
Dynamic Stabilization of a Quantum Many-Body Spin System

T.M. Hoang, C. S. Gerving, B. J. Land, M. Anquez, C. D. Hamley, and M. S. Chapman*

School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332-0430, USA
(Received 24 June 2013; published 27 August 2013)

We demonstrate dynamic stabilization of a strongly interacting quantum spin system realized in a spin-1

atomic Bose-Einstein condensate. The spinor Bose-Einstein condensate is initialized to an unstable fixed

point of the spin-nematic phase space, where subsequent free evolution gives rise to squeezing and

quantum spin mixing. To stabilize the system, periodic microwave pulses are applied that rotate the spin-

nematic many-body fluctuations and limit their growth. The stability diagram for the range of pulse

periods and phase shifts that stabilize the dynamics is measured and compares well with a stability

analysis.
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Recent advances in ultracold atomic physics provide
opportunities to investigate unstable equilibrium phe-
nomena of interacting quantum many-body systems featur-
ing well-characterized and controllable Hamiltonians [1].
By changing the dimensionality of the system, tuning the
interaction strength [2], or magnetically quenching a spin
system [3,4], it is possible to study excitations across
quantum phase transitions and apparent relaxation to non-
thermal steady states [5]. Beyond these fundamental inves-
tigations, nonequilibrium dynamics can be used to generate
squeezed states [6–10] and non-Gaussian states [11] that
are potential resources for quantum enhanced measure-
ments [12] and quantum information processing [13].

It is well known that unstable equilibria of physical
systems can be dynamically stabilized by external periodic
forcing. The inverted pendulum stabilized by vibrating the
pivot point (Kapitza’s pendulum) provides a classic example
of this nonintuitive phenomenon and was first demonstrated
over 100 years ago [14]. Dynamical stabilization has a broad
range of applications including rf ion traps, mass spec-
trometers [15], and particle synchrotrons [16]. Dynamic
stabilization of nonequilibrium many-body Bose-Einstein
condensates has been suggested by tuning the sign of the
scalar [17–20] and spin-dependent [21] interaction strength
and by time varying the trapping potential in a double-well
Bose-Einstein condensate [22–24]. Related ideas have
been employed to suppress tunneling in optical lattice sys-
tems as a means to control the superfluid-Mott insulator
phase transition [25].

In this Letter we demonstrate dynamic stabilization of
a strongly interacting quantum many-body spin system
by periodic manipulation of the phase of the states. The
experiment employs a spin-1 atomic Bose condensate
initialized to an unstable (hyperbolic) fixed point of the
phase space, where subsequent free evolution gives rise to
spin-nematic squeezing [6,26] and quantum spin mixing
[11,27,28]. To stabilize the system, periodic microwave
pulses are applied that manipulate the spin-nematic
quantum correlations and coherently limit their growth.

The range of pulse periods and phase shifts with which
the condensate can be stabilized is measured and compares
well with a linear stability analysis of the problem. The
experiment is conceptually related to spin decoupling or
refocusing techniques used in NMR [29] and bang-bang
control of noninteracting two-level quantum systems
(qubits) in quantum information processing [30]. The nov-
elty of this work is the application of these concepts to the
collective dynamics of an interacting quantum spin system.
The experiment uses a small spin-1 rubidium-87 conden-

sate satisfying the single mode approximation such that it
contains just a single domain. The dynamical evolution then
occurs only in the internal spin degrees of freedom, which
simplifies the many-body problem to a zero-dimensional
system (a microcondensate [31]) of interacting quantum
spins. This permits a description using macroscopic quan-
tum variables such as the collective spin operators [26,27],

Ŝi (i 2 x, y, z), in terms of which the many-body
Hamiltonian can be written [6]

Ĥ ¼ �Ŝ2 þ q

2
Q̂zz; (1)

where � is the spinor interaction energy integrated over the

condensate, Ŝ2 ¼ Ŝ2x þ Ŝ2y þ Ŝ2z is the total spin operator,

q / B2 is the quadratic Zeeman energy, Q̂zz ¼ ð2=3ÞN̂1 þ
ð2=3ÞN̂�1 � ð4=3ÞN̂0 is an element of the spin-1 nematic

(quadrupole) tensor, and N̂k ¼ âyk âk, (k ¼ 0, �1) is the

number operator for each of the spin projections of the
condensate. The Hamiltonian conserves the total number

of atoms N̂ ¼ N̂1 þ N̂�1 þ N̂0 and the magnetization

Ŝz ¼ N̂1 � N̂�1, and exhibits a quantum phase transition
at q ¼ �4N� for � < 0, as is the case here.
For Sz ¼ 0, the condensate has an unstable equilibrium

point at N0 ¼ N for small quadratic Zeeman energies; in
the neighborhood of this point, the linearized equations of
motion in the rotating frame are given by

_̂Sx ¼ �qQ̂yz;
_̂Qyz ¼ ð4N�þ qÞŜx; (2)
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with identical equations for (Ŝy, Q̂xz) reflecting the rota-

tional symmetry about the z axis (see the Supplemental
Material [32]). These equations describe a quantum (many-
body) inverted harmonic oscillator that is inherently
unstable. The nature of the instability is illustrated with
the aid of the mean-field spin-nematic phase space repre-
sented on a unit sphere with axes fS?; Q?; xg, where S2? ¼
S2x þ S2y, Q2

? ¼ Q2
xz þQ2

yz, and x¼2N0=N�1 (see the

Supplemental Material [32]) [6,33]. This sphere is shown
in Fig. 1 together with the mean-field dynamical orbits
of the system for q < 4Nj�j. The unstable fixed point is
located at the intersection of the two manifolds of a
separatrix that divides the space into phase-winding
and oscillatory phase orbits. The mean-field phase space
is functionally identical to the symmetric double-well
Bose-Hubbard model [34,35], and both can be described
using a classical nonrigid pendulum [36,37] where the
unstable fixed point corresponds to an inverted pendulum.

The experiment begins with a condensate containing
N ¼ 4:5� 104 atoms with trap frequencies of ! � 2��
250 Hz that is initialized in the jf ¼ 1; mf ¼ 0i hyperfine
state held in a high magnetic field (2 G). To initiate spin
dynamics, the condensate is rapidly quenched below the
quantum critical point by lowering the magnetic field to
220 mG. This is a nonevolving state in the mean-field limit;
however, the exact quantum solution [27] shows evolution
that generates Gaussian squeezed states at early times [6]
and a rich variety of non-Gaussian states at later times that
eventually destabilize the system and lead to evolution
away from the fixed point [11]. In our experiment, dynamic

stabilization is achieved by preventing the buildup of these
correlations using periodic phase shifts of the spinor wave
function that manifest as a rotation about the polar axis
of the spin-nematic phase space illustrated in Fig. 1.
The rotation is implemented using 2� Rabi pulses on the
jf¼1;mf¼0i$jf¼2;mf¼0imicrowave clock transition

that effectively shift the phase of the jf ¼ 1; mf ¼ 0i
spinor component by an amount ��0 ¼ �ð1þ �=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ �2
p

Þ, where � ¼ �=� is the detuning normalized
to the on-resonance Rabi rate [6]. Long-term stabilization
is realized by periodic repetition of the sequence shown in
Fig. 1. Although the technique is illustrated using a rotation
angle corresponding to the angles between the manifolds
of the separatrix, the condensate can be stabilized for a
range of rotation angles, as shown below.
The experimental results demonstrating dynamic stabi-

lization of the condensate are shown in Fig. 2. The time
evolution of the spin population �0 ¼ N0=N is shown for
different microwave pulse parameters chosen to produce a
stabilized condition (case A), a marginally unstable con-
dition (case B), and a more unstable condition (case C).
The unstabilized dynamics showing free evolution spin
mixing is shown for comparison. In the stabilized cases,
the pulse period is 60 ms with the first pulse at 32 ms after
the quench. The difference between cases A, B, and C is

FIG. 1 (color online). Illustration of the experimental concept.
The condensate is initialized at the pole of the spin-nematic
sphere with Heisenberg-limited uncertainties in S? and Q?
(upper left). Initial evolution produces squeezing along the
diverging manifold of the separatrix (upper right). The quantum
state is quickly rotated [gray (blue) arrow] to the converging
manifold of the separatrix using a microwave field pulse (lower
right). Subsequent evolution of the rotated state (lower left)
unsqueezes the condensate, returning it close to the original
state (upper left).

(a)

(b)

(c)

FIG. 2 (color online). Evolution of �0 measured for different
applied phase shifts (blue squares, up or down triangles), com-
pared with the unstabilized case (red circles). (a) Case A, �� ¼
�0:65�, is well stabilized, (b) case B, �� ¼ �0:724�, is at the
margin of stability, and (c) case C, �� ¼ �0:56�, is unstable.
The pulse period is 60 ms for all cases, and the pulse times are
indicated as green ticks. The region encompassed by the shading
is a second order interpolation of the standard deviation to guide
the eye.
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the size of quadrature phase shift applied per pulse. Each
measurement is repeated 10–15 times and the mean and
standard deviation are shown with the marker and error bar.

We have investigated the range of pulse periods and
quadrature phase shifts that provide stabilization of the
spin dynamics. These measurements are shown in Fig. 3,
which displays a map of the stability region versus pulse
period and quadrature phase shift (modulo �, the period-
icity of the phase space). The stability criterion applied
is ��0 > 0:85 for 3 runs at 185 ms of evolution indicated
by the dark gray (green) region corresponding to maximum
dip in unstabilized case. The locations corresponding to the
time sequences (cases A–D) are indicated on the stability
map. The data are compared with a linear stability analysis
of Eq. (2) (see the Supplemental Material [32]). The stab-
ility condition from this analysis is shown as the solid red
lines in Fig. 3 for a spinor dynamical energy c � 2N� ¼
�2�@� 7:2ð2Þ Hz (measured using coherent spin oscilla-
tions) and the measured magnetic field B ¼ 220ð10Þ mG
that determines the quadratic Zeeman effect q ¼ 2�@�
71:6� B2 Hz=G2. The data are in good overall agreement
with the theory: for shorter pulse periods, the condensate is
stabilized with a wide range of quadrature phase shifts,
while for long pulse periods, the range of quadrature phase
shifts capable of stabilizing the dynamics shrinks and
reaches an asymptotic value close to the angle between
branches of the separatrix, �� ¼ cos�1ð�1� q=cÞ. The
green region extends slightly beyond the linear stability

analysis because, for the marginally unstable cases, the
dynamics have not had enough time to ‘‘fall off’’ the top
of the sphere in 185 ms.
Compared to previous proposals for stabilizing dynam-

ics in the double-well system [22] or the spin-1 condensate
[21] based on periodic reversals of the sign of q (or �), our
method is based on periodically changing the magnitude
of q. The effect of the periodic microwave pulses can be
approximated by a time-averaged Hamiltonian with an
effective quadratic Zeeman energy, qeff ¼ qþ @��=�.
It is an interesting question, however, whether or not our
observed stability is explained solely by this effect. For
both qeff > 4Nj�j and qeff < 0 there is no longer a hyper-
bolic fixed point centered on the pure mf ¼ 0 state but

rather an elliptical fixed point, and hence, wherever these
conditions are met, the time-averaged system will be inher-
ently stable. This defines a ‘‘robust’’ stability region that is
shown as dashed red lines in Fig. 3. Although this region
agrees asymptotically with the linear stability analysis
(solid red lines) for shorter pulse periods, the robust region
is much smaller. All of the measurements presented are
outside of the robust region except for the determination of
the stability map. This demonstrates that the time-averaged
Hamiltonian is insufficient to describe the results.
We have performed two additional measurements to

demonstrate that stabilizing pulses maintain the quantum
features of the spin dynamics. In the first, we have studied
the evolution of the condensate under periodic pulses with
�� ¼ �� (case D), which should have no effect on the
dynamics. The results, shown in Fig. 4(a), verify that
the condensate undergoes normal quantum spin mixing
on the same time scale as without stabilization pulses
[11]. In the second measurement, shown in Fig. 4(b), we
turn off the stabilization pulses after 572 ms and show that
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FIG. 4 (color online). (a) Evolution of �0 for �� ¼ �� (case
D in Fig. 3). (b) Evolution of �0 for 572 ms of stabilization with
�� ¼ �0:65� (case A) followed by free evolution. The region
encompassed by the shading is a second order interpolation of
the standard deviation to guide the eye.
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FIG. 3 (color online). Map of the measured stability region for
�0 population after 185 ms of evolution. Stable regions are
shaded dark gray (green) and unstable regions are shaded light
gray (yellow) while the analytic stability solution is indicated by
a solid red line. Also shown is the ‘‘robust’’ region determined
from a time-averaged effective Hamiltonian (red dashed line).
The markers A–D indicate the pulse parameters used for the data
in the other figures.
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the system again undergoes normal spin mixing. The fact
that these two experiments demonstrate spin mixing on the
same time scale as the unstabilized case is important in that
spin mixing from the mf ¼ 0 state is sensitive to excess

noise in the initial states [11,28]. Extra noise is particularly
noticeable in the duration of the initial pause (or ‘‘break
time’’) in the dynamics of �0, where any added noise
decreases its length. Even after more than half a second
of stabilization, this pause is still 100 ms in length.

Measurement of the spin population �0 ¼ N0=N corre-
sponds to a measurement of the projection of the spin-
nematic sphere on the polar axis. Hence, this metric is
admittedly less sensitive to early dynamics of the state
initialized at the pole and does not directly reveal the
growth and control of the quantum fluctuations of the
initial state discussed in the introduction. To access this
physics more directly, we have measured the evolution of
the fluctuations of the transverse magnetization ð�S?Þ2 by
performing a rf rotation prior to measurement of the spin
populations [6]. These measurements are shown in Fig. 5
for the same stabilization pulse parameters as above. Each
measurement is repeated 30 times in order to accurately
determine the variance. These results are compared with a
fully quantum calculation based on Eq. (1) where the initial
state is a Fock state with 4:5� 104 atoms in mf ¼ 0

and the atom loss is accounted for by time varying the
spinor dynamical rate (see the Supplemental Material
[32]). For the unstabilized condensate, the fluctuations

grow exponentially by a factor of 104 within 150 ms and
eventually execute small oscillations near the maximum
value. When the condensate is stabilized, the fluctuations
of S? exhibit periodic growth and reduction during each
pulse cycle, which reflect the squeezing and unsqueezing
of the condensate. In the short time scale up to 0.4 s, the
data are in good agreement with the quantum calculation.
The stabilized data (case A) show the expected periodic
evolution of the fluctuations and also show a dramatic
reduction of the fluctuations compared with the unstabi-
lized condensate. The measurements of the fluctuations do
not fall below the standard quantum limit because the
principle axes of the squeezing ellipse (shown schemati-
cally in Fig. 1 for this case) are never oriented along the
measurement basis. For case B, the ‘‘nonideal’’ quadrature
phase rotation and intervening evolution periodically align
the minor axis of the squeezing ellipse to the S? axis such
that the fluctuations go below the standard quantum limit
indicated by the 0 dB line, while in case C the fluctuations
grow similarly to the unstabilized case.
The experiments presented above demonstrate dynami-

cal stabilization of the spin dynamics of a spin-1 conden-
sate. This is a many-body effect in that the spin dynamics
of the condensate are driven by coherent collisional inter-
actions in a Bose condensate. The experiments reveal
genuine quantum dynamics beyond the mean field as dem-
onstrated by the preservation of quantum spin mixing
shown in Fig. 4 and the control of the quantum fluctuations
ð�S?Þ2 shown in Fig. 5. We stress, however, that the
stabilization technique is applicable for states with classi-
cal noise or quantum noise. Hence, the claim for ‘‘quan-
tum’’ control of the dynamics (beyond the trivial point that
the condensate is an inherently quantum entity) rests on
the fact that the measured quantum fluctuations and char-
acteristic features of quantum spin mixing are preserved by
the method. Although the stabilization is demonstrated
with a microcondensate for which the spatial dynamics
are factored out, these methods should be applicable to
the control of the coupled spin or spatial dynamics that lead
to domain formation in larger condensates. In future inves-
tigations, it would be interesting to explore this area as well
as the application of these concepts to finite temperature
spin systems.
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