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We generate spin squeezed ground states in an atomic spin-1 Bose-Einstein condensate tuned near the
quantum-critical point separating the different spin phases of the interacting ensemble using a novel
nonadiabatic technique. In contrast to typical nonequilibrium methods for preparing atomic squeezed states
by quenching through a quantum phase transition, squeezed ground states are time stationary with a
constant quadrature squeezing angle. A squeezed ground state with 6–8 dB of squeezing and a constant
squeezing angle is demonstrated. The long-term evolution of the squeezed ground state is measured and
shows gradual decrease in the degree of squeezing over 2 s that is well modeled by a slow tuning of the
Hamiltonian due to the loss of atomic density. Interestingly, modeling the gradual decrease does not require
additional spin decoherence models despite a loss of 75% of the atoms.
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Exploiting quantum entanglement to surpass the stan-
dard quantum limit of measurement precision is an active
frontier of research motivated by practical applications,
such as improving the sensitivity of atomic clocks and atom
and optical interferometers [1–3]. An important class of
entangled states providing metrological gain are spin
squeezed states of atomic ensembles, which have a reduced
or squeezed variance of a collective spin component
compared to an uncorrelated ensemble [4,5]. Atomic spin
squeezing has been created using a variety of methods
including quantum nondemolition projective measure-
ments [6–11], atom-cavity interactions [12,13], interacting
trapped ions [14,15], and in Bose-Einstein condensates
(BECs) [16–22].
BECs are bosonic many-body systems often restricted to

occupy a small number of modes (e.g., external trapping
sites [16,17] or internal hyperfine states [18–22]) that can
be described using collective spin states. Such condensates
are governed by simple Hamiltonians that have different
quantum ground state phases depending on tunable para-
meters. Most of the experimental demonstrations of spin
squeezing in condensates have utilized nonequilibrium
evolution following a deep quench across a quantum
phase transition [21,23–25] or parametric or Floquet
excitation [26,27]; both methods start from an initially
uncorrelated state and create the entanglement dynamically
in a highly excited state.
On the other hand, there has been long-standing interest

in the nature of entanglement of the different ground state
phases of these systems [28–32]. Entangled ground states
are central to adiabatic quantum computing and under-
standing strongly correlated many-body systems, and there
are also compelling applications to quantum enhanced
metrology. To this last point, there have been experiments
using adiabatic [33] or quasiadiabatic [34,35] evolution to

create Dicke states, twin-Fock states [36], and pseudo-
spin-1=2 number squeezed states [17,37,38].
The focus of this Letter is the creation and investigation

of spin squeezed ground states that occur near the quantum-
critical point (QCP) separating the different phases of the
Hamiltonian. The properties of the squeezed ground state
are determined by the properties of the final Hamiltonian
rather than the details of the nonequilibrium evolution and
are thus easier to characterize and control. In particular,
although achieving the squeezed ground state requires
careful Hamiltonian tuning, the minimum squeezed quad-
rature angle of the ground state has a fixed orientation
independent of the final Hamiltonian parameters such as
density and magnetic field. In contrast, for squeezed states
created from nonequilibrium quench dynamics, the mini-
mum squeezing quadrature angle is both time and atom
number dependent [21]. Additionally, spin squeezed
ground states provide opportunities to more carefully
investigate long-term evolution of entanglement in spin
ensembles because the squeezing is now in a stationary
state. Toward this end, we demonstrate a long-lived
squeezed ground state with 6–8 dB of squeezing that
maintains a constant quadrature orientation. The degree
of squeezing gradually decreases over 2 s due to atom
loss. This decrease is well modeled by a slow tuning
of the Hamiltonian and does not require additional spin
decoherence models despite a loss of 75% of the atoms.
A distinguishing feature of the investigation described in

this Letter is the use of a novel, nonadiabatic double-
quench method [39] that significantly shortens the state
preparation time compared to adiabatic methods typically
used to approach the QCP. This improves both the fidelity
of the target state and limits loss of entanglement due
to uncorrelated atom losses. Our method is related to a
shortcut to adiabaticity and other optimal control
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techniques [40] that have been widely considered theoreti-
cally for fast production of highly entangled states [41–46].
Experimental demonstrations of these types of control
techniques have been limited to motional control of ultra-
cold atoms [47–49] with the exception of an experiment
demonstrating the creation of spin entanglement using
trapped ions [50].
Our experiment uses small spin-1 atomic rubidium

condensates confined in an optical trap. The condensate
spin dynamics are described by the Hamiltonian [21]

Ĥ ¼ c
2N

Ŝ2 −
q
2
Q̂z; ð1Þ

where Ŝ is the collective spin operator, and Q̂z is a
collective nematic or quadrupole operator. The coefficient
c=2N is the collisional spin interaction energy per particle,
and q ∝ B2 is the quadratic Zeeman energy per particle for
a magnetic field oriented in the z direction. For the 87Rb
F ¼ 1 hyperfine state, c < 0 and the condensate has a
ferromagnetic (FM) phase and a polar phase separated by a
QCP at q ¼ 2jcj≡ qc (see Sec. I in the Supplemental
Material [51]).
We begin by describing the basic idea behind the experi-

ment. The starting point is a spin-1 condensate prepared
in the mF ¼ 0 Zeeman state at a high magnetic field such
that q ¼ q0 ≫ qc, and the spin interaction term of the
Hamiltonian can be ignored. This is an uncorrelated ground
state with Heisenberg uncertainty for the complimentary
observables ΔSxΔQyz ¼ N, where bSx is the collective spin
operator in the x direction, and Q̂yz is the collective nematic
operator between the y and z directions. Throughout the text,
operators are indicated by carets, while the corresponding
symbol without the caret indicates their expectation value.

The phase space of the system can be visualized on a Bloch
sphere of fSx;Qyz; Qzg (see Fig. 1) where the ground state is
located at the Qz ¼ 1 pole with symmetric uncertainties in
Sx and Qyz. In earlier demonstrations of spin-nematic
squeezing [19,21], the squeezing was generated by non-
equilibrium evolution from an unstable fixed point follow-
ing a deep quench across the QCP to the FM phase as shown
in Fig. 1(i). In this Letter, we are interested in creating
squeezing in the polar phase in the neighborhood of theQCP
and, in particular, creating squeezing in the ground state of
the system with q≳ qc. We again begin with a sudden
quench from q0, but now to a final field above the QCP,
qi ≳ qc. At this field, the ground state remains polar in
character, but the spin interactions are no longer negligible
and distort the semiclassical orbits of the system into
ellipses. Subsequent evolution of the initially symmetric
uncertainties gives rise to periodic squeezing [60] and
unsqueezing with a frequencyωi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

qiðqi − qcÞ
p

as shown
in Figs. 1(b)–1(f) from the energy gap [26]. Of course, this is
an excited state of the system with dynamically evolving
observables, in this case the uncertainties ΔSx and ΔQyz.
Although this state is not a ground state of the Hamiltonian
ĤðqiÞ, it is the ground state of another Hamiltonian ĤðqfÞ
whereqi > qf > qc. To endwith the condensate in a ground
state, we perform a second quench with a timing and final
field value chosen to match the evolving statewith the shape
of the ground state of the final Hamiltonian. This second
quench results in the system in the ground state of ĤðqfÞ as
shown in Figs. 1(g) and 1(h).
The ground state of ĤðqfÞ exhibits squeezing in the

variance of Qyz by an amount [39]

ξ2Qyz
¼ ΔQ2

yz=N ¼ 1=η; ð2Þ

(a) (b) (c) (d) (e) (f)

(g) (h)(i)

FIG. 1. The spin-1 states in the Ŝz ¼ 0 subspace and their evolution can be visualized on a fSx; Qyz; Qzg Bloch sphere. (a) The initial
state is an uncorrelated ground state at q ≫ qc with symmetric uncertainties in Sx andQyz. (b)–(f) Following a sudden quench to qi ≳ qc
at t ¼ 0, the ground state remains polar, but the fluctuations evolve periodically along elliptical orbits with a frequency ωi ¼ 2π=T. (g),
(h) A second quench at T=4 to a suitably chosen qf will deexcite the condensate into a stationary squeezed ground state. (i) Standard
nonequilibrium method of generating spin-1 squeezing following a sudden deep quench across the QCP to the FM phase [19,21].
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where 1=η ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − qc=qf
p

, and antisqueezing by an
amount η in the complementary observable Sx. In order
to end in the ground state, the second quench needs to occur
at a time T=4 ¼ π=ð2ωiÞ, and qf needs to satisfy the
relation ðqi − qcÞ=qi ¼ 1=η. Of course, it is also possible to
adiabatically ramp the Hamiltonian directly from q0 → qf,
but the double-quench shortcut method is at least

ffiffiffi

η
p

faster
than the shortest adiabatic ramp time Tadiab ≥ 2πη=qf (see
Ref. [39] for details).
We now turn to the experimental measurements. We first

investigate the single quench nonequilibrium periodic
squeezing following Figs. 1(b)–1(f). A condensate of
50 000 atoms is prepared in the mF ¼ 0 state in an optical
dipole cross trap at a high field, q0 ¼ 5qc. Following a
sudden quench to qi, the condensate is allowed to freely
evolve. The mean spin populations do not significantly
change as the condensate is still in the polar phase;
however, the spin fluctuations do evolve. In Fig. 2(a),
measurements of the time evolution of ΔQyz are shown that
exhibit periodic squeezing and unsqueezing; measurements
of ΔSx show complimentary behavior of periodic anti-
squeezing (see Sec. III in [51]). In Fig. 2(b), tomo-
graphic measurements of the fluctuations at the point of
maximum Qyz squeezing (t ¼ T=4) are shown. Each data
point corresponds to a measurement at a different quad-
rature phase θ ¼ θs=2, where θs is the relative phase
between mF ¼ 0 and mF ¼ �1 spin components:

ξ2θ ¼ ΔðSx cos θ þQyz sin θÞ2=N: ð3Þ

The data show up to −6 dB of squeezing and symmetric
antisqueezing. The data are compared with simulations that
show good qualitative agreement; however, it is necessary
to scale the simulations by ξ2 ¼ ðξ2simÞ0.7 to quantitatively

match the observed squeezing; a possible explanation is
that normally negligible effects such as magnetic
anisotropy [61] or dipolar interactions [62] become sig-
nificant near the critical point where the energy scale goes
to zero. In the figures throughout, the simulations are scaled
to account for this discrepancy.
Also shown in Fig. 2 are data taken following the double-

quench sequence q0 → qi → qf designed to achieve the
squeezed ground state of ĤðqfÞ. In Fig. 2(a), the data show
that following the second quench to qf, the time evolution of
ΔQyz remains constant at the level of the maximum
squeezing previously observed, as expected for the ground
state. The data are compared with a simulation result
including a �0.1 Hz uncertainty in c (see Sec. II in [51]).
The precise values of T and qf are determined from the
single quench data. Tomographic measurements of the
fluctuations of the ground state shown in Fig. 2(b) taken
at a much later time (t ∼ 3T=4) are indistinguishable from
measurements made of the periodic squeezing at (t ¼ T=4),
as expected. Furthermore, in addition to a constant squeez-
ing amplitude, themaximum squeezing angle (theminimum
quadrature angle) θs;min ¼ minfξ2θjθsg ¼ −π remains con-
stant following the second quench. This is in stark contrast to
the deep quench method [Fig. 1(i)] for which θs;min is a
function of c, q and evolves dynamically (see Sec. I in [51]).
The experimental data are corrected for the photon shot
noise and the background imaging noise and the detection
limit of the squeezing is −7 dB (see Sec. II in [51]). From
the measurement of −6 dB of squeezing, it is possible
to determine the entanglement breadth of the spin
ensemble [22,35,63]. From this, we can conclude that a
nonseparable (entangled) subset of 600 particles is detected
in the squeezed ground state (see Sec. III in [51]). For
comparison, we have also used an adiabatic rampmethod to

(a) (b)

FIG. 2. Time-stationary squeezing and periodic squeezing. (a) Measurement of time-stationary squeezing in the ΔQyz observable
following the double-quench sequence q0 → qi → qf designed to create a squeezed ground state at qf (blue triangles). Quench 1 is
defined as qi ¼ 1.16qc and qf ¼ 1.04qc. These data are compared to a single quench q0 → qi (red circles), which exhibit periodic
squeezing and unsqueezing in ΔQyz. Simulation results with c ¼ −8.2� 0.1 Hz (blue shaded area) are compared with the data. All
simulations are scaled ξ2 ¼ ðξ2simÞ0.7 to match the observed squeezing. (b) Tomographic measurements of the fluctuations at t ¼ T=4
(red circles) and at a much later time (t ∼ 3T=4) after the second quench (blue triangles). The error bars indicate the standard deviation of
measured variance determined from 100 repeated measurements per data point.
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create the squeezed ground state (see Sec. III in [51]). It is
clear that the double-quench method is superior, offering
≥ ffiffiffi

η
p

faster preparation and higher squeezing by minimiz-
ing atomic losses.
The degree of squeezing in the ground state increases as

qf approaches qc according to Eq. (2) because the semi-
classical orbits near the pole become more elliptical
(Fig. 1). In Fig. 3, noise measurements are made for three
different final qf values to show this dependency. We
measure the antisqueezed quadrature ξ2Sx instead of the
squeezing in ΔQyz to avoid limitations due to the detection
noise limit. The sensitivity of the final state on the
uncertainty in c (and hence, qc) increases at higher
antisqueezing amplitudes as shown by the shaded enve-
lopes on the simulation curves. Tomographic measure-
ments shown in Sec. III in [51] confirm that the maximum
squeezing angle θs ¼ −π is independent of qf.
Following the second quench, any residual oscillation of

the measured fluctuations A ¼ ðmaxðξ2SxÞ −minðξ2SxÞÞ=2 is
an indication of imperfect transfer into the ground state.
Using a simple harmonic oscillator model [39], and
defining F ¼ jhΨðtÞjΩij2 as the fidelity of the targeted
ground state jΩi of ĤðqfÞ, the fidelity can be determined
from the oscillation amplitude through

F ≈ 1 − ðA=2ηÞ2: ð4Þ

Using this result, we determine that F > 98% for squeezed
ground states as shown in the Fig. 3 inset. For quenches to a
qf that approach closer to the critical point, the same small
uncertainty in c will lead to a lower fidelity of the final
state, as shown in the data.
In Fig. 4, the long-term evolution of the squeezed ground

state is measured. The ground state maintains squeezing for
over 2 s, and spin-noise tomography shows that the
minimum squeezing quadrature angle remains fixed at
θs;min ¼ −π throughout the entire evolution (see Sec. III
in [51]). Interestingly, the gradual decrease in the degree of
squeezing is well modeled by a slow tuning of the
Hamiltonian due to the loss of atomic density and does
not require additional spin decoherence models. Within the
Thomas-Fermi model, atom loss due to the finite lifetime of
the condensate leads to a decrease in peak density n0, with
n0 ∝ N2=5. This in turn affects the spinor dynamical rate
and the QCP because qc ∝ c ∝ n0 [64] (see Sec. II in [51]).
Hence, as the condensate decays, qf=qc will increase,
leading to a decrease in the squeezing assuming that the
state follows adiabatically. The data in Fig. 4 show this
trend and compare well with Eq. (2) that include density
changes due to atom loss with an exponential time constant
τ ¼ 1.5 s. The inset shows directly the time evolution of the
variances ΔS2x and ΔQ2

yz together with the exponentially
decaying total atom number, N.

FIG. 3. Measurement of ξ2Sx versus t following the double-
quench sequence for different qf . The solid lines are simulation
results, and the shaded regions reflect the sensitivity of the
simulations to the uncertainty in c ¼ −8.5� 0.1 Hz. Quench 1 is
the same quench as in Fig. 2. Quenches 2 (purple diamonds) and
3 (green squares) stand for qi ¼ 1.47qc, qf ¼ 1.12qc and
qi ¼ 1.06qc, qf ¼ 1.003qc accordingly. For the quench 3 data,
the uncertainty of c may lead to crossing over to the FM phase.
Inset: the fidelity of the ground state F determined from the
residual oscillation of ξ2Sx after the second quench. The maximum
fidelity that can be detected (dashed line) is limited by the
detection noise.

4

4

At
om

s

t

t (ms)

FIG. 4. Measurement of the long-term evolution of ξ2Sx and ξ
2
Qyz

in the squeezed ground state. The solid lines are analytical curves
based on Eq. (2) with an evolving critical point qcðtÞ ¼ 2jcðtÞj
due to atom loss cðtÞ ¼ cð0Þ expð−2t=5τÞ [64]. The blue and red
dashed lines are the maximum and minimum variance of the
deep-quench squeezed state [21]. The inset shows ΔS2x (red
circles), ΔQ2

yz (blue squares), and N (green triangles) versus t.
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In summary, we have realized spin squeezed ground
states in a spin-1 BEC using a double-quench method with
a final Hamiltonian tuned close to the quantum-critical
point. The squeezing is maintained for over 2 s at a constant
orientation angle. The double-quench method can be
easily adapted to (pseudo) spin-1=2 systems such as
bosonic Josephson junctions [65], which are a special case
of the Lipkin-Meshkov-Glick model [66]. It can also be
employed for antiferromagnetic spin-1 condensates (c > 0)
[61,67–70] that have a QCP at q ¼ 0 but lack a continuous
quantum phase transition.
More generally, we hope that this Letter will

have applications to investigations of many-body entangled
ground states in the vicinity of quantum-critical points [71].
Those quantum-critical states fluctuate at all length scales
and show long-range order, for example, in condensed
matter systems [72,73]. We hope this Letter will also
facilitate the study of eigenstate entanglement in collective
systems [74] and long-term evolution of squeezing state and
entanglement.
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Note added.—Recently, a related work was published [75].
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