the system at a later time, ∼1150 ms.

between the models. The first time is near the first revival, ∼220 ms. In the loss-

less model, the probability distribution of ρ0 returns to the top of the phase space

where it “turns” both left and right, dispersing itself across the entire range of θs,

thus occupying phase winding orbits (left turn) and closed orbits (right turn). On

the other hand, in the model with loss, it is clear that the probability distribution of

ρ0 only ”turns” left, away from the separatrix, and into phase-winding trajectories

instead of trajectories that span both winding and closed orbits as in the loss-less

case.

The second time is at a later time in the simulation, ∼1150 ms, when the system

is roughly centered at the bottom of its orbit in the phase space. This time was

chosen because it illustrates that the trajectories of the system cross the separatrix in

what appears to be an unexpected way. In fact, the evolution of ρ0 does not appear

to be following the contour lines of the phase space at all. The simulation uses the

time-varying spinor dynamical rate which changes as N2/5. However, the mean-field

phase space is also a function of the spinor dynamical rate, so the shape of the phase
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Figure 8.3: Ensemble evolution compared with ρ̄0 evolution. (a) shows the
evolution of ρ̄0. The red dashed line and the red dot are the separatrix and ground
state at t = 0, respectively. The blue line and the blue dot are the separatrix and
ground state at t = 2 s. (b) The evolution of the probability density of ρ0 is shown
at t = 2 s.

space will also evolve.

Assume for the time being that the loss model is at least partially correct. This

is a big assumption, since the loss model mostly corrects the oscillatory nature of

simulation results. The simulations still do not show the same level of dampening

as the experimental results. However, for the sake of argument, it is a necessary

assumption. The following discussion is based on that assumption, with the caveat

that it may be incorrect. Previous experiments that showed the evolution of ρ0 on

the mean-field phase space [34, 36], demonstrating what looked like ρ0 spiraling to

the ground state on the phase space drawn for t = 0. However, due to loss, the

phase space at later times is not the same. The separatrix has moved up in the phase

space, as has the ground state. The probability distribution of ρ0 is undergoing phase

winding orbits outside of the moving separatrix, while the mean of ρ0 appears to

spiral into the fixed phase-space ground state. This is illustrated in Fig. 8.3. The

black line in Fig. 8.3 (a) shows the evolution of ρ̄0 for 2 s. The red dashed line and
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(b) Simulation with loss, first revival
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(c) Measurement, first revival
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Figure 8.4: Histograms of S⊥ and Q⊥. The histogram for S⊥ and Q⊥ for the
loss-less simulation, the simulation incorporating loss, and the data at the first revival
of the evolution.
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the red dot are the separatrix and the ground state of the system at t = 0, while the

blue line and the blue dot are the separatrix and the ground state at t = 2 s. Notice

how the evolution of ρ̄0 appears to spiral the initial ground state, while the separatrix

and the ground state move upwards in the phase space. Fig. 8.3 (b) instead shows

the probability density of ρ0 at t = 2 s. It is clear that the system is in a close group

of phase-winding trajectories outside the separatrix.

8.2 Measurement of S⊥-Q⊥

As was shown in the simulation, the changing of the phase space due to a changing

spinor dynamical rate causes the system evolution to take a completely different

track than the loss-less case. Instead of the system undergoing a combination of

phase-winding and closed orbits, the separatrix shifts upwards and the ensembles all

become phase-winding.

The distributions of S⊥ and Q⊥ at the first revival for the simulation and the

measurements are shown in Fig. 8.4. The top set of histograms shows what the

distribution of S⊥ and Q⊥ look like for the loss-less simulation, while the middle

set of histograms shows the distribution of S⊥ and Q⊥ for the simulation with loss.

The loss-less histograms show a Gaussian-like distribution for both S⊥ and Q⊥. The

histograms for the loss-included simulation show a Gaussian-like distribution for S⊥,

while Q⊥ is bimodal, a possible consequence of the system evolving outside of the

separatrix as previously discussed. The bottom set of histograms are measured in

the experiment. The Q⊥ histogram shows a bimodal shape, similar to the simulation

incorporating loss.

A reconstruction of the phase space distributions can be performed to verify the

evolution of the system. In order to reconstruct the phase space distribution, an

inverse Radon transformation is performed on the histograms from the simulations

and the data. In terms of the S⊥-Q⊥z phase space, with out loss, the system starts
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Figure 8.5: Reconstruction of the S⊥-Q⊥z phase space. (a) shows the recon-
struction of the phase space for the loss-less simulation results for the first revival.
(b) shows the reconstructed phase space for the simulation with the loss model at
the first revival. (c) shows the reconstructed phase space for the experimental results
at the first revival.
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as a Gaussian distribution and returns to a roughly Gaussian distribution at the first

revival. (Fig. 8.5 (a)). However, when the effects of loss are included, the distribution

more closely resembles a bow-tie with the majority of the distribution aligned along

the S⊥ axis (Fig. 8.5 (b)).

Reconstruction of the phase space at the first revival from experimental results

shows that the phase space does in fact resemble a bow-tie as the simulation predicts

(Fig. 8.5 (c)). The first revival is chosen as the best time to study the system because

it is the earliest time in the experiment when we can clearly see the effect we want, yet

not too far in the evolution of the system that other known issues with the simulation

are dominant (e.g. dampening discrepancies).

8.3 Future Experimental Measurements

An interesting topic of exploration proposed in previous works has been the mea-

surement of the dispersion of the system. However, with the atomic loss causing the

phase space to change, the dispersion effects may be difficult to isolate. An alterna-

tive would be to compensate for the atomic loss by changing the magnetic field. By

decreasing the magnetic field at the appropriate rate, the phase space would remain

unchanged, and evolution of the system should follow fixed contour lines. Fig. 8.6

shows dynamical simulations for the evolution of ρ0, (a) shows the simulation without

loss, and (b) shows the simulation with loss and a decreasing magnetic field. The

two plots are very similar, providing at least conceptual proof of principal. The next

step would be to modify the control sequence to scale the magnetic field and measure

the evolution of ρ0, looking for the long pause after the first revival.

8.4 Concluding Remarks

The loss model used for the dynamical simulations captures a good amount of the

dynamics of the system. The oscillatory nature of the evolution of ρ0 is captured by

the model, and is explained by the upwards motion of the separatrix in the phase
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Figure 8.6: Evolution of ρ0 with changing magnetic field. (a) shows the
simulated evolution of ρ0 without atomic loss. (b) shows the simulated evolution of
ρ0 with atomic loss and a decreasing magnetic field.

space changes the trajectories from equal sets of diverging phase winding and closed

orbits to a collection of close phase-winding orbits. Reconstruction of the phase space

from experimental data confirms that the evolution of the system is indeed outside

of the separatrix, indicating an upward movement of the separatrix as a result of the

atomic loss.

Despite the improved agreement between the data and simulation that the loss

model provides, there is still exists unaccounted for differences between the evolution

of each. The most noteworthy is the difference in dampening rates. While the sim-

ulations show some dampening, the data shows dampening at a greater rate. Initial

thoughts on the cause of the dampening could be that, as atoms are lost, the single

mode approximation used in Section 2.2 may be invalidated. This would lead to a

complicated interplay of the internal and external dynamics that ultimately trans-

fers the internal spin energy into spatial domain structures [62]. However, quick

dimensional analysis shows that the condensate radius scales as N1/5, while the spin

healing length, ξs, scales as N−1/5. Any dampening from atomic loss is not, at first

glance, related to the violation of the SMA, since the loss of atoms makes the SMA

more valid. However, internal spin energy may be transferred to other areas, such
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as rethermalization after atoms are lost such that the internal spin energy decreases

with time. The effects of possible internal spin energy transference would need more

analysis and possible inclusion into the dynamical equations.
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CHAPTER 9

CONCLUSION

The principal contribution of this thesis is the detailed study of the dynamics of a

quantum inverted pendulum as studied in the non-Gaussian evolution of a spin-1

BEC. Detailed measurements of the distribution of the evolution are taken for times

far in excess of any previously conducted. Furthermore, higher-order moment and

cumulant analysis was conducted to demonstrate the non-Gaussian nature of the

evolution.

This thesis also provided a mapping of the phase space through the use of coherent

oscillations. The oscillations were fit to the analytical solution to the mean-field

dynamical equations and the general shape of the phase space shape was extracted.

Despite the obvious shortcomings of the loss model, it was helpful in capturing

some of the dynamics of the system caused by loss. As a result of the partial success

of the loss model, some implications as to the effect of atomic loss on the model came

to light. These implications were studied, including a reconstruction of the phase

space.

9.1 Spinor Theory and Dynamical Simulations

The spinor theory used in this thesis is the same as used in the most recent exper-

iments. The quantum model was largely a review of the literature, with the noted

exception that the effect of the quadratic Zeeman energy was added. The addition

quadratic Zeeman energy was a critical step in the implementation of the quantum

model. The mean-field theory used in this thesis was also largely a review of the lit-

erature, using the quasi-probability distribution to capture the quantum fluctuations

needed for evolution of the other-wise stationary mf = 0 initial conditions in the
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semi-classical model. The two methods provided simulations that were within 0.5%

of each other for population dynamics.

The addition of a loss model to the mean-field and quantum simulations moderatly

increased the evolution time for which the data and the simulation had reasonable

quantitative agreement. Not only did the oscillatory nature of the evolution of ρ0

match the data more accurately, but the agreement was seen in the higher order

cumulants. Previously, experimental results showed only limited quantitative agree-

ment, limited to the low depletion, perturbative limit at very early times. This

agreement was extended for the mean and standard deviation to ∼ 240 ms, however

the simulation and data diverged greatly from there. The addition of the loss model

extended the reasonable quantitative agreement to ∼ 450 ms, and qualitatively they

agreed well past the trap lifetime.

The convenience of relying on both the quantum theory and the mean-field the-

ory for comparison with the data results opened up new avenues of exploration, and

greater conceptual understanding of the results. Many of the results were analyzed

with simulations from each theory. The best example of this is the measured his-

tograms of ρ0 being compared to the coefficients of the Fock states, pictured along

side the mean-field phase space results for spin-mixing evolution from the mf = 0

initial state. The effects of dispersion were clearly visible in the mean-field phase

space, while the dynamics of the Fock states was clear in the histograms.

The mean-field theory shows that the system resembles a non-rigid, momentum-

shortened pendulum. The simple pendulum was studied in Chapter 4, which provided

insight used to study the BEC system. The results of Chapter 6 and 7 verify the

analogy to the simple pendulum. Future experimental work should look to extend the

pendulum analogy and find ways to stabilize the system in the ”inverted pendulum”

position. This can be shown in two key ways, the first being a lack of evolution in

ρ0. The second way to show stabilization would be to measure the variance of S⊥,
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which should increase as the system evolves, then decrease after a spinor phase shift

rotates the quadrature angle such that the system is on the converging manifold of

the separatrix.

Despite the improved agreement between the data and simulation that the loss

model provides, there is still exists unaccounted for differences between the evolution

of each. The most noteworthy is the difference in dampening rates. While the simu-

lations show some dampening, the data shows dampening at a greater rate. Future

work will focus on improving the loss model to account for this.

9.2 Non-Gaussian Evolution and Mapping the Phase Space

The non-Gaussian evolution and phase space mapping chapters served as an in-depth

validation of the expanded theoretical model. The evolution of ρ0 could not be ade-

quately characterized by the mean and standard deviation, as for most of the evolution

the mean is not located in the area of highest probability density. Additionally, with

the inclusion of the loss model it was necessary to extend the evolution times to well

beyond those measured before. A common method used to characterize the shape of

a distribution is to calculate the cumulants of the distribution. While the first three

cumulants can be directly translated into a physical understanding of the distribu-

tion’s shape, the higher order cumulants indicate additional structure to the data.

The measurements showed evolution in the first six cumulants, demonstrating that

the system was evolving in a non-Gaussian manner.

When mapping the phase space, the system was initialized to specific start points

in the mean-field phase space and allowed to evolve. The subsequent parametric plots

of ρ0 allowed for a detailed reconstruction of the phase space using the techniques

gleaned from analysis of the simple pendulum. Moreover, the results further validated

the simulation’s ability to take a pure mf = 0 system, conduct an RF rotation with

spinor phase shift, and produce subsequent evolution that accurately models the
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experiment.

Future work in this area would increase the number of surveys of the phase space

conducted in Chapter 6. This would give a complete map of the phase space rather

than just two cross-sections. Additionally, the surveys could be done at a later time,

after several orbits have transpired. This would allow for observation of any changes

in the shape of the phase space as a result of atomic loss.

9.3 Implications of the Loss Model

The loss model used to improve the dynamical simulations, at least to first order,

provides an increased accuracy in the matching of data with simulation. Naturally,

the changing of the spinor dynamical rate in the mean-field picture has the implication

that the shape of the phase space would change as well. Though the system evolves

by following the appropriate energy contour, the evolution would be affected by the

changing energy contours. The initial state ofmf = 0 would see the biggest affect from

the change, since it initially closely spans both sides of the separatrix equally. If the

separatrix moves upwards in the phase space, the initial state would rather rapidity

find itself outside of the separatrix executing phase winding orbits as a whole, rather

than a superposition of phase winding and closed orbit trajectories.

The best time in the evolution to determine if this is happening is at the first

revival of ρ0, where the loss affects are beginning to become important yet not as

dominant as at later times. Using the reverse radon transformation, the S⊥ − Q⊥z

phase space was reconstructed, showing that the majority of the system was in fact

outside of the separatrix, providing evidence to support the physical validity of the

loss model.

Future work in this area could include reconstruction of the phase space at different

evolution times for different initial conditions that clearly demonstrate the nature of

the changing phase space.
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9.4 Problems, Improvements, and Future Improvements

It is no surprise to anyone who constructs an experimental apparatus that trade-offs

are often made in the construction process. Often times, quick solutions meant to be a

proof of principal instead turn into permanent solutions, or better ways to execute the

experiment are found and implemented ad-hoc. Even more troublesome, components

to the experiment go past their useable lifetime and need to be replaced. All of these

can be found on the existing experiment, and some of them will be addressed here.

The large number of data points needed to construct the histograms of ρ0 in

Chapter 7 took several days to collect. This is a due to the fact that each experimental

cycle takes ∼ 20 s, most of which is the long wait for the saturation of the MOT.

Reduction in this time would allow for the same amount of data to be taken in less

time, making the experimental results less sensitive to fluctuations in the conditions in

the lab, where background magnetic fields can vary ∼ 10−20 mG throughout the day.

The use of a 2D MOT to form a cold atomic beam used to load the 3D MOT could

reduce trap loading times from ∼ 15 s to ∼ 1 s. This also solves several other issues

with the experiment. The use of a getter as a source in the experimental chamber

would be eliminated, reducing background in the imaging system. Also, the ability

to employ differential pumping between the 2D MOT and 3D MOT will increase trap

lifetimes by an order of magnitude, conservatively. This in turn decreases the effect

of loss on the system.

Another issue with the experiment is the use of magnetic windows on the vacuum

chamber. The ferromagnetic materials (Kovar, an iron-nickel alloy) in the transition

sleeve of the window causes a hysteresis problem and a semi-permanent magnetization

of the chamber. There are work-arounds for both of these problems, but the best long-

term solution is to replace the windows. We have purchased non-magnetic windows

for all of the chambers on the octagon except the ZnSe windows, which do not have

the hysteresis problem since they are constructed differently. These windows are AR
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coated and waiting installation at the next chamber rebuild. A second option is to

use an all-glass experimental chamber. This would completely eliminate the problems

of hysteresis, but it would require new trapping techniques since the glass cell would

be opaque to the CO2 laser. The use of a Nd-YAG laser for trapping has been

demonstrated, but it would have to be used in a cross-trap or lattice configuration.

Other problems include the accumulation of Rubidium on the internal optics in the

chamber. The ZnSe lenses are so contaminated that their surfaces glow from the heat

of the CO2 laser. These lenses will be replaced once they cause catastrophic problems

in the experiment, at which time the windows in the chamber will be replaced.

Not all problems with the experiment are waiting to be repaired; several significant

improvements have already been made. The control cables for all of the digital and

analog channels used to pass over the light fixtures in the lab, possibly adding noise

in the control voltages. These were all rerouted in appropriately installed cable trays

throughout the lab. The insulated gate bipolar transistors (IBGTs) used to switch

on the high current in the MOT coils were prone to failure as a result of the high

inductance involved in switching ∼ 700 A in a sort period of time. The failure

would destroy the IGBT along with its gate driver circuitry, resulting in a month

of down time for repairs. The system was redesigned to include a large snubber

capacitor circuit to mitigate the inductance problem. The system has yet to fail with

the new design. Another change included the upgrading of all of the experimental

computers to top of the line Windows 7 computers. For the most part, this was

not too complicated. The exception was that the experimental control sequence in

LabView was not compatible with Windows 7 and had to be re-designed. The switch

allowed for some improvements and upgrades to the control sequence. Safety was

also improved by the construction of new experimental table enclosures, including an

aluminum casing for around the 100 W CO2 laser. Lastly, the entire experimental

cooling system was switched to a high-capacity chilled water system, resulting in
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increased stability in the CO2 system.
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APPENDIX A

DIPOLE AND QUADRAPOLE OPERATORS

This appendix contains the tables of dipole and quadrapole operators used throughout

the thesis for computations and derivations.
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Table A.1: The spin-1 dipole operators. The expectation value of these operators
are components of the angular momentum vector. The matrices are in a spherical
polar basis |f,mf〉.

Sx = 1√
2

 0 1 0
1 0 1
0 1 0

 Ŝx = 1√
2

(
â†1â0 + â†0â−1 + â†0â1 + â†−1â0

)

Sy = i√
2

 0 −1 0
1 0 −1
0 1 0

 Ŝy = i√
2

(
−â†1â0 − â†0â−1 + â†0â1 + â†−1â0

)

Sz =

 1 0 0
0 0 0
0 0 −1

 Ŝz =
(
â†1â1 − â†−1â−1

)

Table A.2: The spin-1 quadrapole operators. Expectation values of these operators
are moments of the symmetric traceless quadrapole tensor. The matrices in spherical
polar basis [57].

Qyz = i√
2

 0 −1 0
1 0 1
0 −1 0

 Q̂yz = i√
2

(
−â†1â0 + â†0â−1 + â†0â1 − â†−1â0

)

Qxz = 1√
2

 0 1 0
1 0 −1
0 −1 0

 Q̂xz = 1√
2

(
â†1â0 − â†0â−1 + â†0â1 − â†−1â0

)

Qxy = i

 0 0 −1
0 0 0
1 0 0

 Q̂xy = i
(
−â†1â−1 + â†−1â1

)

Qxx =

 −1
3

0 1
0 2

3
0

1 0 −1
3

 Q̂xx = −1
3
â†1â1 + 2

3
â†0â0 − 1

3
â†−1â−1 + â†1â−1 + â†−1â1

Qyy =

 −1
3

0 −1
0 2

3
0

−1 0 −1
3

 Q̂yy = −1
3
â†1â1 + 2

3
â†0â0 − 1

3
â†−1â−1 − â†1â−1 − â†−1â1

Qzz =

 2
3

0 0
0 −4

3
0

0 0 2
3

 Q̂zz = 2
3
â†1â1 − 4

3
â†0â0 + 2

3
â†−1â−1
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APPENDIX B

CUMULANTS

In order to characterize the evolution of the simple pendulum in Chapter 4 and the

spin-1 BEC in Chapter 7, central moments (un) and cumulants (κn) were calculated

from the simulation and data points. The general expression for the nth central

moment, un, is derived from a generating function, which yields a closed expression

given by un = 〈(x− x̄)n〉. Though this expression can be used to calculate the

central moments from the simulation and data, most mathematics software have

readily available functions for calculating the central moment.

A closed expression for the nth cumulant, κn does not exist. Instead, the cumulants

are obtained from a generating function in terms of the moment-generating function:

g(t) ≡
∞∑
n=1

κn
tn

n!
= ln

(
1 +

∞∑
n=1

u′nt
n

n!

)
where u′n is the nth non-central moment. The nth cumulant is given by the nth

derivative of g(t) evaluated at t = 0:

κn =
∂n

∂tn
g(t)

∣∣∣∣
t=0

κ1 = u′1

κ2 = u′2 − u′1
2

κ3 = u′3 − 3u′2u
′
1 + 2u′1

3

κ4 = u′4 − 4u′3u
′
1 − 3u′2

2
+ 12u′2u

′
1

2 − 6u′1
4

κ5 = u′5 − 5u′4u
′
1 − 10u′3u

′
2 + 20u′3u

′
1

2
+ 30u′2

2
u′1 − 60u′2u

′
1

3
+ 24u′1

5

κ6 = u′6 − 6u′5u
′
1 − 15u′4u

′
2 + 30u′4u

′
1

2 − 10u′3
2

+ 120u′3u
′
2u
′
1 − 120u′3u

′
1

3

+ 30u′2
3 − 270u′2

2
u′1

2
+ 360u′2u

′
1

4 − 120u′1
6
.
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To express the cumulants in terms of the central moments for n > 1, drop all of the

terms in which u′1 appears above:

κ1 = u′1 = Mean

κ2 = u′2 = Variance

κ3 = u′3 ∝ Skew

κ4 = u′4 − 3u′2
2 ∝ Kurtosis

κ5 = u′5 − 10u′3u
′
2

κ6 = u′6 − 15u′4u
′
2 − 10u′3

2
+ 30u′2

3
.

Just as with the central moments, the expressions above can be used to calculate

the cumulants; however, most mathematics software have readily available functions

for calculating the cumulants from a set of values.
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Squeezing of a Collective Atomic Spin,” Phys. Rev. Lett. 104, 073602 (2010).

[92] C. Gross, T. Zibold, E. Nicklas, J. Estève, and M. K. Oberthaler, “Nonlin-
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