
Adiabatic quenches and characterization of amplitude
excitations in a continuous quantum phase transition
Thai M. Hoanga, Hebbe M. Bharatha, Matthew J. Boguslawskia, Martin Anqueza, Bryce A. Robbinsa,
and Michael S. Chapmana,1

aSchool of Physics, Georgia Institute of Technology, Atlanta, GA 30332-0430

Edited by Subir Sachdev, Harvard University, Cambridge, MA, and approved June 28, 2016 (received for review January 7, 2016)

Spontaneous symmetry breaking occurs in a physical system
whenever the ground state does not share the symmetry of the
underlying theory, e.g., the Hamiltonian. This mechanism gives rise
to massless Nambu–Goldstone modes and massive Anderson–
Higgs modes. These modes provide a fundamental understanding
of matter in the Universe and appear as collective phase or ampli-
tude excitations of an order parameter in a many-body system. The
amplitude excitation plays a crucial role in determining the critical
exponents governing universal nonequilibrium dynamics in the
Kibble–Zurek mechanism (KZM). Here, we characterize the ampli-
tude excitations in a spin-1 condensate and measure the energy
gap for different phases of the quantum phase transition. At the
quantum critical point of the transition, finite-size effects lead to a
nonzero gap. Our measurements are consistent with this predic-
tion, and furthermore, we demonstrate an adiabatic quench
through the phase transition, which is forbidden at the mean field
level. This work paves the way toward generating entanglement
through an adiabatic phase transition.
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The amplitude mode and phase mode describe two distinct
excitation degrees of freedom of a complex order parameter

ψ =Aeiϕ appearing in many quantum systems such as the order
parameter of the Ginzburg–Laudau superconducting phase tran-
sition (1) and the two-component quantum field of the Nambu–
Goldstone–Anderson–Higgs matter field model (2–5). In a zero-
dimensional system of an interacting spin-1 condensate, the
transverse spin, S⊥, plays the role of an order parameter in the
quantum phase transition (QPT) with S⊥ being zero in the polar
(P) phase and nonzero in the broken axisymmetry (BA) phase
(Fig. 1A). Representing the transverse spin vector as a complex
number, S⊥ = Sx + iSy, with the real and imaginary parts being
expectation values of spin-1 operators, the amplitude mode
corresponds to the amplitude oscillation of S⊥.
The amplitude mode can be studied in different spinor phases

by tuning the relative strengths of the quadratic Zeeman energy
per particle q∝B2 and spin interaction energy c of the conden-
sate (6) by varying the magnetic field strength B (Fig. 1). In the
P phase, both the effective spinor potential energy V and the
ground state (GS) spin vector have SO(2) rotational symmetry
about the vertical axis (Fig. 1A), and there are two degenerate
collective amplitude modes along the radial directions about the
GS located at the bottom of the parabolic bowl. These amplitude
excitations are gapped modes, which vary both the amplitude of
S⊥ and the energy.
In the BA phase, the effective spinor potential energy V ac-

quires a Mexican-hat shape with the GS occupying the minimal
energy ring of radius

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4c2 − q2

p
=ð2jcjÞ. The GS spin vector, S⊥

(orange arrow in Fig. 1A), spontaneously breaks the SO(2)
symmetry and acquires a definite direction (7, 8). This broken
symmetry induces a massless Nambu–Goldstone (NG) mode in
which it costs no energy for the spin vector to rotate about the
vertical axis. Recently, the magnetic dipolar interaction was
used to open a gap in the NG mode by breaking the rotational
symmetry of the spin interaction (9). In our condensate, the

magnetic dipolar interaction can be ignored due to spatial
isotropy, and therefore, the NG mode in the BA phase remains
gapless. The other excitation, the amplitude mode, manifests
itself as an amplitude oscillation of the transverse spin in the
radial direction. This amplitude mode is similar to the massive
mode in the Goldstone model (3).
In this work, we measure the amplitude modes in a spin-1

Bose–Einstein condensate (BEC) through measurements of
very low amplitude excitations from the GS. The results show a
quantitative agreement with gapped excitation theory (10–12)
and provide a platform to probe the amplitude excitation,
which plays a crucial role in the KZM in spinor condensates
(11, 13–15). Although in the thermodynamic limit the ampli-
tude mode energy gap goes to zero at the quantum critical point
(QCP), a small size-dependent gap persists for finite-size sys-
tems (12). Measurements of the energy gap near the QCP are
challenging; however, our results are consistent with a small
nonzero gap. Furthermore, by using a very slow, optimized
magnetic field ramp, we demonstrate an adiabatic quench across
the QCP. Such adiabatic quenches in finite-sized systems un-
derlie proposals for generating massively entangled spin states
including Dicke states (12) and are fundamental to the ideas of
adiabatic quantum computation (16).
The experiments use a tightly confined 87Rb BEC with

N = 40,000 atoms in optical traps such that spin domain for-
mation is energetically suppressed. The Hamiltonian describing
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this spin system in a bias magnetic field B along the z axis is
(17–21)

Ĥ =~cŜ2 − q
�
Q̂z −N

��
2, [1]

where Ŝ2 is the total collective spin-1 operator and Q̂z is pro-
portional to the spin-1 quadrupole moment, Q̂zz. The coefficient
~c is the collisional spin interaction energy per particle inte-
grated over the condensate and quadratic Zeeman energy per
particle q= qzB2 with qz = 72 Hz/G2 (hereafter, h= 1). The lon-
gitudinal magnetization hŜzi is a constant of the motion (hŜzi= 0
for these experiments); hence the first-order linear Zeeman
energy pŜz with p∝B can be ignored. The spin-1 coherent states
can be represented on the surface of a unit sphere shown in Fig.
1B with axes fS⊥,Q⊥,Qzg, where the expectation value of trans-
verse spin is S2⊥ = S2x + S2y , Q⊥ is the transverse off-diagonal
nematic moment Q2

⊥ =Q2
xz +Q2

yz, and Qz = 2ρ0 − 1, where ρ0 is
the fractional population in the jF = 1,mF = 0i state. In this
representation, the coherent dynamics evolve along the con-
stant energy contours of H= ð1=2ÞcS2⊥ − ð1=2ÞqðQz − 1Þ, where
c= 2N~c (22–24) (red and green orbits in Fig. 1B). The phase
space for the single-mode spin-1 condensate is similar to that
for the Lipkin–Meshkov–Glick (LMG) model (25), which in
turn describes the infinite coordination number limit of the
XY model or quantum Ising model (26). The dynamics of the
QPT in these zero-dimensional quantum systems have been
explored theoretically and experimental realizations include the
double-well Bose–Hubbard (27, 28), pseudospin-1/2 BEC (29, 30),
and many-atom cavity quantum electrodynamics systems (31).

In the mean-field (large atom number) limit, quantum fluc-
tuations can be ignored and the wavefunction for each spin state,
mF = 0, ± 1, can be represented as a complex vector with com-
ponents, ψ0,±1 =

ffiffiffiffiffiffiffiffiffiffi
ρ0,±1

p expðiθ0,±1Þ. Using Bogoliubov analysis
(10) and mean-field theory (24, 32), the energy gap of the am-
plitude mode in the P phase and the BA phase in the long-
wavelength limit corresponds to the oscillation frequency of
small excitations in ρ0 from the GS

ΔP ≡ fP = 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qðq+ 2cÞ

p
, ΔBA ≡ fBA = 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 − q2=4

q
. [2]

Here the energy gap is ΔE (≡ΔP and ΔBA) and coherent oscilla-
tion frequency is f (≡fP and fBA). Although these relations show a
vanishing gap at the QCP, quantum fluctuations due to finite
atom number result in a nonzero gap. In the quantum theory,
the energy gap can be exactly calculated from the eigenenergy
values of the Hamiltonian in Eq. 1 (Supporting Information). Fig.
1C shows the energy gap between the GS and the first excited
state with a small nonzero gap at the QCP as a result of a finite
atom number. Fig. 1D shows the relation of energy gap at the
QCP to the atom number in condensates ranging from 101 to 105
atoms, which scales as ΔE ∝N−1=3 (12). The energy gap curve
compares well to the oscillation frequencies of GS spinor popula-
tion ρ0 obtained from quantum simulations (Supporting Informa-
tion) for a broad range of atom numbers (red circles in Fig. 1D).
The equivalence relation between the energy gap and the coherent
oscillation (32) frequency in Eq. 2 is a general statement connect-
ing the amplitude modes to the observable dynamics and is key to
this study.

Energy Gap Measurement
To characterize the energy gap ΔE, we measure coherent dy-
namics for states initialized close to the GS (Fig. 1B) for different
values of q=jcj ranging from 0.1 to 3 and fit the measurements to
sinusoidal functions to determine the oscillation frequencies
(Supporting Information). For each q=jcj value, several measure-
ments of the population ρ0 are made for a series of initial states
approaching the GS as illustrated in Fig. 2A. The GS population
ρ0,GS can be obtained by minimizing the spinor energy (Supporting
Information) (24)

ρ0,GS = 1  ðPÞ, ρ0,GS = 1=2+ q=ð4jcjÞðBAÞ. [3]

The oscillation amplitude of ρ0 has a lower limit given by the
Heisenberg standard quantum limit (SQL=N−1=2) projected
onto the ρ0 axis (∝Qz axis in Fig. 1B) (21); hence the best esti-
mate of the energy gap is obtained from the measurement with
the lowest observable oscillation amplitude. An alternate method to
determine the energy gap for states centered on the pole is to
measure the oscillations of the transverse spin fluctuations, ΔS⊥.
Although this method requires many more data because the signal
is in the fluctuations instead of the mean value, it provides higher
contrast for states localized at the pole. Measurements obtained
with this technique at the QCP are shown in Fig. 2B for a state
prepared in the polar GS (Supporting Information).
The results of the energy gap measurements are shown in Fig.

2C for both methods. Overall, the measurements capture the
characteristics of energy gap predicted by gapped excitation
theory for a spin-1 BEC (10–12). In the P phase, the energy gap
data show a good agreement with the theoretical prediction
within the uncertainty of the measurements. In the BA phase,
the measured gap data are also in reasonable agreement with the
theory; however, the measured values are 20% lower than the
theory for the smallest values of q=jcj< 1. This finding is possibly
a result of small violations of the single-mode approximation or
the presence of a small thermal fraction, both of which would be
more significant in this spin interaction-dominated regime. In a

A

B

C D

Fig. 1. (A) Effective spinor potential energy V in the BA phase (q=jcj< 2), at
the QCP (q=jcj= 2), and in the P phase (q=jcj> 2). In the P phase, there are
two gapped modes (blue lines) along the radial direction about the GS. In
the BA phase, the GS occupies a minimum energy ring (gray circle) with one
gapped mode along the radial direction (blue line) and one NG mode (red
line) in the azimuthal direction. (B) The GS on the fS⊥,Q⊥,Qzg unit spheres is
represented by a red-shaded region. Coherent orbiting (phase winding)
dynamics are represented by red (green) curves and the blue curve is the
separatrix. The magenta (black) arrow represents the radio-frequency (mi-
crowave) pulse used for the initial state preparation (Supporting In-
formation). (C) The energy gap for 40,000 atoms (cyan curve) is calculated
from the eigenvalues of the quantum Hamiltonian (Supporting In-
formation). (D) The energy gap at the QCP (blue solid line) calculated from
the eigenvalues of the quantum Hamiltonian matches the GS oscillation
frequencies from simulations (red circles).
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study of an antiferromagnetic condensate, using an initial state
(ρ0 = 0.5) prepared far away from the antiferromagnetic GS
(ρ0,AGS = 1), slightly lower oscillation frequencies than those in
the theory were also observed (33); it was suggested that these
resulted from excess magnetization noise from the radio frequency
(RF) pulse of the initial state preparation; however, this noise is
not large enough to explain the difference in our measurements.
In the neighborhood of the QCP, the energy gap decreases

dramatically. As shown in Fig. 2C, Inset, the measurements are in
good agreement with the theoretical prediction in this region.
For measurements at q= 2jcj, the minimum measured gap is
ΔE = 0.15ð1Þjcj, which is consistent with the nonzero gap pre-
dicted by the quantum theory, ΔE,th = 0.165jcj; here c≈−7.5ð1Þ
Hz (Supporting Information). We point out, however, that there
are experimental challenges to these measurements. The initial
state is prepared in the high magnetic field GS (q=jcj= 38). This
state has symmetric

ffiffiffiffi
N

p
fluctuations in the S⊥,Q⊥ plane. When

the condensate is rapidly quenched to a lower q=jcj for the en-
ergy gap measurement, this projects the condensate to slightly
excited states of the final q=jcj Hamiltonian. The subsequent
evolution of this state will have an oscillation frequency higher
than the calculated gap frequency, particularly in the region
1.95≤ q=jcj≤ 2.05. We can accurately calculate this effect, and
the results are indicated by the orange-shaded region in Fig. 2C.
A further complication in the measurement at the QCP is that

the value q=jcj is not truly constant during the measurement of
the gap, but drifts to slightly higher values because of a reduction
of density due to the finite lifetime of the condensate. The spin
interaction energy depends on the density and atom number as
cðtÞ∝ nðtÞ∝NðtÞ2=5. For these measurements, the condensate
lifetime was 1.6ð1Þ s, which results in a drift of Δq=jcj= 0.05 in
100 ms in the neighborhood of the QCP. The atom loss is taken
into account in the simulations, an example of which is shown in
Fig. 2C, and the energy gap is determined by the frequency at
t= 0. Despite these challenges to the measurements near the
QCP, the data indicate the presence of a nonzero gap that is of
the same size as predicted by theory.
In the BA phase of a hŜzi= 0 spin-1 BEC, two of the three

excitation modes (Supporting Information) are massless NG
modes that appear due to broken global symmetries. The third
mode is a massive amplitude mode with a dispersion relation:
E2ðk0Þ=Δ2

E + ð2cZ=mÞ2k20 with k0 being the wavenumber and m
being the atomic mass (10, 11). The energy gap ΔE is equivalent

to the rest mass energy of the quasiparticle corresponding to the
excitation mode. Our experiments are in the long-wavelength
limit in which the wave vector approaches zero, k0 → 0. The
massive amplitude mode that appears when a global symmetry is
broken has properties analogous to those of the Higgs mode,
which relates to the amplitude fluctuation of the order param-
eter of the phase transition. Such a Higgs-like mode has been
observed as a collective excitation in the superfluid/Mott in-
sulator transition as an amplitude fluctuation of a complex order
parameter (34), in the XY model of antiferromagnetic materials
as an amplitude fluctuation of the spin vector (35), in super-
conducting systems (36–39), and here as the amplitude mode of
the spin-1 BEC in the BA phase.

Adiabatic QPT
In the thermodynamic (N→∞) limit, the vanishing gap at the
QPT prohibits adiabatic crossing between phases and gives rise
to excitations characterized by the Kibble–Zurek mechanism
(KZM). However, the opening of the gap at the QCP due to
finite-size effects makes it possible, in principle, to cross the QCP
adiabatically using a carefully tailored ramp from q � 2jcj to
q< 2jcj, while remaining in the GS of the Hamiltonian. Recently,
adiabaticity in sodium spin-1 condensates has been studied (40);
however, these experiments were performed using condensates
with nonzero longitudinal magnetization (hŜzi≠ 0) that do not
have a QCP. Here, we focus on the very challenging case of the
small energy gap at the QCP.
Due to the small size of the gap, the ramp in q needs to be very

slow in the region of 2jcj to maintain adiabaticity. To allow
longer ramps, we used a single-focus dipole trap in which the
condensate lifetime is 15–19 s. To determine the optimal ramp,
we performed simulations using measured values of the trap
lifetime, the atom number, and the spin interaction energy. The
ramp is determined from a piecewise optimization of the Lan-
dau–Zener adiabaticity parameter ðdΔE=dtÞð1=Δ2

EÞ (41–44) and
includes the effects of atom loss on c (Supporting Information).
The simulations (45, 46) show that it is possible to adiabatically
cross the phase transition in ∼35 s, starting with a condensate
initially containing 40,000 atoms; here we use an adiabatic in-
variant to determine the condition for adiabaticity (44, 47).
The experiment starts with atoms at the GS in the polar phase at

a high magnetic field, q=jcj= 140. Then, the magnetic field is
ramped through the QCP to q=jcj= 1.33 in 35 s along the trajectory

A B C

Fig. 2. Energy gap measurements. (A) Coherent oscillation data (red circles) obtained at q=jcj= 2.03. In clockwise order, the oscillation amplitude decreases as
the initial state is prepared closer to the GS. Each data point is an average of 10 measurements and the data are fitted to a sinusoidal function with a varying
frequency (solid line). (B) The time evolution of ΔS⊥ data (blue squares) at the QCP (q=jcj= 2) is fitted to a sinusoidal function (solid line). Each data point is the
noise of 45 measurements. The corresponding simulation is represented by an orange curve with the shaded region being q=jcj= 2± 0.005. (C) The energy gap
ΔE for different q=jcj values is obtained from the frequency fits of coherent oscillation data. Circles (triangles) are obtained from an average of 10 (or 3)
measurements of ρ0 coherent oscillation, and the blue square is the frequency fit of ΔS⊥ dynamics. The theoretical energy gap is represented by the purple
curve. Inset shows the region around the QCP with the shaded orange region being the energy gap for an imperfect initialization of the GS (main text). The
dashed line shows the theoretical energy gap when the initial population ρ0 is about 0.05 away from the actual GS, reflecting an oscillation amplitude of 0.05.
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represented by the green line in Fig. 3A. The measured evolution of
the population ρ0 is shown in the same graph and compared with
that predicted by the simulation. The data show excellent agree-
ment with the theoretical values for the evolving GS population
ρ0,GS (Eq. 3), which provides a strong indication of adiabaticity.
There are about 9,000 atoms remaining after the adiabatic ramp.

The theoretical value of the GS population and uncertainty is
ρ0,GS = 0.833± 0.0047, where the uncertainty is the SQL for 9,000
atoms, projected onto the ρ0 axis (∝Qz axis in Fig. 1B) (Supporting
Information). Immediately after the adiabatic ramp (t≈ 36 s), the
measured mean population and fluctuations are ρ0 = 0.830± 0.007,
which are very close to the theoretical values and further indicate
adiabiticity. Following the adiabatic ramp, the ratio q=jcj= 1.33 is
held constant for 2 s to verify that the system remains in the GS. As
shown in Fig. 3B, the mean value of ρ0 stays close to the theoretical
value ρ0,GS. In Fig. 3C, the variance Δρ20 is plotted. Although the
measurements of Δρ20 (red circles) tend above the theoretical SQL
squared (dashed line) after holding, atom loss increases fluctuations
in the spin populations (assuming uncorrelated losses) to the level
shown in the green-shaded region (Supporting Information).
For comparison, in Fig. 3 D and E we show data from non-

adiabatic ramps from q=jcj= 140→ 1.33. In Fig. 3D, a 1-s linear
ramp is used, whereas in Fig. 3E, a 28-s ramp is used. In both cases,
the spin population ρ0 does not follow the theoretical GS pop-
ulation during the ramp and the variance Δρ20 grows dramatically.
The fluctuations at the end of the 28-s ramp are compared with
those from the adiabatic ramp in Fig. 3C (blue squares), and it is
clear that the nonadiabaticity gives rise to increased fluctuations.
Adiabatically crossing the QPT in a spin-1 zero magnetiza-

tion condensate is predicted to generate massively entangled
spin states (12). Broadly speaking, this is an example of the
fundamental principle underlying adiabatic quantum comput-
ing, in which the initial, simple GS is transformed into a highly
entangled final GS by tuning the Hamiltonian adiabatically
through a QCP. This final GS of the Hamiltonian is a solution
to a computation problem (16). In our case, the final state for a
ramp to q= 0 is predicted to be the Dicke state jS=N, Sz = 0i.
In this study, we stop the adiabatic ramp at q=jcj= 1.33. The

entanglement of the GS at this q=jcj can be calculated as in ref. 12,
ξ= ðhŜ2x i+ hŜ2y iÞN=ð1+ 4hðΔŜzÞ2iN2Þ. The uncertainty in trans-
verse magnetization is hŜ2x i+ hŜ2y i≈ 1− ð2ρ0 − 1Þ2. In the ideal
case, the longitudinal magnetization is zero and conserved
hðΔŜzÞ2i→ 0, and the expected entanglement is ξ= 0.56N or roughly
5,000 atoms are entangled out of 9,000 atoms at the end of the adi-
abatic ramp. However, atom loss induces noise in the magnetization,
ΔSz ≈ 0.5%, in our experiment. This small magnetization noise re-
duces the entanglement to ξ< 1 atom.
In summary, we have explored the amplitude mode in small spin-1

condensates. The energy gap measurements show evidence of a
nonzero gap at the QCP arising from finite-size effects, and using
a carefully tailored slow ramp of the Hamiltonian parameters, we
have adiabatically crossed the QCP with no apparent excitation of
the system. We hope that this work stimulates similar investigations
in related many-body systems, and in particular, we anticipate that
the results of this study could directly inform investigations in
double-well Bose–Josephson junction systems, (pseudo)spin-1/2
interacting systems (48, 49), and the Lipkin–Meshkov–Glick (LMG)
model (43, 50), which share similar Hamiltonians.

Materials and Methods
The experiment is carried out using small condensates of 40,000 atoms in the
F = 1 hyperfine GS of 87Rb. In the energy gap experiment, atoms are confined in
a spherical optical dipole force trap with trap frequencies ∼ 2π ×160  Hz, formed
by crossing the focus of a 10.6-μmwavelength laser with an 850-nm wavelength
laser. This tight confinement ensures that the condensate is well described by the
single-mode approximation (SMA), such that the spin dynamics can be consid-
ered separately from the spatial dynamics (17–19). The spin interaction energy
c≈−7.5ð1Þ Hz and trap lifetime is ≈ 1.6ð1Þ s. The spin populations of the con-
densate are measured by releasing the trap and allowing the atoms to expand in
a Stern–Gerlach magnetic field gradient to separate the mF spin components.
The atoms are probed for 200 μs with three pairs of counter-propagating or-
thogonal laser beams, and the fluorescence signal collected by a CCD camera is
used to determine the number of atoms in each spin component.
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