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SUMMARY

The subject of this thesis is an experimental investigation of the Kibble-Zurek

mechanism in an atomic spin-1 Bose-Einstein condensate. The Kibble-Zurek mech-

anism (KZM) primarily characterizes scaling in the formation of topological defects

when a system crosses a continuous phase transition. The KZM was first used to study

the evolution of the early universe, describing the topology of cosmic domains and

strings as the symmetry breaking phase transitions acted on the vacuum fields dur-

ing the initial cooling. A ferromagnetic spin-1 87Rb Bose-Einstein condensate (BEC)

exhibits a second-order gapless quantum phase transition due to a competition be-

tween the magnetic and collisional spin interaction energies. Unlike the situation

in extended systems where the KZM is illustrated by topological defects, we focus

our study on the temporal evolution of the spin populations and observe how the

scaling of the spin dynamics depend on how fast the system is driven through the

critical point. In our case, the excitations are manifest in the temporal evolution of

the spin populations illustrating a Kibble-Zurek type scaling, where the dynamics of

slow quenches through the critical point are predicted to exhibit universal scaling as

a function of quench speed. The KZM has been studied theoretically and experimen-

tally in a large variety of systems. There has also been a tremendous interest in the

KZM in the cold atoms community in recent years. It has been observed not only

in ion chains and in atomic gases in optical lattices, but also in Bose gases through

the formation of vortices or solitons. The KZM in the context of crossing the quan-

tum phase transition in a ferromagnetic BEC has been theoretically studied, but this

thesis is the first experimental investigation of this phenomenon.
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CHAPTER I

INTRODUCTION

1.1 Kibble-Zurek Mechanism

The Kibble-Zurek mechanism (KZM) seeks to describe the dynamics of crossing con-

tinuous phase transitions at a finite rate. It was initially formulated in 1976 by Kibble

[1] to determine the topology of defects created in the cooling of the early universe.

Kibble argued that symmetry breaking phase transitions could have caused topolog-

ical defects such as domain walls, cosmic strings, and monopoles. These defects may

have influenced the structure of the universe we can observe today.

A few years later, Zurek suggested applying this concept of symmetry breaking

to the scaling of domains in condensed matter systems [2]. His proposal was to test

Kibble’s idea in a superfluid helium experiment using pressure quenches to cross the

critical point of a phase transition. The key prediction yields a scaling of defect size

with respect to the quench speed. Close to the critical point in a continuous phase

transition, the relaxation time diverges, usually as a power law involving critical

exponents [3]. This relaxation time sets the time scale at which the system can react

to an external change. Far from the critical point, the system can react quickly to

change, and the evolution following the change is adiabatic. However, as the system

is driven at a finite speed though the critical point, there comes a moment when the

evolution can no longer be adiabatic, and the system enters an impulse stage, where

the dynamics are “frozen.” Once the critical point is passed, the system can recover

its adiabatic evolution when the relaxation time is small enough. This argument

is called the adiabatic-impulse approximation. The KZM predicts the scaling of

the domain size and freeze-out time as a function of the quench speed using power
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laws involving equilibrium critical exponents. Though initially applied to condensed

matter systems, these predictions have since been extensively studied and tested in

other systems. More recently, cold atoms have also been used as a test bed for the

KZM. Initially formulated for classical continuous phase transitions, the KZM has

also been tested in quantum phase transitions, which take place at absolute zero.

1.2 Spinor Bose-Einstein Condensates

Predicted in the 1920s, the concept of Bose-Einstein condensation relies on the wave-

like properties of matter that become apparent at very low temperatures. When these

quantum effects become comparable to the spacing between bosons, a phase transi-

tion takes place, as a macroscopic number of particles will simultaneously occupy the

ground state [4]. Bose-Einstein condensation was initially attempted using atomic

hydrogen in the 1970’s and 1980’s [5, 6]. Following the advent of laser cooling [7, 8],

Bose-Einstein condensates (BECs) were first observed in dilute alkali gases [9–11].

BECs have started to be explored as a fertile testing ground for the wavelike prop-

erties of matter. A BEC can be described by a classical macroscopic matter wave

with a coherent phase in the mean field limit [12, 13], not unlike a laser that can be

described as a coherent optical field. The properties of coherence were among the

first tested, including the interference of two expanding condensates [12] and atom

lasers [14–16]. Tunneling BECs between adjacent potential wells [17, 18] was another

demonstration of such properties. Most of these early experiments were performed in

magnetic traps, which have the limitation of freezing the internal spin degrees of free-

dom since they can only trap one of the hyperfine levels of the ground state manifold.

The use of optical traps, which can trap all the hyperfine states identically, opened

the door for the study of spin exchanges between particles. The first so-called spinor

BEC was achieved by transferring a BEC from a magnetic to an optical trap [19].

A few years later, our group successfully created a spinor BEC by all-optical means
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[20].

The dynamics of such systems have yielded hundreds of theoretical and experi-

mental studies. Some of the early studies involved the formation and evolution of spin

domains in large condensates, as well as the miscibility of the spin components [21–

23]. Spontaneous symmetry breaking was observed in large quasi-2D BECs [24, 25],

resulting in transverse magnetization and helical spin textures. Other spatial features

such as skyrmions [26] and spin waves [27] were also observed. An extensive overview

of the work performed in spinor BECs can be found in Refs. [28, 29].

1.2.1 Previous Work in Our Group

Our group has been part of this endeavor for many years, and this thesis is built on

strong foundations laid down by previous researchers in our lab. A brief summary of

the work that led to the current project is presented here.

1.2.1.1 Coherent Spin Mixing

Following the creation of the first all optical BEC [20], our group studied the spin pop-

ulation dynamics of spin-1 87Rb BECs. It was determined by observing the spin pop-

ulations evolve that such a BEC showed ferromagnetic ordering. This confirmed the

prediction that the spinor dynamical rate would be negative, unlike anti-ferromagnetic

condensates where it is positive.

The next study showed the validity of the mean field framework to describe our

system. The coherent evolution due to spin mixing was measured and followed the

dynamics predicted by the mean field at both high and low magnetic fields [27]. The

system was also initialized in a metastable state at low field, where the system is not

predicted to evolve in the mean field. However, quantum fluctuations drive it out of

equilibrium, leading to spin mixing [30].
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1.2.1.2 Sub-Poissonian Fluctuations

Our group observed sub-Poissonian fluctuations in the magnetization of a spinor 87Rb

BEC, or relative number squeezing [31]. The fluctuations in the magnetization showed

a reduction of up to 10 dB below the classical shot noise limit. This achievement was

made possible by significantly improving the imaging capabilities in our lab. Low-

noise imaging techniques were developed, as well as a robust method for calibrating

the counting of atoms [32].

1.2.1.3 Spin-Nematic Squeezing

Our system has also been shown to produce spin-nematic squeezing [33]. In sim-

ple terms, squeezing can take place when considering two quantities that initially

share the same uncertainty when describing a system. When the uncertainty in one

quantity is reduced at the expense of the other, the uncertainty is said to have been

squeezed. Squeezing had previously been demonstrated in quadrature squeezing of

the electromagnetic field [34]. In a BEC, pseudo spin-1/2 systems have shown squeez-

ing [35, 36]. The interest in squeezing is motivated by increasing the measurement

precision beyond the standard quantum limit (SQL), which has been achieved in

atomic magnetometers [37, 38] and atomic clocks [39, 40].

In our system the squeezing takes place between quadratures of a spin moment

and a quadrupole moment. When the system is initialized in a metastable state at

a hyperbolic fixed point, the uncertainty due to the Heisenberg uncertainty limit is

initially equally shared by both quadratures. Evolution causes the circular uncertainty

in the phase space to squeeze into an ellipse, thus bringing the uncertainty below the

SQL along one axis. The description of our spin-1 system using the underlying SU(3)

symmetry, initially developed for the spin-nematic squeezing work [41], will be used

at times in this thesis. In addition to allowing the visualization of the states in a

convenient phase space, it also provides the tools to create an initial distribution
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in the mean field description that mimics the quantum fluctuations that drive the

dynamics from metastable states. This bridge between the two frameworks is a very

valuable resource.

1.2.1.4 Dynamics of a Quantum Inverted Pendulum

In the mean field picture, the equations of motion describing the evolution of our

system are those of a non-rigid pendulum, a counter-intuitive model where a larger

momentum reduces the length of the pendulum [42]. Nevertheless, when initialized

in an inverted position, the dynamics of such a model correspond to the evolution of

the spin populations in our system when all the atoms are initialized in the mF = 0

state. This is the ground state at high magnetic fields, but becomes a metastable

state at fields lower than the critical point. When the system is initialized in such a

state, squeezing takes place, followed by spin mixing. The long term evolution of the

system was studied, and the highly non-Gaussian distribution of the spin population

predicted by theory and simulations were observed [43].

1.2.1.5 Dynamical Stabilization

The previous studies analyzed the evolution out of an unstable equilibrium. The sub-

sequent work from our group demonstrated the dynamic stabilization of the afore-

mentioned inverted pendulum [44]. The concept of applying an external periodic

force to stabilize an inverted pendulum is over 100 years old, as shown by “Kapitza’s

pendulum,” where stabilization is achieved by vertically vibrating the pivot point.

In our system, the driving was done by periodically applying microwave pulses,

which shifts the spinor phase of the BEC. Each pulse rotates the state in the phase

space such that it will “unsqueeze” and evolve towards its initial state. This stabi-

lization of a quantum many-body system is a successful demonstration of a control

technique that can be applied to other quantum systems.
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1.3 Thesis Organization

Following in the footsteps of the graduate students whose work was presented above,

a natural step forward was to replace the traditional fast quench through the critical

point by a series of slower ramps to bring the system through the critical point at

different rates. The measurements of the scaling of the freeze-out time with respect

to quench speed is the main focus of this work.

This thesis is organized into eight chapters. This paragraph concludes the intro-

ductory chapter. Chapter 2 gives a review of phase transitions and introduces the

Kibble-Zurek mechanism and its underlying theory, as well as an overview of the

theoretical and experimental work in the field. After a short introduction to Bose-

Einstein condensation, the theory of spinor BECs is covered in Chapter 3, where

the Hamiltonian of the system is derived in the single mode approximation, starting

with a quantum approach and followed by the mean field approach. The details of

our system’s quantum phase transition is presented, and phase spaces in which the

system evolves are illustrated. Chapter 4 describes the experimental apparatus used

to gather the data for this thesis. The data-taking methods are presented in Chapter

5, while the results are included in Chapter 6. Chapter 7 compares the results from

the previous chapter with dynamical simulations, shows computations without atom

loss, and investigates a broader range of parameters inaccessible with our experiment.

Finally, we will offer some concluding remarks and present ideas for future work in

Chapter 8.
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CHAPTER II

KIBBLE-ZUREK MECHANISM THEORY

In this chapter we will survey the theory behind the Kibble-Zurek mechanism (KZM).

We will first review the concept of a phase transition, focusing initially on classical

transitions, and then on quantum phase transitions (QPTs). We will also discuss the

QPT in our system, a ferromagnetic spin-1 BEC. After this introduction, the KZM

will be presented, from its inception in the field of cosmology to ultracold atoms and

other fields, reviewing both the theoretical and experimental work so far.

2.1 Review of Phase Transitions

Phase transitions range from first-order classical phase transitions to continuous quan-

tum phase transitions. A brief review of the concepts and classifications of phase

transitions is presented.

2.1.1 Classical Phase Transitions

The simplest example of phase transitions is the change in the state of matter, such

as a substance melting from a solid to a liquid with heat transfer. In this case,

one thermodynamic phase of the system changes to another when a thermodynamic

variable, temperature in this case, reaches a certain value [45]. Other parameters

can be changed to drive a phase transition, but for classical phase transitions, the

transitions happen at a finite temperature, and the phase transition occurs at a

critical temperature Tc. In a broader sense, phase transitions can be described as

phenomena showing analytic discontinuities, or singularities, in the thermodynamics

of the considered system [46].

There are several ways to classify phase transitions, with the original one being
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the Ehrenfest classification, based on the free energy and its derivatives with respect

to thermodynamical parameters [47]. The transitions are ranked by the lowest order

of the discontinuous derivative of the free energy at the critical point. First-order

transitions show a discontinuity in the first derivative of the free energy, and one

of their characteristics is that they involve latent heat. The latent heat during a

thermodynamic phase transition is the amount of energy that is exchanged as the

system changes phase. This heat exchange takes place at constant temperature. A

consequence is that during a first-order phase transition, the two phases coexist at

the critical temperature. In fact, the latent heat is related to the change in entropy

of the system, which can be expressed as a first derivative of the free energy with

respect to temperature, and shows a discontinuity at the critical temperature. A

typical example is water freezing. The density changes during the phase transition,

and since volume is a first derivative of the free energy
(
V =

(
∂G
∂P

)
T,N

, where G is

the Gibbs free energy [46]
)

, there is a discontinuity in the free energy.

When the first derivatives of the free energy with respect to thermodynamical

parameters are continuous, one must look at higher order derivatives. Logically, the

phase transitions where the second derivative of the energy is discontinuous at the

critical point are called second-order phase transitions. In this case, no latent heat is

involved, and the entropy and volume are continuous. However, second derivatives of

the free energy, such as the compressibility or heat capacity, can show a discontinuity.

An example is that of the order-disorder phase transition in β-brass, a binary alloy

where copper and zinc atoms are in equal number, and whose ordering changes at the

critical temperature Tc [48]. This concept of order and disorder is important and will

be addressed in detail later. Another example is the ferromagnetic transition in met-

als. It involves a discontinuity in the metallic susceptibility, which is the second deriva-

tive of the free energy with respect to the magnetic field:
(
χT =

(
∂M
∂H

)
T

= −
(
∂2F
∂H2

)
T

)
,

where M , H, and F are the magnetization, magnetic field, and magnetic free energy,
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respectively [46]. Transitions involving superfluidity and superconductivity fall in

this category, and include Bose-Einstein condensation. Less intuitively perhaps, the

early universe also saw phase transitions take place as it was cooling down after the

big bang. For example, it is believed that a phase transition could have led to the

breaking of the electroweak gauge symmetry, which resulted in the distinction of the

weak and electromagnetic forces [49, 50].

The classification goes on for phase transitions where the third, fourth,... order

is the lowest order of the derivative of the free energy that is is discontinuous at the

critical point. Although rarer, an example of a third order phase transition can be

found in Chern insulators [51], which are realized in a 2D fermion lattice.

The Ehrenfest classification has been replaced by a simpler classification that

solely deals with latent heat. The phase transitions are split into two categories. The

first involve latent heat, and are still referred to as first-order transitions, and all of

the other transitions are labeled as continuous phase transitions [47]. Continuous

phase transitions can be seen as a cooperative phenomenon, with the propagation

of a long-range order [46]. In fact, continuous phase transitions can exhibit features

such as a divergent susceptibility, diverging correlation lengths, and power law decay

of correlations near the critical point.

2.1.2 Quantum Phase Transitions

A defining feature of the classical phase transitions (CPTs) described above are that

they take place at a finite, non-zero temperature, and the transition is driven by

thermal fluctuations. Based on this definition, one may wonder if a phase transition

can occur at absolute zero. In this case, there would be no critical temperature and

no thermal fluctuations. A type of phase transition can in fact take place at absolute

zero, and is driven by quantum fluctuations. This absolute zero condition is what

defines quantum phase transitions (QPT), where a small variation in a parameter of
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the Hamiltonian causes a fundamental change in the ground state [3].

A clarification must be made about the “quantum” part of the QPT denomina-

tion. Some phase transitions are classified as CPTs, despite the fact that they rely

heavily on quantum-mechanical effects, such as superconductivity or superfluidity.

Bose-Einstein condensation is a quantum phenomenon by its very nature, but these

transitions take place at a finite (non-zero) temperature and feature a critical tem-

perature, and are therefore considered classical phase transitions. Another way to

differentiate QPTs from CPTs has to do with the fluctuations close to the critical

point. While quantum fluctuations are important in the CPTs mentioned above, it

is only at the microscopic scale that they play a role, unlike in QPTs where they

dictate the critical behavior even at long scales. Quantum mechanics may be neces-

sary, through an order parameter for example, but critical fluctuations can still be

captured using classical statistical mechanics [45].

While first-order QPTs exist, [52–55], the large majority are second order (contin-

uous), and we will only consider them from this point on. An example of a well-studied

continuous QPT is the 1D quantum Ising chain [56]. A Mott insulator to superfluid

transition driven in an optical lattice is an example of a QPT that can be studied

experimentally [57–60]. In some condensed matter systems, the tuning of the carrier

doping shift in an insulator to a d-wave superconductor can lead to a QPT [61]. Our

system, a ferromagnetic spin-1 BEC, also exhibits a QPT, whose existence is the cor-

nerstone of this thesis. In our case, the transition occurs between a symmetric polar

phase and a disordered ferromagnetic phase [62–64]. More details about this QPT

will be presented in the following chapter. Additional examples can be found in the

references cited above, as well as in review articles [61, 65].

A feature of continuous phase transitions, both classical and quantum, is apparent

in the vicinity of the critical point. When the system is close to the critical point,

spatial fluctuations (density for example) are long-range. The length scale ξ of these
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fluctuations, also known as the correlation length, behaves like

ξ ∝ |ε|−ν , (2.1)

where ε represents a dimensionless “distance” from the critical point, and ν is a

critical exponent [3]. Similarly, the time scale for the fluctuations τ , also called the

relaxation or equilibration time, diverges as

τ ∝ |ε|−νz. (2.2)

Since ν is associated with the length scale, it is simply called the correlation length

critical exponent. z, another critical exponent, characterizes the reaction time of the

system, so it is referred to as the dynamical critical exponent.

In the case of a QPT, one can also consider the energy gap ∆ separating the

ground state and the first available excited state. This energy gap vanishes at the

critical point (ε = 0) as

∆ ∝ |ε|νz, (2.3)

which is not unexpected in light of Eq. (2.2). We will see that the inverse relationship

between the time and energy scales play a central role in the KZM.

A key concept about critical exponents is that they can categorize systems that

may be qualitatively different, with dynamics differing by several orders of magnitude,

but their behavior near the critical point can be described simply by the same set

of critical exponents. This is why these exponents are often called universal critical

exponents, as they reveal similar behavior in the vicinity of the critical points, thus

grouping systems into universality classes. This common behavior at the critical point

is linked to the divergence of the correlation length described above. Indeed, the long

range of the correlations and fluctuations reduces the role of the microscopic details

of the Hamiltonian around the critical point. The behavior of the system can be

reduced to a small number of parameters including the critical exponents.
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A system undergoing a phase transition can usually be described by an order pa-

rameter. This quantity (which can be complex) is zero on one side of the transition

and non-zero on the other. The phase where the order parameter is zero is termed

the disordered phase, while the other is an ordered state. A typical example of an

order parameter is the magnetization in a ferromagnet, which is non-zero under the

critical temperature, but vanishes above it [46]. The concept of order and disorder

in different phases is linked to the symmetries characterizing each phase. In fact,

it is the symmetries of the order parameter, as well as the space dimensionality of

the system, that determine the universality classes mentioned earlier. Phase tran-

sitions often involve the breaking of such a symmetry. A common example is the

Curie transition in ferromagnets where the symmetry of the disordered state at high

temperatures is broken as the spins align when the temperature is lowered under the

Curie temperature. Spontaneous symmetry breaking in a continuous phase transition

gives rise to massless Nambu-Goldstone modes [45].

2.2 Kibble-Zurek Mechanism

We now turn to the Kibble-Zurek mechanism, which deals with the dynamics of a

system as it undergoes a phase transition. The Kibble-Zurek mechanism as originally

formulated characterizes the formation of topological defects when a system undergoes

a continuous phase transition at a finite rate. This concept was first introduced by

Kibble in his study on topology of cosmic domains and strings in the early universe

[1, 66]. In his seminal 1976 publication, “Topology of Cosmic Domains and Strings”

[1], Kibble argues that right after the big bang, the universe started as a hot disordered

state with symmetries that were broken as the universe cooled down and underwent

phase transitions at several critical temperatures. He provides a framework suggesting

that structures may have arisen during the initial cooling, such as monopoles, strings,

and domain walls. The motivation of the study, rather than suggesting the remnants
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of these defects should be observable, is more turned towards how the early topology

may have influenced the early evolution and distribution of astrophysical objects

studied today.

Kibble’s idea was extended by Zurek [2, 67, 68], who suggested applying Kibble’s

symmetry breaking ideas to phase transitions in condensed matter systems, such as

superfluids and superconductors. His initial publication on the subject, “Cosmological

Experiments in Superfluid Helium?” [2], focused on the possibility of testing the

concept in the laboratory. The example he chose for the analogy with the cosmic

defects was 4He. The framework seeks to predict the size of domains formed compared

to the diameter of an annulus when the pressure is quenched. He also introduces the

concept of a “freeze-out” time, which is one of the key concepts studied in this thesis.

As will be developed in more detail later in the chapter, the intuitive argument is

that the reaction time of a system to react to changes in the Hamiltonian increases

close to the critical point of the phase transition. The resulting so-called “slowing

down” therefore prevents adiabatic evolution through the critical point. As a result,

the adiabatic evolution of the system is paused during the aforementioned freeze-out

time. Zurek was particularly interested in the quenches through the critical point

with a finite speed, and the scaling of the freeze-time and other quantities with that

quench speed. One of the motivations behind Zurek’s approach is that this concept

is testable in the laboratory. These key concepts from both authors led to what is

now called the Kibble-Zurek mechanism (KZM).

This seminal work was followed by many theoretical studies applying the KZM

to a variety of systems. There are hundreds of publications dealing with the subject,

exploring through cosmology, condensed matter, cold atoms and more [56, 69–83],

and there is no prospect of an end.

In parallel with these theoretical approaches, the KZM has been studied experi-

mentally and verified in a large variety of systems, such as liquid crystals [84, 85], 4He
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[86] and 3He [87, 88], optical Kerr media [89], annealed glass [90], Josephson junc-

tions [91], and superconducting films [92]. There has also been a significant interest

in the KZM within the cold atom community. In recent years, it has been studied

and observed in ion chains [93–96], in atomic gases in optical lattices [59], and in

Bose-Einstein condensates (BECs), through the formation of spatial domains during

condensation [97–99], creation of solitons [100], vortices [101, 102] and supercurrents

[103]. Only a handful of experiments have explored the subject using QPTs, namely

the Mott insulator to superfluid transition [104]. A group has recently released a

preprint [105], claiming that unlike previous experiments [93–96], they successfully

managed to cool an ion chain to its ground state and observe the KZM in a QPT.

2.2.1 KZM in a Ferromagnetic Spin-1 BEC

We now turn to the system used in the work for this thesis. A ferromagnetic spin-

1 BEC exhibits a QPT between a symmetric polar phase and a broken-symmetry

ferromagnetic phase [106] due to the competition between magnetic and collisional

spin interaction energies. There have been several theoretical studies predicting KZM

power law scaling of the spin excitations for slow quenches through the critical point

[62, 63, 107–110].

A distinguishing feature of our KZM investigation is that the excitations are not

manifest as spatial defects. Our small spin condensates are in the single mode ap-

proximation where all the atoms share the same spatial wave function, so unlike in

spatially extended systems where the KZM is manifested in topological defects, the

excitations appear in the temporal evolution of the spin populations. In this thesis, we

investigate slow quenches through the critical point, as opposed to sudden quenches

which have been extensively examined [24, 33, 43, 44].

As mentioned in the previous section, the existence of a QPT universally results

in a diverging correlation length. However, this is irrelevant for this experiment since
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the system is in the single mode approximation, where condensates are smaller than

the spin healing length. This length scale determines the smallest size of a spin

domain. However, a relevant universal property of QPTs is a vanishing energy scale

at the critical point, which in this case is the energy gap ∆ between the ground state

and first excited state. In general, the energy gap near the critical point is given

by ∆ ∼ |g − gc|zν , where g is the tuning parameter, gc is its value at the critical

point, and z, ν are critical exponents [3]. A consequence of this vanishing energy gap

means that the system cannot cross the critical point adiabatically. As previously

mentioned, the KZM is the framework that predicts how the system will behave as

it crosses the critical point, as well as the scaling of the relevant parameters with

regards to how fast the system is driven though the critical point.

2.2.1.1 Dynamics in the Vicinity of the Critical Point

In order to lead to the predictions of the KZM, we will first give some details about

the behavior around the critical point as a system undergoes a second-order QPT.

In addition to presenting the concept in the general case, we will also introduce the

properties of the system for a derivation of the scaling exponents we will be measuring.

As expected from a second-order QPT, our system is characterized by a vanishing

energy scale, namely the energy gap between the ground state and the first accessible

excited state, which approaches zero at the critical point. This vanishing energy scale

results in critical slowing down, as observed in the divergence of the reaction time and

correlation length of the system. The reaction time is also known as the relaxation

time, and gives the time scale at which the system can adiabatically follow a changing

ground state, or return to its ground state after an excitation. An intuitive way to

consider this phenomenon is that the reflexes of the system deteriorate around the

critical point. Similarly, the correlation length describes the scale on which the system

can “heal” in space and collectively return to its ground state after an excitation.

15



We now briefly introduce some quantities from our system that will be presented

in further detail in the following chapter. The parameter from the Hamiltonian that

we change for the system to cross the critical point is the quadratic Zeeman energy

q ∼ B2. The critical point takes place when q = qc = 2|c|, where c is the spinor

dynamical rate, which essentially characterizes the energy from the spin interactions

[107]. In our experiment, we lower the magnetic field such that the QPT happens

from the polar phase (q > qc) to the ferromagnetic phase (q < qc).

The expression for the energy gap in the ferromagnetic phase of our system is

given by

∆ =
√
q2
c − q2. (2.4)

Close to the critical point,

∆ ≈
√

2qc(qc − q) (2.5)

= ∆0

∣∣qc − q∣∣1/2, (2.6)

with ∆0 =
√

2qc. The energy gap approaching the critical point of a second-order

phase transition is generically given by

∆ ∼ |gc − g|zν . (2.7)

The product of the aforementioned critical exponents (z and ν) is 1/2 for our system,

corresponding to the mean field values of z = 1 and ν = 1/2 [111]. The reaction time

and characteristic length near to the critical point also have generic scalings, given

by [106]

τ ∼ |gc − g|−zν (2.8)

ξ ∼ |gc − g|−ν . (2.9)

Therefore, the reaction time in our system is

τ ∼ |qc − q|−1/2 ∼ ∆−1. (2.10)
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The correlation length may be relevant in large spin-1 condensates where spin domains

can form, but is not possible in our case since the size of the condensate is smaller

than the healing length.
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Figure 2.1: Adiabatic-impulse-adiabatic diagram with t̂. The two timescales
corresponding to the system’s reaction time (blue) and the rate of change of the energy
gap (red) are compared. The “freeze-out,” or impulse, region where the reaction time
of the system is too long to adiabatically follow the ground state is shown by the blue
shaded region.

One of the key points behind the Kibble-Zurek mechanism is that the system

cannot adiabatically follow the ground state when the ground state is changed too

quickly compared to the reaction time. When the change occurs too fast, the evo-

lution of the system switches from an adiabatic regime to an impulse regime where

the system “freezes” with no evolution. This is followed by the system “unfreezing,”

returning to an adiabatic regime. This freezing of the dynamics happens when the

reaction time diverges, which is the case when the energy gap between the ground

state and the first excited state vanishes, as seen in our system. A schematic illus-

trating the adiabatic-impulse-adiabatic approximation can be seen in Fig. 2.1. The

transition from adiabatic to impulse and back to adiabatic regimes happens when the
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time scales characterizing the system’s reaction time and the rate of change of the

energy gap are comparable. This can be described by

τ(t̂) =
1

∆(t̂)
=

∆

d∆/dt

∣∣∣∣
t=t̂

(2.11)

where t̂ is the freeze-out time. In the experiment, we use a linear ramp of q such

that q(t) = q0(1− t/tr), but this derivation is valid for any ramp that linearizes to

q̇ ∝ 1/τQ at the critical point. Solving Eq. (2.11) using the expression from Eq. (2.5)

and zν = 1/2 gives

t̂ = (zν)
1

1+νz

(
τQ
2qc

) νz
1+νz

=

(
τQ
8qc

)1/3

∼ τ
1/3
Q . (2.12)
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Figure 2.2: Adiabatic-impulse-adiabatic diagram with q̂. Similarly as in
Fig. 2.1, the timescales corresponding to the reaction of the system (blue) and the
change of the energy gap (red) are shown. The impulse region is shaded in blue.

Introducing q̃(t) = q(t)/|c(t)|, where c is the spinor dynamical rate of the system,

we can define q̂ as the change in q̃ from the crossing of the critical point to the return

to the adiabatic regime (see Fig. 2.2). After a similar derivation as the one for t̂, we

get

q̂ = 4
−zν
zν+1

(
τ̃Q
zν

) −1
1+νz

=
1

42/3
τ̃
−2/3
Q ∼ τ̃

−2/3
Q , (2.13)
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where τ̃Q ≡ 1/
∣∣ ˙̃q(tc)∣∣ is a characteristic ramp time. A more detailed explanation of

the variables introduced above will be presented in the following chapters.

These are the scaling exponents that we will compare with the results of our

measurements. This introduction to the dynamics at the critical point in our system

will be covered in more detail in the following chapters, as the theory of spinor

condensates is presented and the data is analyzed.
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CHAPTER III

SPINOR BOSE-EINSTEIN CONDENSATE THEORY

This chapter will give an overview of the theory behind spinor Bose-Einstein conden-

sates. After discussing the basics of Bose-Einstein condensation, we will introduce

the framework to deal with interacting BECs. The single mode approximation will

be presented, and from there we will describe the system from a quantum and mean

field perspective.

Nearly a century ago, an Indian physicist named Satyendra Nath Bose, worked

on rederiving Planck’s formula of quantized oscillators for the distribution of energy

in blackbody radiation using the statistics of photons. In 1923, he tried to publish

an article called “Planck’s Law and the Hypothesis of Light Quanta,” but was unsuc-

cessful. Bose then contacted Einstein asking him to translate the article into German

and submit it to the prestigious journal Zeitschrift für Physik. Einstein recognized

the importance of Bose’s work, and the paper was published in 1924. Einstein also

saw that the approach could be applied to a quantum theory of the ideal gas, which

eventually led to Bose-Einstein statistics. The particles called bosons (named after

Bose) are defined by their integer spin, and do not obey the Pauli exclusion prin-

ciple. Therefore, several bosons can simultaneously occupy the same energy state.

Under the right conditions, many bosons can occupy the ground state of a given

system, resulting in a Bose-Einstein condensate. An important condition for Bose-

Einstein condensation is an extremely low temperature. Every particle has a thermal

de Broglie wavelength given by λdB = h/
√

2πmkBT , where h is the Planck constant,

m is the mass of the particle, kB is the Boltzmann constant, and T is the temperature.

For a 87Rb atom at room temperature (∼ 300 K), this wavelength is smaller than the
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size of the atom. Since the average distance between atoms is much larger than the

wavelength, the atoms essentially behave like point particles. However, when the tem-

perature becomes low enough, the de Broglie wavelength increases to the point where

wavelike properties of particles can no longer be ignored. Starting with Bose-Einstein

statistics, the critical temperature can be derived [4], and if a gas of identical bosons

is cooled below this temperature, they will begin to gather in the ground state and

form a BEC. Using the de Broglie wavelength, the critical point can be expressed by

nλ3
dB ≥ 2.612, where n is the atom density. This expression shows that Bose-Einstein

condensation is only possible when the spacing between atoms is comparable to the

de Broglie wavelength of the atoms. When all of the atoms condense in the ground

state, a BEC essentially behaves like a macroscopic matter wave.

The first experimental attempts to produce a BEC were performed using hydro-

gen [6, 112–114], and the cooling techniques used heat exchange with liquid helium.

However, increasing the density of atoms to reach condensation resulted in a rise

of three-body loss, which prevented the formation of a BEC. When laser cooling

techniques were developed for alkali atoms, a door opened to avoid the challenges

faced with hydrogen. The optical molasses and magneto-optical trapping techniques

were successful in bringing the temperature to the microkelvin regime. With the

atoms confined in magnetic traps, evaporation cooling was used to further cool the

gas to below the critical temperature. Three groups succeeded in creating BECs in

their labs: NIST-JILA [9], MIT [10], and Rice [11, 115], all in 1995. These BECs

were created in dilute alkali gases in ultra high vacuum, where low atom densities

(1013 cm−3) limited three-body recombination. To compensate for this low density

requirement, temperatures in the nanokelvin regime were necessary to increase the de

Broglie wavelength. These temperatures were successfully reached with laser cooling

and evaporative cooling. It was only 70 years after Bose’s initial idea that a BEC was

experimentally observed. The 2001 Nobel prize was awarded to Cornell, Ketterle,
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and Wieman for their pioneering work leading to the first realization of BECs.

The first BECs were realized in a magnetic trap, which has the disadvantage of

only trapping atoms in a certain spin state, thus preventing potential spin dynam-

ics such as spin exchange between particles. In 1998, a magnetically trapped BEC

was succesfully transferred into an optical trap [19]. Optical traps have the bene-

fit of treating all spin levels identically, and the spins are no longer frozen. These

condensates with spin internal degrees of freedom are called spinor BECs.

3.1 Gross-Pitaevskii Equation

We will now derive the properties of the dynamics in our spin-1 condensate. In our

derivation, we consider the total wave function to be the product of single particle

states, which is known as the Hartree-Fock approximation. The interaction between

particles is modeled as a pseudo-potential involving the s-wave scattering lengths

[116–118]. Due to the low temperature of the condensate, the higher order scattering

events are prohibited. The Hamiltonian for N identical bosons is called the Gross-

Pitaevskii equation (or nonlinear Schrödinger equation), and is expressed by

H =
N∑
i=1

(
−∇

2

2m
+ VT (ri)

)
+ U, (3.1)

where the two terms in the sum are the kinetic energy and trapping potential energy,

and U is the contact interaction pseudo-potential given by

U =
∑
i<j

gδ(ri − rj). (3.2)

The coupling strength is given by g = 4π~2a/m, where a is the s-wave scattering

length and m is the mass of the atom.

Our experiment uses a spin-1 BEC, meaning there are actually two scattering

channels, each with their own scattering length. One corresponds to the channel for

the total spin F = 0, while the other one is for the total spin F = 2. We can therefore
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rewrite the interaction term for two atoms as

U (ri, rj) = δ (ri−rj)
∑
F=0,2

gF

F∑
mF=−F

|F,mF 〉 〈F,mF |. (3.3)

Each channel also has its own coupling strength gF = 4π~2aF/m.

A pair of colliding atoms can be expressed in the basis |F1,mF1 ;F2,mF2〉. In its

hyperfine ground state, a spin-1 BEC has F = 1 and mF = −1, 0, 1, so we can expand

the two-body interaction term (3.3) into

∑
F=0,2

gF

F∑
mF=−F

|F,mF 〉 〈F,mF |

= g0

(
4

3
Ψ̂†1Ψ̂†−1Ψ̂1Ψ̂−1 +

1

3
Ψ̂†0Ψ̂†0Ψ̂0Ψ̂0 −

2

3
Ψ̂†1Ψ̂†−1Ψ̂0Ψ̂0 −

2

3
Ψ̂†0Ψ̂†0Ψ̂1Ψ̂−1

)
+ g2

(
Ψ̂†1Ψ̂†1Ψ̂1Ψ̂1 + 2Ψ̂†1Ψ̂†0Ψ̂1Ψ̂0 +

2

3
Ψ̂†1Ψ̂†−1Ψ̂1Ψ̂−1 +

2

3
Ψ̂†0Ψ̂†0Ψ̂0Ψ̂0

+
2

3
Ψ̂†1Ψ̂†−1Ψ̂1Ψ̂−1 +

2

3
Ψ̂†0Ψ̂†0Ψ̂1Ψ̂−1 + 2Ψ̂†0Ψ̂†−1Ψ̂0Ψ̂−1 + Ψ̂†−1Ψ̂†−1Ψ̂−1Ψ̂−1

)
, (3.4)

where Ψ†α → |F = 1,mF = α〉 has been used for compactness.

Instead of keeping the terms in the pseudo-potential grouped by their scattering

strengths, it is more convenient for the rest of the derivation to arrange the terms

into groups that are symmetric and asymmetric under exchange of indices. The

symmetric terms describe spin-independent collisions, while the asymmetric terms

are for collisions whose output is dependent on the spin of the atoms. The kinetic

and trapping potential terms of the Hamiltonian are assumed to be symmetric and

are included with the symmetric part. Along with a spatial integration over the

condensate, the original Hamiltonian (3.1) is split into two parts:

ĤS =
∑
i

∫
d3rΨ̂†i

(
−~2∇2

2m
+ VT

)
Ψ̂i +

c0

2

∑
ij

∫
d3rΨ̂†i Ψ̂

†
jΨ̂iΨ̂j (3.5)

ĤA =
c2

2

∫
d3r
(

Ψ̂†1Ψ̂†1Ψ̂1Ψ̂1 + Ψ̂†−1Ψ̂†−1Ψ̂−1Ψ̂−1 − 2Ψ̂†1Ψ̂†−1Ψ̂1Ψ̂−1

+2Ψ̂†1Ψ̂†0Ψ̂1Ψ̂0 + 2Ψ̂†−1Ψ̂†0Ψ̂−1Ψ̂0 + 2Ψ̂†0Ψ̂†0Ψ̂1Ψ̂−1 + 2Ψ̂†1Ψ̂†−1Ψ̂0Ψ̂0

)
,(3.6)
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where i = 0,±1. The terms in each part of the Hamiltonian share the same coupling

strengths: c0 = (2g2 + g0)/3 for the symmetric spin-independent part ĤS, and c2 =

(g2− g0)/3 for the asymmetric spin-dependent part ĤA. ĤS is responsible for spatial

and motional dynamics, while ĤA drives spin exchanges through collisions. The total

spin is conserved during collisions, but the hyperfine state will be allowed to change.

Despite only the spin-dependent part being responsible for the spin-mixing dynamics,

the sum of ĤS and ĤA is referred to as the spin-mixing Hamiltonian.

3.2 Single Mode Approximation

Spin-1 BECs are a versatile testing ground for the study of quantum behavior, and

spatial dynamics are a large part of research for many groups. Vortices [101, 102],

skyrmions [26], spin waves [27] and more spatial features have been observed and stud-

ied in condensates. As fascinating as these phenomena are, one can also investigate

cases where these dynamics are suppressed in order to focus on spin dynamics alone,

as in our case. To reach this condition, we must compare the length scales involved

in the symmetric and asymmetric part of the spin-mixing Hamiltonian. For the spin-

dependent part, the length scale is the spin-healing length ξ = 2π~/
√

2m |c2|n. For a

density n ≈ 3.8×1014 cm−3, and given that |c2| ≈ h×0.036 Hz µm3, the spin-healing

length in our system is ξ ≈ 12.9 µm. This length sets the distance over which the

spin modes can change. Similarly, the same expression using c0 instead of c2 gives

the length scale over which the spatial density can vary. Given the fact that the

scattering lengths a0 and a2 differ by less than 2% in the case of 87Rb, the coupling

strengths c0 ∝ (2a2 + a0) and c2 ∝ (a2 − a0) are such that c0 � |c2|, which in turn

yields a much larger length scale for the spin dependent part. In ferromagnetic spin-1

condensates such as ours, a0 > a2, so c2 < 0. For antiferromagnetic condensates such

as 23Na, c2 has the opposite sign. Essentially, this offset in length scales means that

if a BEC is smaller than the spin-healing length, all the spin modes will be forced
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to share the same spatial wave function. This condition is known as the single mode

approximation (SMA), and the wave function of each spin component can be written

as Ψ̂i ≈ âiφ(r), where the anhihilation operator âi follows the bosonic commutation

relations such that
[
âκ, â

†
ι

]
= δκι and [âκ, âι] = 0. As long as the trap treats all spin

projections equally, and that there is no magnetic field gradient applying a force on

the spins, as is the case in our experiment, the SMA should be valid. Since c0 � |c2|

as shown earlier, the symmetric part of the Hamiltonian is the dominant term, and it

determines the common spatial wave function φ(r). It is found using the mean field

scalar Gross-Pitaevskii equation:

ĤS φ =

(
−∇

2

2m
+ VT + c0N |φ|2

)
φ = µφ,

∫
d3r|φ(r)|2 = 1, (3.7)

where µ is the chemical potential. By neglecting the kinetic energy in Eq. (3.7) and

integrating over the condensate, the two parts of the Hamiltonian can be rewritten

as

ĤS = µN̂ − c̃0N̂
(
N̂ − 1

)
(3.8)

ĤA = c̃2

(
â†1â

†
1â1â1 + â†−1â

†
−1â−1â−1 − 2â†1â

†
−1â1â−1

+2â†1â
†
0â1â0 + 2â†−1â

†
0â−1â0

+2â†0â
†
0â1â−1 + 2â†1â

†
−1â0â0

)
, (3.9)

where N̂ = â†1â1 + â†0â0 + â†−1â−1 represents the total number of atoms, and c̃i =

ci
2

∫
|φ(r)|4d3r are the spatially integrated interaction strengths. Note that the sym-

metric part of the SMA Hamiltonian (3.8) is constant, as long as the number of atoms

and the trapping potential do not change. This means that all of the dynamics occur

because of the spin-dependent part.

Our system can be described using two approaches, quantum and mean field,

and we will briefly explain both. A convenient way to analyze the system in either
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description is to identify the operators used to characterize the states of our system

in the context of the Lie algebra of a a SU(3) group [33, 41]. The operators used in

this framework have been derived many times before [41, 42, 119], so we will only

make some simple remarks and list the operators. There are eight operators, three

spin (or dipole) and five quadrupole. The spin operators are derived using angular

momentum algebra, and the quadrupole operators can be expressed as combinations

of spin operators [33, 41]. In the quantum description, the operators are second

quantized operators, while in the mean field picture, they are represented by 3 × 3

matrices. The operators in both the matrix and the second quantized operator forms

can be found in Table 3.1.

3.3 Quantum Approach

The asymmetric part ĤA of the spin-mixing Hamiltonian (3.9) can now be rewritten

using the second quantized operators from Table 3.1:

ĤA = c̃2

(
Ŝ2 − 2N̂

)
, (3.10)

where Ŝ2 = Ŝ2
x + Ŝ2

y + Ŝ2
z . So far, we have ignored the effect of the magnetic field. As

will be discussed in detail in the next chapter, an external magnetic field will shift the

energy of the mF = −1 and mF = +1 Zeeman sub-levels with respect to the mF = 0

atoms that are not affected by the field. These energy shifts come from the linear and

quadratic Zeeman effects at low fields. The shifts due to the linear and quadratic part

are p = µBBzgF and q = µ2
BB

2
z/(~2∆Ehf) = qzB

2
z , respectively, where µB is the Bohr

magneton, gF is the Landé g-factor, and ∆Ehf is the ground state hyperfine energy

splitting. For our system, the magnitude of the prefactor for the quadratic Zeeman

energy is qz ≈ 71.6 Hz/G2. For an atom in the mF state, its energy will be

EF = E0 + pmF + q (mF )2 , (3.11)

26



Table 3.1: Spin-1 dipole and quadrupole operators [41].

Sx = 1√
2

 0 1 0
1 0 1
0 1 0

 Ŝx = 1√
2

(
â†1â0 + â†0â−1 + â†0â1 + â†−1â0

)

Sy = i√
2

 0 −1 0
1 0 −1
0 1 0

 Ŝy = i√
2

(
−â†1â0 − â†0â−1 + â†0â1 + â†−1â0

)

Sz =

 1 0 0
0 0 0
0 0 −1

 Ŝz =
(
â†1â1 − â†−1â−1

)

Qyz = i√
2

 0 −1 0
1 0 1
0 −1 0

 Q̂yz = i√
2

(
−â†1â0 + â†0â−1 + â†0â1 − â†−1â0

)

Qxz = 1√
2

 0 1 0
1 0 −1
0 −1 0

 Q̂xz = 1√
2

(
â†1â0 − â†0â−1 + â†0â1 − â†−1â0

)

Qxy = i

 0 0 −1
0 0 0
1 0 0

 Q̂xy = i
(
−â†1â−1 + â†−1â1

)

Qxx =

 −1
3

0 1
0 2

3
0

1 0 −1
3

 Q̂xx = −1
3
â†+1â+1 + 2

3
â†0â0 − 1

3
â†−1a−1 + â†+1â−1

+â†−1â+1

Qyy =

 −1
3

0 −1
0 2

3
0

−1 0 −1
3

 Q̂yy = −1
3
â†+1â+1 + 2

3
â†0â0 − 1

3
â†−1â−1 − â†+1â−1

−â†−1â+1

Qzz =

 2
3

0 0
0 −4

3
0

0 0 2
3

 Q̂zz = 2
3
â†+1â+1 − 4

3
â†0â0 + 2

3
â†−1â−1

where E0 is the degenerate ground state energy when no magnetic field is present.

Combining the energy for every atom of the condensate:

E = p (N1 −N−1) + q (N1 +N−1) +NE0. (3.12)

Therefore, when adding this energy to Eq. (3.10), we get the following Hamiltonian:

ĤA = c̃2

(
Ŝ2 − 2N̂

)
+ p

(
N̂1 − N̂−1

)
+ q

(
N̂1 + N̂−1

)
+ N̂E0. (3.13)
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The last term in Eq. (3.13) is constant, so it will not contribute to the dynamics.

Taking advantage that the quadrupole moment Q̂zz can be written as [41]

Q̂zz = 2
(
N̂1 + N̂−1

)
− 4

3
N̂ , (3.14)

and noticing that Ŝz = N̂1− N̂−1, we can rewrite the Hamiltonian in a more compact

form:

ĤA = c̃2

(
Ŝ2 − 2N̂

)
+ pŜz +

q

2
Q̂zz, (3.15)

where some constant terms have been omitted for the same reason as discussed earlier.

In order to find the eigenenergies of this Hamiltonian, we need to find a more

convenient basis. Indeed, even though Ŝz commutes with the whole Hamiltonian, Ŝ2

and Q̂zz do not commute. Note that the eigenstates of the asymmetric part ĤA of

the Hamiltonian (3.9) can be expressed in the Fock basis |N−1, N0, N1〉. Since Fock

states are also eigenstates of Q̂zz, this is a appropriate basis to use. An even more

convenient basis in the context of our experiment is the |N,M, k〉 basis, where N is

the total number of atoms in the BEC, M = N1 − N−1 is the magnetization, and k

is the number of pairs of atoms in the mf = ±1 state. This basis is equivalent to the

Fock basis, and it is ideal since the total number of atoms and the magnetization are

conserved by the Hamiltonian. This essentially simplifies the problem to the single

parameter k that can take N/2 + 1 values.

With this choice of basis in mind, the Hamiltonian (3.15) is expanded into number

operators:

ĤA = c̃2

((
N̂1 − N̂−1

)2

+
(

2N̂0 − 1
)(

N̂1 + N̂−1

)
+ 2â†1â

†
−1â0â0 + 2â†0â

†
0â1â−1

)
+p
(
N̂1 − N̂−1

)
+ q

(
N̂1 + N̂−1

)
+ N̂E0. (3.16)

Since our experiment is consistently initialized with all the atoms in the mF = 0 state,

we can set M = N1 − N−1 = 0, which produces a so-called “hopping” tridiagonal
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Hamiltonian whose matrix elements are given by

Hk,k′ = (2c̃2k(2(N − 2k)− 1) + 2qk) δk,k′

+2c̃2

(
(k′ + 1)

√
(N − 2k′)(N − 2k′ − 1)δk,k′+1

+k′
√

(N − 2k′ + 1)(N − 2k′ + 2)δk,k′−1

)
(3.17)

This Hamiltonian can easily be diagonalized to find the eigenenergies, and it is also

used in simulations by numerically integrating the time dependent Schrödinger equa-

tion.

In the context of this thesis, the form of the Hamiltonian can be further simplified.

The total number of atoms N̂ and the longitudinal magnetization Ŝz are conserved, so

these terms do not contribute to the dynamics and can be discarded, which simplifies

Eq. (3.15) to

ĤA = c̃2Ŝ
2 +

q

2
Q̂zz. (3.18)

For a reason that will be made clear later in the chapter, the operator Q̂z is introduced.

Despite the notation, Q̂z is not a quadrupole moment, but it is related to the Q̂zz

moment by

Q̂z = −N̂
3
− Q̂zz. (3.19)

As noted earlier, the factor proportional to N̂ will not contribute to the dynamics,

and the simplified Hamiltonian reads:

Ĥ = c̃2Ŝ
2 − q

2
Q̂z. (3.20)

3.4 Mean Field Approach

Another way to describe the system is to use a mean field approach. The steps are

relatively simple, and we begin by assuming a large number of atoms and ignore

the quantum fluctuations. The description of the system can then be simplified by

replacing the field operators by complex numbers. All of the atoms share the same
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spinor wave function
√
N |ζi|eiθi , where |ζi|2 = ρi = Ni/N are the fractional spin

populations.

Combining the full spin-mixing Hamiltonian (3.5) and (3.6) with the single mode

spatial Hamiltonian (3.7), along with the mean field notation, yields three coupled

Gross-Pitaevskii equations:

i~ζ̇1 = c
[
(ρ1 + ρ0 − ρ−1) ζ1 + ζ2

0ζ
∗
−1

]
(3.21a)

i~ζ̇0 = c [(ρ1 + ρ−1) ζ0 + 2ζ1ζ−1ζ
∗
0 ] (3.21b)

i~ζ̇−1 = c
[
(ρ−1 + ρ0 − ρ1) ζ−1 + ζ2

0ζ
∗
1

]
(3.21c)

The common factor of
√
N has been removed, and c = 2c̃2N . The BEC is now well

described by a vector order parameter

ψ = (ζ1, ζ0, ζ−1)T , (3.22)

which has six parameters. However, they are not all independent, since the normal-

ization condition
∑3

i=1 ρi =
∑3

i=1 |ζi|2 = 1 and the conservation of magnetization

m = ρ1 − ρ−1 reduce the number of independent parameters to four. The order

parameter can therefore be written as

ψ =

(√
1− ρ0 +m

2
eiχ+ ,

√
ρ0,

√
1− ρ0 −m

2
eiχ−

)T

, (3.23)

where χ± = θ±1 − θ0. By defining the spinor phase θs = θ+1 + θ−1 − 2θ0 and

magnetization phase θm = θ+1 − θ−1, the dynamical equations (3.21) can be reduced

to a pair of equations:

ρ̇0 =
2c

~
ρ0

√
(1− ρ0)2 −m2 sin θs (3.24)

θ̇s =
2c

~

[
(1− 2ρ0) +

(1− ρ0)(1− 2ρ0)−m2√
(1− ρ0)2 −m2

cos θs

]
− 2q

~
(3.25)

The pair of parameters (ρ0, θs) span the spinor phase space, where the mean field

dynamics of the system can be represented. The energy contours can be plotted by
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finding the mean field spinor energy per particle [120]:

E =
c

2
m2 + cρ0

[
(1− ρ0) +

√
(1− ρ0)2 −m2 cos θs

]
+ pm+ q(1− ρ0). (3.26)

While the energy functional above is very convenient when describing our system

exclusively with the two variables ρ0 and θs, we will introduce another phase space

that works well with our study later in the chapter.

3.5 Quantum Phase Transition

One of the key concepts in this thesis is that of the continuous QPT of our system.

This QPT takes place when the magnetic field crosses a critical value, corresponding

to qc = 2|c|. At high magnetic field (q > qc), the system is in the polar phase, where

the dynamics are dominated by the quadratic Zeeman energy q. Using the normalized

vector order parameter ψ = (ζ1, ζ0, ζ−1)>, the ground state is ψ = (0, 1, 0)>. At low

magnetic fields (q < qc), the spin interactions are strong enough to give rise to a

non-zero transverse magnetization that breaks the SO(2) symmetry. In addition to

the U(1) symmetry, which assigns an arbitrary global phase to the condensate, each

spin component also acquires a relative phase χi [106] and the ground state is given

by:

ζ±1 =
1

2

√
1− q/qceiχ± and ζ0 =

√
1

2
(1 + q/qc)e

i(χ++χ−)/2. (3.27)

As presented in the previous chapter, our system displays an energy gap between

the ground state and first excited state, which vanishes at the critical point. Using

the Bogoliubov theory, it can be shown that the ferromagnetic phase ground state

has three excitation modes [106]. Two are gapless modes (in the long wavelength

limit), which arise from the SO(2) symmetry breaking as predicted by the Goldstone

theorem [121], but the third mode has a non-zero eigenvalue, namely the energy gap

∆ between the ground state and the first excited state. In our case, the energy gap

in the ferromagnetic phase (q < qc) is given by ∆ =
√
q2
c − q2. In the polar phase,
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the energy gap is given by ∆ =
√
q(q − qc). A plot of the energy gap ∆ can be seen

in Fig. 3.1.

Δ

c

q/|c|

Ferromagnetic

Phase

Polar

Phase

0 1 2 3
0

1

2

Figure 3.1: Energy gap between the ground state and first excited state.
The energy gap ∆ is plotted against the quadratic Zeeman energy q, both in units of
the spinor dynamical rate c. The vertical dashed line indicates the boundary between
the ferromagnetic and polar phase spaces.
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3.6 Phase Spaces

In order to describe and visualize the evolution of the system, we will be using several

phase spaces, which are the spin-nematic, polar, and spinor phase spaces.

3.6.1 Spin-Nematic Phase Space

The first of three phase spaces relies on our system’s property that any state can be

represented on the surface of a unit sphere with axes S⊥, Q⊥, and Qz. The new vari-

ables S⊥ and Q⊥ are defined from dipole and quadrupole moments: S2
⊥ = S2

x + S2
y ,

and Q2
⊥ = Q2

xz + Q2
yz. S⊥ represents the transverse spin, and Q⊥ the off-diagonal

quadrupole moment. While this phase space is not a proper representation of a SU(2)

subspace from the SU(3) phase space describing spin-1 systems [33, 41], it does serve

the same purpose of visualizing the states of the system on its surface. Addition-

ally, despite the variables S⊥, Q⊥, and Qz not being actual dipole and quadrupole

moments, they are constructed from them. Therefore, by analogy with the SU(2)

subspaces used to visulaze the system in [33, 41], this phase space will be referred to

as the spin-nematic phase space.

The third variable was introduced earlier as the operator Q̂z, and is given by

Qz = 〈Q̂z〉/N . The interest in the variable Qz is that it can be expressed simply by

Qz = 2ρ0 − 1, where ρ0 is the fractional population of atoms in mF = 0. Represen-

tations of the spin-nematic phase space for different values of q̃ = q/|c| are shown

in Fig. 3.2. There are three types of energy contours. In the ferromagnetic phase

(q̃ < 2), the separatrix (green line) represents the boundary between the closed orbits

(red lines), and the phase winding orbits (blue lines). The degenerate ground states

on each side of the sphere are shown by a red dot. In the polar phase (q̃ > 2), all the

energy contours are phase winding, there is no separatrix, and the ground state sits

on the top pole of the sphere. The energies of the energy contours were arbitrarily
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Figure 3.2: Spin-nematic phase space. Spin-nematic phase space for several values
of q̃. The closed orbits (red) are separated from the phase-winding orbits (blue) by
the separatrix (green), and the red dots represent the ground states. The energy
contours are the same for every sphere.
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chosen for illustration purposes, but they are the same for every value of q̃. In addi-

tion, the energy contours are the same for every representation of any phase space in

the rest of the chapter.

3.6.2 Polar Phase Space

The second phase space is a polar projection of the top half of the spin-nematic

phase space. This two-dimensional phase space with axes representing S⊥ and Q⊥

is centered on the pole of the spin-nematic sphere, which is the location of the polar

ground state. For this reason, this phase space focuses on the critical dynamics in the

vicinity of the critical point. Representations of the phase space for different values

of q̃ = q/|c| can be seen in Fig. 3.3.
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Figure 3.3: Polar phase space. Polar phase space for several values of q̃. The
energy contours are the same for every plot, and are the same as in Fig. 3.2. These
plots are a polar projection of the top half of the spheres in Fig. 3.2.
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3.6.3 Spinor Phase Space

The third phase space is the spinor phase space with the variables ρ0 and θs described

earlier in the chapter. This phase space is a Mercator projection of one half of the

spin-nematic phase space perpendicularly to the S⊥ axis. Representations of the

spinor phase space for different values of q̃ = q/|c| are displayed in Fig. 3.4.

3.7 Summary

After a brief historical review of Bose-Einstein condensation, the Hamiltonian of our

system in the single mode approximation has been derived using quantum and mean

field methods. Focusing on the only relevant terms for our study and the rest of this

thesis, the most convenient form of the Hamiltonian is the mean field using S and Qz

as observables, where Qz = 2ρ0− 1, and c and q as parameters for the collisional and

magnetic energies:

H =
c

2
S2 − q

2
Qz (3.28)
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Figure 3.4: Spinor phase space. Spinor phase space for several values of q̃. The
energy contours are the same for every plot, and are the same as in Fig. 3.2 and
Fig. 3.3.
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CHAPTER IV

EXPERIMENTAL APPARATUS

The experimental setup used to measure the data for this thesis has a long history

behind it, parts of which date back to the thesis work of Murray Barrett [122]. His

thesis work demonstrated the realization of the first all-optical BEC in 2001 [20].

Some of the electronics have survived all these years and are still being used in the

current setup. Most of the experiment and its components, however, have changed

over the years. Many graduate students have had the opportunity to work on the

spinor BEC experiment, and each has contributed to building a more robust and

versatile setup. The description of the experimental setup will be presented keeping

the order of a typical experimental cycle in mind. We will first describe the vacuum

chamber, followed by the setup needed to create a magneto optical trap (MOT). We

will then explore how the cold atoms from the MOT are transferred to an optical

dipole force trap, where evaporative cooling takes place, leading to Bose-Einstein

condensation. The methods used to interact with the BEC will be presented, and we

will end with the description of the control and imaging systems.

4.1 Vacuum Chamber

The heart of the experiment is the vacuum chamber, where the ultracold atom physics

takes place. A schematic of the chamber can be seen in Fig. 4.1. Ultra high vacuum

(UHV) is necessary to maintain the long lifetimes of the trapped dilute gas of atoms

that will eventually become a BEC. Any experiment performed at a slightly higher

pressure would also be impacted by collisions from particles in the background. The

only desired atoms in the vacuum chamber are rubidium (Rb) atoms, some of which

will be used in the experiment. The experiment takes place in a stainless steel octagon
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(Kimball Physics), featuring two large glass windows on 6” flanges at the top and

bottom, as well as eight 2.75” ports on the sides. Of the eight side ports, five are glass

windows. All the glass windows, including the large ones on the top and bottom of

the octagon, are broad-band anti-reflection (AR) coated. This coating optimizes the

transmission of near-infrared light (∼ 780 nm) used for the experiment. Two other

ports are fitted with windows used for the entrance and exit of a CO2 laser beam with

a wavelength of∼ 10.6 µm. Since glass is opaque to light at that wavelength, these two

windows are made of zinc selenide (ZnSe), and are AR coated. The remaining port is

used to connect the octagon to the rest of the vacuum apparatus, which includes two

permanently mounted vacuum pumps, a valve to connect the chamber to an external

pump, and a Rb getter source. There is another small glass window on the other side

of the vacuum apparatus, which serves as the entrance for the absorptive imaging

probe beam.

Inside the chamber, a pair of 1.5” (3.8 cm) focal length ZnSe lenses is mounted

on the axis of propagation of the CO2 laser beam. This pair of lenses forms a 1:1

telescope that tightly focuses the laser beam. This tight focus will serve as an optical

dipole force trap. The second lens re-collimates the beam before it exits the chamber

and has been used in the past to focus a counter-propagating beam in order to create

an optical lattice. The pair of lenses is mounted such that their foci overlap at the

geometric center of the octagon. On the horizontal axis perpendicular to the CO2

laser beam, a high-aperture laser objective (HALO) is used to collect light for imaging

purposes. Its role will be explained in detail later in the chapter.

The pressure in the chamber is lowered from atmospheric pressure to UHV and

maintained by several vacuum pumps. When initially setting up the experiment, the

pressure is first lowered by a roughing pump and a turbo pump. Once the pressure

has been lowered by the turbo pump, the whole vacuum chamber is heated to remove

impurities from the chamber’s walls and windows. The temperature of the so-called
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Figure 4.1: Diagram of the vacuum chamber. Top view of the vacuum chamber.
The axis perpendicular to the page also contains a pair of MOT beams, as well as
the repump beam.

“bake-out” can reach ∼ 400◦C when only metallic parts are heated, but when the

octagon with its windows and lenses are present, the bake-out temperature must be

lowered. The following step involves turning on an ion pump. As its name indicates,

it ionizes particles and collects them using strong electric and magnetic fields, the

latter supplied by powerful permanent magnets. The chamber is also equipped with

a titanium (Ti) sublimation pump. When a high current (∼ 50 A) is applied to a

Ti filament for a few minutes, Ti is emitted, and it will eventually deposit on the

walls of the chamber. The Ti-coated surfaces will capture hydrogen atoms that are

incident on it, thus lowering the pressure further. All these steps bring the pressure

to a level too low to be read by vacuum gauges, in the 10−11 torr regime. The ion
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pump is constantly on and the Ti layer remains active, which maintains the pressure

to UHV level despite the continuous out-gassing of hydrogen from the steel chamber.

4.2 Magneto-Optical Trap

The first step on the cooling path to degeneracy is achieved by using a magneto-optical

trap (MOT). This ingenious concept was first realized in 1987 [7], and contributed

to awarding the 1997 physics Nobel prize for cooling and trapping atoms with laser

light. The combination of laser beams and a magnetic field gradient in the optimal

conditions can trap atoms with a depth in the millikelvin regime.

4.2.1 Source of Atoms

The Rb atoms that will be trapped in the MOT originate from a background Rb vapor.

The atoms themselves are released from a getter, which is heated using a variable

current source. The resistive heating causes the getter to release both stable Rb

isotopes, 85Rb and 87Rb at their natural abundances of 72.2% and 27.8%, respectively.

Light at ∼ 455 nm from LEDs is used in conjunction with the getter. This light

promotes light intensity assisted de-adsorption (LIAD), which is non-negligible since

Rb has a tendency to adhere to glass windows [123]. This light not only recycles

some of the Rb in the chamber, it also keeps the Rb from permanently damaging the

windows. Turning on the blue lights makes a noticeable difference in the size of the

MOT, and consequently in the number of atoms in the BEC.

4.2.2 Trapping Concept

The bare necessities for a MOT are 3 orthogonal pairs of counter-propagating laser

beams with opposing circular polarization, in addition to a magnetic field gradient. In

order to understand the concept behind the MOT, one must start with the electronic

energy structure of Rb.

Rb is an alkali, ordered in the first column of the periodic table because of its single
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valence electron. This single valence electron gives a Rb atom a relatively simple

energy structure, which will be taken advantage of for trapping. The simplicity arises

from the fact that all the other electrons are in closed, stable shells. The electronic

structure of Rb in the ground state is [Kr]5s1. With its unpaired s electron, a Rb

atom behaves to a first approximation similarly to a hydrogen atom in respect to

electronic energy levels. The first excited level corresponds to the valence electron

in a 5p orbital, with an orbital angular momentum of 1. This 5p energy level is

split due to spin-orbit coupling: the non-zero orbital angular momentum L and the

spin angular momentum S of the electron give rise to the so-called fine structure.

The energy shift depends on the relative orientation of the orbital and spin angular

momenta. Consider the total electronic angular momentum J = L + S. Since L = 1

and S = 1
2
, the possible values are J = 1

2
and J = 3

2
. Therefore, the ground state

is 52S1/2, and two resulting fine-structure sub-levels are 52P1/2 and 52P3/2, where the

Russel-Saunders notation n2S+1LJ has been used. This results in two transitions from

5s to 5p, both of which are in the near-infrared. The spectral lines form a doublet, so

the transitions are referred to by D1 and D2 lines, from 52S1/2 to 52P1/2 and 52P3/2,

respectively. Our experiment uses the transitions on the D2 line, at a wavelength of

∼ 780.2 nm, which is conveniently accessible using simple diode lasers. The energy

levels of the D2 are shown in Fig. 4.2.

The Rb energy level structure is complicated further due to the interaction be-

tween of the total electronic angular momentum J and that of the nucleus. This

coupling between J and the nuclear angular momentum I gives rise to the hyperfine

structure, which affects both the 5s and 5p levels. The coupling is characterized by

the total atomic angular momentum F = I+J. The isotope we use in the experiment

(87Rb) has a nuclear angular momentum of I = 3
2
. For the 52S1/2 level, J = 1

2
, which

combined with I = 3
2

gives F = |I−J | = 1 and F = I+J = 2. The energy separation

between these two hyperfine levels lies in the microwave part of the electromagnetic
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Figure 4.2: D2 line energy levels for 87Rb.
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spectrum at ∼ 6.8 GHz. Similarly, 52P1/2 has J = 1
2
, which yields the same hyperfine

structure. However, for 52P3/2 we have J = 3
2
, and since the values for F range from

|I−J | to I+J , this results in F ′ = 0, 1, 2, 3. Note that the hyperfine levels for excited

electronic states will be labeled as F ′.

There is one more level of complexity in the energy structure, and it relates to the

projection of the total atomic angular momentum along the quantization axis defined

by an external magnetic field. When no magnetic field is present, atoms with different

projections mF of the total atomic angular momentum F have the same energy, but

a magnetic field lifts the degeneracy. There are 2F + 1 Zeeman sub-levels, with mF

ranging from −F to +F . The energy shift for each mF sub-level in a magnetic field

B can be calculated using the Breit-Rabi formula [124]:

E|F,mF 〉 = −∆Ehf

8
− gIµIBmF −

1

2
∆Ehf

√
1 + xmF + x2 (4.1)

where

x =
(gJµB + gIµI)B

∆Ehf

.

Here, ∆Ehf is the hyperfine splitting, gJ and gI are the electron and nuclear g-factors,

µB and µI are the Bohr magneton and nuclear magnetic moment. The numerical val-

ues are tabulated in Appendix A. At low fields, the linear Zeeman shift (second term

on the RHS of Eq. (4.1)) differs slightly from 700 Hz/mG depending on the hyperfine

level. The transitions between Zeeman sub-levels are experimentally accessible for

the range of magnetic fields used in the experiment by using RF frequencies. The

details of the 52S1/2 level are shown in Fig. 4.3.

A MOT is an extension of the optical molasses technique, where atoms are cooled

by absorbing a photon and its momentum, and re-emitting a photon in a random

direction. The recoils from the emitted photons average out over time, but the radi-

ation pressure from the absorbed photons can be used to push an atom along a given

direction. It is necessary for the photons to have the correct frequency to be absorbed.
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Figure 4.3: Energy levels of the 52S1/2 level in 87Rb.

To slow down an atom, it would need to absorb photons traveling opposite to the

atom’s motion. This can be accomplished by slightly lowering the light’s frequency,

or detuning it to the red side of the spectrum. This compensates for the Doppler

effect which effectively changes the resonance frequency in the frame of the moving

atoms. That way, the light will only be resonant in the frame of an atom traveling

against it.

For our experiment, we use a transition in the D2 line (52S1/2 to 52P3/2), from

F = 2 to F ′ = 3. The benefits of this transition are two-fold. First, using polarized

light with a right handedness optically pumps the atoms in the |F = 2,mF = 2〉

to |F ′ = 3,mF ′ = 3〉 transition, which is the strongest transition from F = 2 to

F ′ = 3 [125]. In addition, the excited state |F ′ = 3,mF ′ = 3〉 can only decay to

|F = 2,mF = 2〉, due to electric dipole transitions selection rules, which is why this

transition is called the “cycling” transition. Despite these convenient features, there

is a small probability of an off-resonant excitation to the F ′ = 2 level, which then has
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a 50% probability of decaying to the F = 1 manifold. This level is “dark,” in the sense

that the photons driving the cycling transition will no longer be absorbed. In order to

continue cooling these atoms, a second source of light is needed. This light is resonant

with the F = 1 to F ′ = 2 transition. This transition is called the repump transition

as it returns the atoms on the cycling transition for efficient cooling. In fact, without

the repump, the atoms are off-resonantly excited off the cycling transition, so using

the cycling transition alone effectively “depumps” all the atoms to the F=1 level.

These two frequencies are the only ones needed to cool, trap and image the atoms in

the MOT. In practice, the trapping light driving the F = 2 to F ′ = 3 transition is

detuned a few linewidths to the red of the transition.

4.2.3 MOT Lasers

The light we use for the MOT (cycling and repump) comes from homemade external

cavity diode lasers (ECDL) [126, 127]. These relatively simple lasers use an inex-

pensive and commercially available laser diode and a grating. The distance from the

diode to the grating acts as an optical cavity, the length of which is adjusted by a

piezoelectric transducer. The current to the diode and its temperature are controlled

and stabilized by simple electronic controllers, some of which are homemade. Both

the cycling and repump light sent to the experiment comes from injection locked diode

lasers (ILDLs), or slaves, which are seeded by the master ECDLs. The frequencies

are stabilized using saturated absorption spectroscopy, along with FM spectroscopy.

Saturated absorption spectroscopy provides sharp Doppler-free peaks that are elec-

tronically transformed into slopes by modulating the light with a ∼ 10 MHz signal.

For the modulation to be applied, the current to the laser diode can be dithered, as

we do for the cycling laser, while the repump light uses an acousto-optical modulator

(AOM). This method provides an error signal and locking point that a PI circuit uses

to stabilize the light’s frequency.
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The cycling laser’s light uses a complex detuning scheme to shift the frequency to

the range needed for the various stages of the experimental cycle. The light is first

shifted 160 MHz to reach its locking point, which is the (F = 2 → F ′ = 1) − (F =

2 → F ′ = 3) crossover. A small portion of the light is sent to a double-pass AOM

that shifts the frequency by 2×186 MHz right on resonance for the absorptive probe.

The rest of the light is sent to another double pass AOM, which allows a variable

frequency shift, from 2 × 140 MHz to 2 × 238 MHz. The frequency-shifted light

then seeds the ILDL. The amplitude of the RF signal sent to the double-pass AOM is

adjusted such that the power of the light seeing the ILDL is constant regardless of the

frequency shift. The power of the beam is then amplified by a tapered amplifier (TA),

outputting ∼ 500 mW. The spatial mode out of a TA is notoriously poor, so a long

path including cylindrical lenses is used to improve the quality of the mode. A final

AOM is used to shift the frequency by 110 MHz to bring it to the slightly red-detuned

frequency that will be sent to the atoms. This last AOM also controls the power sent

to the chamber. The beam is finally split evenly in three using half-waveplates and

polarizing beam cubes and sent to the experiment via optical fibers.

At the chamber, the light from each fiber is expanded and collimated into beams

with a 15 mm waist and clipped to a top-hat profile of 25 mm diameter. Each beam

is 30–35 mW, which is enough to saturate the cycling transition. The beams must

be well balanced in order to give the MOT a spherical shape. The beams go through

quarter-waveplates, which gives them a circular polarization. The light traverses the

chamber and is then retroreflected. This essentially provides the atoms with six beams

of light propagating both ways on three perpendicular axes.

The repump laser has a more simple setup than the cycling laser, since we only

need one beam with a power of ∼ 15 mW at the chamber. The master-slave configu-

ration and the same locking mechanism are used. The light from the master is locked

80 MHz from the repump transition. After seeding the ILDL, the frequency is shifted
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back to the repump transition by an AOM that also controls the power. The light is

then fiber-coupled and sent to the chamber, where it is combined with the vertical

cycling beam.

4.2.4 Magnetic Field Coils

The MOT needs a pair of coils mounted in an anti-Helmholtz configuration to pro-

vide a magnetic field gradient of ∼ 7 G/cm. The purpose of this gradient is to create

spatially dependent Zeeman energy shifts. When used in combination with circularly

polarized light, this effect causes atoms to absorb photons only when they are located

at a given position are moving at a certain velocity. The MOT is centered at the zero

of the magnetic field gradient, with a larger Zeeman energy shift further away from

the center. Recall that the cycling beams are detuned to the red of the transition.

The sign of the energy shift changes at the center, so an atom moving towards the

center of the trap will only absorb photons with the polarization driving the tran-

sition allowed by the energy shift. For example, an atom located to one side of the

center of the trap will experience a Zeeman shift that favors the absorption of σ+

photons, while a photon on the other side will preferentially absorb σ− photons. This

offset in radiation pressure pushes the atoms towards the center of the gradient field.

The lowest temperature achievable in a MOT is limited to a few µK because of the

randomness in the direction of the emitted photons, which heats the atoms and sets

the temperature limit.

4.3 From Magneto-Optical Trap to Bose-Einstein Conden-
sate

The Rb atoms initially in the chamber are at room temperature, and the trap depth

of the MOT is ∼ 1 mK, which means only the slowest atoms will be trapped. Because

of the slow loading of the MOT, we must wait about 15 s for the size of the MOT to

plateau. At that point, the MOT contains ∼ 108 atoms, and the so called temporal
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dark MOT sequence [128] can begin. This method can achieve sub-Doppler cooling,

and has the effect of spatially “collapsing” the MOT, thus greatly increasing the

spatial density of atoms. This is achieved by decreasing the power of the cycling laser

by half, and detuning its frequency by ∼ 200 MHz, which is as far to the red as the

setup allows. This is where the terminology of dark MOT originates from. The MOT

coil gradient is halved, and the power of the repump laser is lowered to a few tens of

microwatts. The final number of atoms in the optical trap is strongly dependent on

the repump power during this sequence. For this reason, we must find the optimal

value on a daily basis every time the experiment is started. The combination of these

changes leads to the collapsing of the MOT along the repump axis into a pancake

shape, and the location is dependent on the final repump power. The other parameters

used have been empirically determined to optimize atom loading. Both cycling and

repump beams are shuttered after a few hundred milliseconds, but the repump is

turned off shortly (∼ 1 ms) before the cycling light. This delay optically pumps all

the atoms down to the F = 1 hyperfine ground state. The position of the collapsed

atoms is optimized to overlap with the focus of the CO2 laser, where 10 to 15 million

atoms at ∼ 30 µK are transferred.

4.3.1 Optical Trap

The rest of the experiment takes place in an optical dipole force trap. The trapping

concept relies on the dispersive interaction between the intensity gradient of the

light field and the electric dipole moment induced in the atoms by that same field

[129]. For an electric field ~E, the induced dipole moment is ~p = α~E, where α is

the frequency-dependent complex polarizability. This leads to a spatially dependent

potential U = −〈
∫
~p · d ~E〉 = −1

2
〈~p · ~E〉, where the brackets are the time average over

a period of oscillation of the field. There are several regimes for optical traps, which

have to do with the detuning ∆ = |ω − ω0| between the angular frequency ω of the
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trapping light and the angular frequency ω0 of the cycling transition.

Introducing the on-resonance damping rate Γ = e2ω2
0/6πε0mec

3, the trapping

potential and scattering rate in a dipole force trap can be expressed by

U(~r) = −3πc2

2ω3
0

(
Γ

ω0 − ω
+

Γ

ω0 + ω

)
I(~r), (4.2)

Γsc(~r) =
3πc2

2~ω3
0

(
ω

ω0

)3(
Γ

ω0 − ω
+

Γ

ω0 + ω

)2

I(~r), (4.3)

where I is the intensity of the trapping laser. In the case of a far off resonance trap

(FORT), the condition ∆ = |ω − ω0| � ω0 is met, so the expressions (4.2) and (4.3)

can be approximated by

U(~r) = −3πc2

2ω3
0

Γ

∆
I(~r), (4.4)

Γsc =
3πc2

2~ω3
0

(
Γ

∆

)2

I(~r) =
Γ

~∆
U(~r). (4.5)

In our case, we use a CO2 laser, which has a wavelength of ∼ 10.6 µm. This laser is

so far off resonance that the approximation ∆� ω0 made for the FORT is no longer

valid. Instead, we have ω � ω0. The expressions (4.2) and (4.3) can therefore be

reduced to

U(~r) ' −3πc2Γ

ω4
0

I(~r) = − αs
2ε0c

I(~r), (4.6)

Γsc =
2Γ

~ω0

(
ω

ω0

)3

U(~r). (4.7)

Here, αs = 6πε0c
3Γ/ω4

0 = 5.3×10−39 m2C/V is the static polarizability for the ground

state of 87Rb [129], which must be used because we are now in the quasi electrostatic

trap (QUEST) [130] regime. Despite the high power of the laser, the scattering rate

is so low (around one photon per hour [131]) that the trap is essentially conservative.

Another benefit of using a CO2 laser is that because of its long wavelength, it has a

short Rayleigh length. We use this feature by focusing the beam inside the chamber

with a 1.5” (38 mm) focal length lens, and the axial trapping confinement is strong

enough to produce a BEC in the focus of the CO2 laser alone. This trap is cigar

shaped, and we refer to it as the single focus trap.
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We use an industrial laser (Coherent-DEOS GEM-100L) capable of outputting

over 100 W of power. The power transmitted to the vacuum chamber is controlled by

a germanium AOM. The +1 order beam is sent to the experiment, and the undeflected

part ends in a water-cooled beam dump. By changing the power of the RF signal to

the AOM, we can effectively control the trap’s potential with practically no delay.

Further down the beam path, we find a nearly 1:1 telescope, with the first of the

two ZnSe lenses on a motorized translation stage. The spacing of the lenses is adjusted

to change the size of the beam as it enters the vacuum chamber. The inside of the

chamber contains another 1:1 telescope, and the first lens focuses the beam to create

the optical trap. The adjustable telescope before the chamber changes the width of

the beam at that focusing lens. For transferring atoms from the MOT to the optical

trap, a wide focus is preferable, as it increases the trapping volume overlap. However,

the focus must be tightened during evaporation to ensure efficient rethermalization

of the atoms. Because only one of the lenses moves, the collimation of beam after the

telescope changes, which in turn causes a small displacement (∼ 1 mm) of the trap

along the laser axis, but this does not affect the evaporation process. The second

ZnSe lens inside the chamber recollimates the beam before it exits, and the beam

ends in a thermal detector that also serves as a beam dump.

During the evaporative cooling phase, the power to the CO2 laser at the chamber

is adiabatically lowered from 40 W to 50 mW. As mentioned earlier, the trap is

simultaneously compressed by changing the length of the 1:1 telescope along the

beam path. This narrowing of the trap increases the spatial density of the cloud of

atoms, thus enabling efficient rethermalization during evaporation. As the trapping

potential is lowered, the hottest atoms gradually have enough energy to leave the trap,

while elastic collisions between the remaining atoms allow them to rethermalize. The

waist of the trap inside the chamber is brought down from 120 µm to 20 µm in 1 s.

See Fig. 4.4 for an illustration of this setup.
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Figure 4.4: Effect of the translation stage motion.

This evaporation method produces a BEC with atoms in the F = 1 hyperfine

ground state, but with a distribution of mF = −1, 0 ,+1 Zeeman sub-levels. Our

experiment requires an initial state with all the atoms in the mF = 0 state, so in

addition to a bias magnetic field along the laser axis to define the quantization axis,

a strong magnetic field gradient (∼ 20 G/cm) is turned on along the same axis. This

axis has the weakest trapping potential, and the gradient causes preferential losses of

the mF = −1 and +1 atoms as they are pushed to the edges of the trap. The result is

a pure mF = 0 condensate with up to 2× 105 atoms. The exact final temperature is

difficult to determine, as there is no observable thermal component, but we estimate

the temperature to be below 100 nK. The bias field mentioned above is ∼ 2 G, which

is high enough to guarantee that the system is the polar phase, where mF = 0 is

the lowest energy state, so the spin mixing dynamics are suppressed. A plot of the

temperature and number of atoms during evaporation is shown in Fig. 4.5.

Aligning the CO2 laser beam is a delicate task, due to its long wavelength making

it invisible to the naked eye, as well as its high intensity. In order to guarantee a

proper alignment through the center of the chamber, the CO2 laser beam is initially
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Figure 4.5: Temperature and number of atoms during evaporation. The red
diamonds indicate the temperature measurements, and the blue dashed line corre-
sponds to the number of atoms in the condensate.

overlapped using a beam combiner with a low power HeNe laser at 632 nm. This al-

lows us to align the red visible beam at low risk. We also use thermal paper for lower

powers, and at intermediate power, the beam is aligned using thermal image plates

from Macken Instruments. These metal plates are coated with thermal-sensitive phos-

phors that fluoresce when exposed to UV light. However, if they are heated, which

is what the CO2 laser beam does, the incident beam will be visible as a dark dot.

4.3.2 Cross Trap

While interesting physics occur in the single focus trap, it is an anisotropic trap, and

the weak axial confinement elongates the condensate enough so that its size becomes

larger than the spin healing length. In other words, spin domains are energetically

allowed to form. While the study of spatial spin structures in a BEC is an interesting

topic in itself, we want the option to observe the spin dynamics in a trap smaller

than the spin healing length, where no domains can form. We achieve this goal
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by perpendicularly intersecting the CO2 laser beam with an 852 nm beam at their

respective foci. The two lasers’ radial trapping potentials are comparable, so the

result is a nearly spherical trap, which we refer to as the cross trap. This 852 nm

beam also operates as an optical dipole force trap, but in the FORT regime described

earlier. The power of the 852 nm laser is adiabatically ramped up (400 ms) towards

the end of evaporation, once the lens mover has finished moving and the single focus

trap is in its final position. An AOM controls the power, which is usually in the

20–30 mW range. At the chamber, the beam is focused into a 20 µm waist, which

must precisely overlap with the 20 µm waist of the CO2 laser beam. The alignment

process is delicate and requires the use of a 2D translation stage with micrometers.

4.3.3 Magnetic Field Coils

In total, the experiment utilizes six pairs of coils. Three generate bias magnetic fields,

while the other three create gradients. The bias coils are made of thin copper wire,

and are mounted directly on the windows and flanges of the vacuum chamber for

compactness. This means that they are not in the optimal Helmholtz configuration,

but the size of the condensate is small enough that the effect is negligible. On the

other hand, it guarantees that the coils are centered on the chamber. The three

pairs are symmetric along three perpendicular axes, two of them being the CO2 laser

axis and the vertical axis. These bias coils cancel the Earth’s magnetic field, which

is ∼ 0.5 G in Atlanta [132], as well as any constant bias magnetic fields generated

nearby. Obviously, they also can provide a bias field in any direction. The pair

centered around the CO2 laser axis produces the field that defines the quantization

axis. Another use of the bias coils is to change the direction of the gradient used for

Stern-Gerlach separation of the atoms clouds.

Out of the three pairs of gradient coils, two are similar in construction. The first
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pair consists of the MOT coils, which provide the gradient necessary for the space-

dependent energy shifts described previously. They are mounted above and below

the octagon, close but not in contact with the chamber, in a nearly anti-Helmholtz

configuration. Since the zero of the gradient defines the location of the MOT, the

coils can be displaced to move the MOT, which is sometimes necessary to optimize

the overlap between the collapsed MOT and the optical trap. The top coil can be

moved vertically and tilted, while the bottom one is free to move horizontally.

The second pair of gradient coils consists of the auxiliary gradient coils. As their

name indicates, they provide an additional gradient, with a symmetry axis along the

CO2 laser beam. They are too far apart to be in an exact anti-Helmholtz configura-

tion, but what is needed is a gradient, not necessarily a linear gradient. They have

two main roles. The first has been previously mentioned: the purifying gradient used

during evaporation, in order to begin the experiment with a pure mF = 0 BEC. The

second role is to generate a Stern-Gerlach type field to separate the atoms of different

spin projections after they are released from the trap. That way, the three clouds

do not overlap and the atoms in each cloud can be counted separately. For both of

these actions, the current is raised to the maximum setting available by the current

power supply, which is over 500 A. For this reason, the gradient coils are made of

1/4” copper pipe and are water cooled to prevent them from melting. Both of these

pairs of gradient coils use the same power supply, and the current is switched between

them using insulated-gate bipolar transistors (IGBTs). The IGBTs can handle the

high current, but for no longer than a few seconds, which is typically the duration of

the purification process.

Finally, a third pair of smaller gradient coils is wrapped on the CO2 laser view-

ports. Their purpose is to cancel the magnetization that has gradually developed

in the vacuum chamber over the years. The residual gradient is in the order of

100 mG/cm, which is small compared to the gradients delivered by the other coils,
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but must be dealt with lest it has an effect on the spin dynamics.

4.3.4 Microwaves and RF

We have seen that we can use laser light in the near IR for trapping and cooling.

In addition, we can access the transitions between the F = 1 and F = 2 hyperfine

manifolds of the 52S1/2 energy level, as well as the transitions between the Zeeman

sub-levels. These transitions can be driven using microwave and RF frequencies, as

shown in Fig. 4.2. In this study, these transitions were principally used to measure

and cancel the external magnetic fields, and to calibrate the number of atoms counted.

In previous experiments, they have also been used to prepare the BEC in a particular

state, or to measure the projection of a spin component on an axis other than the

quantization axis. Examples of these additional capabilities can be found in earlier

studies from our lab [32, 41, 42, 119, 131].

As mentioned above, the microwave and RF frequencies give us access to the

transitions in the 52S1/2 level. The |F = 1,mF = 0〉 → |F = 2,mF = 0〉 (|1, 0〉 →

|2, 0〉 for short) is called the clock transition, at ∼ 6.8 GHz. It was named such

because it shows no sensitivity to the linear Zeeman effect and is used in atomic

clocks. However, it is sensitive to the magnetic field through the “clock shift” of

575 Hz/G2 [124]. The other levels have non-zero values of mF and show a linear

energy offset for small fields due to the linear Zeeman shift, also called the anomalous

Zeeman effect. This shift is close to ∆ = 700 Hz/mG for both F = 1 and F = 2,

but they differ slightly (by ∼ 0.5%) because of the small nuclear part gI of the Landé

g-factor gF that scales the energy shift between magnetic sub-levels. For more details,

see [41, 124]. By using the clock frequency or by detuning the frequency by ±∆, the

atoms can be transferred from |1, 0〉 to |2,−1〉, |2, 0〉, and |2,+1〉.

The microwaves are sent to the atoms via a horn made of a copper cylinder of

1.5” diameter [41, 131], and are free-spaced coupled into the chamber through the
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top window. The orientation is such that no polarization is favored, so all π, σ+,

and σ− transitions are accessible. The microwaves are generated by a HP E4422B

frequency synthesizer that relies on the 10 MHz signal from a GPS receiver for its

frequency reference. The output of the HP E4422B is capped at 4 GHz, and this

limited range means we must use a frequency doubler to reach 6.8 GHz. The signal

also goes through a fast RF switch and an isolator, followed by an amplifier before

going to the horn. A diagram of the setup is shown in Fig. 4.6.
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Figure 4.6: Microwave and RF setup.

The output of the frequency generator is always on, and the switch is activated

through a pulse generator, which allows us to create pulses as short as a few µs. We

control the power of the microwaves through the function generator. A lower power

means that a longer pulse is necessary for the same number of atoms to change state,

but the frequency resolution is higher, as expected from the Fourier transform from

time to frequency domains.

For small magnetic fields, the quadratic Zeeman energy shift is negligible, so the

energy spacing between |1,−1〉 and |1, 0〉 is the same as the one between |1, 0〉 and

|1,+1〉. This means that applying an RF pulse resonant on that transition to a cloud

of atoms in the |1, 0〉 will randomly transfer them to either the |1,−1〉 or the |1,+1〉
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level. The RF radiation is sent to the atoms by a small two-turn coil sitting on the

edge of the top window of the octagon. The coil is part of an LC circuit where a

variable capacitor is tuned such that the circuit is resonant for the frequency used.

The inductance of the coil currently used is 10.3 µH.

4.3.5 Control System

Two computers are used to control the experiment. Basically, the control settings

are entered in one computer, while the other acquires the data. The control com-

puter runs Labview and sends controls to the experiment via National Instrument

(NI) cards, GPIB and serial RS-232. The five NI cards in use send voltages to the

equipment running the experiment. Three cards have analog outputs that generate

voltages between 0 and 10 V, and the two other cards have digital TTL outputs.

Each card has eight channels, so that gives us the possibility to control 40 param-

eters with a time resolution of 10 µs. The cards are synchronized and triggered on

the rising edge of a 60 Hz signal from an AC line. The analog outputs control the

powers of the lasers and their detunings through AOMs, the magnetic field biases and

gradients, and the current to the getter. The digital outputs operate RF switches,

optical shutters, triggers for the cameras and pulse generators, IGBTs, blue lights

and a piston, whose role will be described shortly. The microwaves and RF function

generators, as well as the pulse generators, are controlled through GPIB. The GPIB

control system is notoriously slow compared to the time scales of the experiment, so

the settings are uploaded to the devices before the experimental sequence, and the

sub-millisecond timing is handled by fast RF switches controlled by pulse generators,

who are themselves triggered by the NI cards’ outputs. The lens mover that controls

the 1:1 telescope in the CO2 laser beam path is operated through a RS-232 serial

port, as is the SmartArb function generator, which we use to modulate the power of

the CO2 laser for trap frequency measurements. Just like for the GPIB controls, the
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settings are uploaded as a short program before the experiment, and the machines

execute the program when triggered during the experimental cycle.

A graphical interface is created by Labview. We usually control the experiment by

constructing a timing sequence that will tell each channel what voltage to output, as

that times to change it, and how to change it (step, linear ramp, or more complicated

ramps). All the required information is entered in an Excel spreadsheet. A macro

generates a csv file that is uploaded to Labview, which in turn interpolates between

the control settings and provides each card with a voltage for every 10 µs of the

experimental cycle. We also have the option to use Labview to get each channel to

output a constant voltage, which is helpful for testing and troubleshooting.

4.3.6 Data Acquisition

All the raw data used in this thesis consists of images. We use two cameras: a simple

black and white CCTV camera to observe the MOT, and a high quality Andor camera

to image the BEC. The CCTV camera is a Cohu 2122-1000. Its main purposes are

to provide us with a live feed of the MOT, and to grab a snapshot of the atoms from

the collapsed MOT that have transferred to the dipole force trap. Having a live feed

of the MOT tells us first of all if atoms are getting trapped in the MOT. If a MOT

is present, we can see how large and stable it is, what shape it has, and by keeping

track of its position, a change of its location can reveal an issue about the experiment.

The live feed of the MOT is also used for the coarse alignment of the cross-trap. The

resolution is 768× 494 for a sensor of 6.4 mm × 4.8 mm, and we use the camera with

a 1:1 imaging lens.

The Cohu camera is used in tandem with a PCI-1407 frame grabber. A trigger

from a digital channel causes an asynchronous reset that starts the acquisition of a

single image. The camera noise is too high to precisely image the BEC, but it is good

enough to image the collapsed MOT following the temporal dark MOT sequence.
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The collapsed MOT and the atoms that have started to transfer to the optical trap

can be imaged simultaneously, which is one way to optimize their overlap. When the

image is taken ∼ 300 ms after turning off the MOT trapping beams, all the atoms

have either made it in the CO2 laser dipole force trap or have been lost. To measure

the number of atoms loaded in the optical trap, the atoms are released from the trap

and allowed to expand as they fall for 6 ms before probing them with resonant light

for 100 µs.

The second camera is an Andor iKon, a CCD (charge coupled device) camera with

a high quantum efficiency (> 90% at a wavelength of 780 nm). This efficiency refers

to the conversion rate of photons incident on the sensor to electrons. The sensor is

cooled at −70◦C, which reduces the camera noise. The sensor is 13.3 × 13.3 mm

with a pixel resolution of 1024 × 1024, which yields pixels of 13 µm. Along with a

magnification of 5× (using another lens outside the chamber), a pixel in an image

corresponds to 2.6 µm. With a 16 bit depth for each pixel, this camera is well suited

to image the BEC.

The light is collected in the chamber by a Linus HALO 0.3 8904 lens, a high

aperture laser optics (HALO) with a 5 cm focal length and a high numerical aperture

(NA) of 0.31.

4.4 Imaging

We use two imaging techniques to image the BEC: absorptive and fluorescent imaging.

An excellent review of both techniques and how they are used in our setup is included

in a previous thesis from Eva Bookjans [32], so we will give only a short overview and

present the benefits and disadvantages of each imaging method.

4.4.1 Absorptive Imaging

Absorptive imaging consists of shining a weak collimated probe on resonance with the

cycling transition for a short time, and imaging the shadow of the BEC. This signal
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image is then compared with a reference image taken in the same conditions, but

with no atoms present. The division of both images using imaging software outputs

a clear image of the BEC. The main advantage is that because of the short pulse

(0.1 ms) and the weakness of the probe (a few tens of microwatts), the atoms do not

move much, which yields an excellent spatial resolution, where the shape and spatial

features (such as spin domains) of the condensate can be studied.

However, because of the fluctuations of the absorptive beam between the absorp-

tion and reference frames, getting an accurate counting is not trivial. In this thesis,

we only use absorptive imaging as a qualitative tool. Additionally, the use of coherent

light through several optics can generate interference patterns. The reference image

must be taken as soon as possible following the signal image. The time between the

two images must be short in order to minimize the variation in the probe’s intensity.

We wait 10 ms, which is not enough time to measure two successive complete frames

with the camera. Instead, we only use the top half on the sensor for imaging while

the bottom half is masked off. Between the two images, the charges on the sensor are

shifted to the bottom half of the sensor, and the top is available to image again. This

so-called kinetic imaging is what allows us to take two images in such a short time.

This absorptive imaging method has many uses, and we have taken advantage of

the benefits in the following ways: by observing the shape and expansion of the cloud

after releasing it from the single focus trap over several times of flight (TOF), we can

confirm that the trapped atoms are indeed a BEC, in which case the cloud expands

anisotropically, unlike thermal clouds that expand isotropically. In this thesis, absop-

tive imaging was most commonly used to optimize the alignment the 852 nm beam

for the cross trap, which is done with no TOF. It also allows the detection of spatial

spin domains (or more importantly for this work, the lack thereof). Finally, we use it

to determine the magnification by measuring the speed of the condensate in free fall,

and to optimize the focus of the BEC by translating the camera along the imaging
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axis.

4.4.2 Fluorescence Imaging

Fluorescence imaging uses the MOT beams as a source of light to scatter photons off

the atoms. The beams are as close to resonance with the cycling transition as our sys-

tem allows (6 MHz detuned to the red), but despite this slight detuning that slightly

decreases the fluorescence signal, the high power (30 times the saturation intensity)

mitigates the issue. The probe times used for this thesis range form 200 µs to 400 µs.

These durations are long enough that the cycling beam will start depumping atoms to

the F = 1 hyperfine level, so the repump must also be turned on. The light scatters

off the atoms isotropically, and the photons are collected by the HALO lens described

above. Despite its relatively large numerical aperture of 0.31, the lens covers a small

solid angle and only captures 2.5% of the light, which explains the higher laser power

and longer probe times than for absorptive imaging.

A drawback for this method is the potential heating of the atoms. The radiation

pressure from the MOT beams distorts the cloud of atoms, thus washing out the

spatial features. On the other hand, we can use superpixels made of 4 × 4 pixels to

lower the readout noise of the CCD camera [32]. The benefits of fluorescence imaging

include a linear response between the number of photons collected and the number

of atoms, as long as the optical depth of the cloud is low enough to prevent scattered

photons from being reabsorbed by another atom in the cloud. For this reason, we

let the BEC expand for 22 ms after it is released from the dipole force trap. The

free fall takes place in a Stern-Gerlach gradient magnetic field. This also separates

the centers of the clouds of different spin components by ∼ 900 µm, which is enough

to count the atoms in each state without overlap of the clouds. The longer probe

times also increase the signal to noise ratio, and since the light scattered from the

atoms is not coherent, there is no risk of interference patterns. However, the scattered
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light from the walls of the chamber is a disadvantage. To limit this scattering, we

narrow the diameter of the MOT beams to 12 mm during imaging by pneumatically

dropping masks in their path during imaging. However, a background must be taken

and subtracted from every image. A background is thus taken daily, or any time the

camera is moved, by averaging a minimum of 20 shots without atoms present.

The camera outputs images with the electron counts (after amplification of the sig-

nal from the CCD sensor) per pixel. The method to convert the counts to number of

atoms uses RF pulses of various lengths that transfer atoms from |1, 0〉 to |1,−1〉 and

|1,+1〉. The details of the technique are developed in detail in [32, 41], but the basic

concept is the following: the average number of counts (from the amplified number of

electrons) from atoms transferred to the mF = −1 and mF = +1 states is compared

to the variance of the magnetization (difference in the number of atoms transferred

to each state). There is an equal probability of an atom being transferred to each

state, and because of Poissonian fluctuations [32], the variance of the magnetization

scales with the number of transferred atoms. The number of atoms transferred is pro-

portional to the counts of electrons measured per atoms (CPA), while the variance is

proportional to the square of the CPA. Therefore, as the variance of the magnetiza-

tion is plotted against the number of transferred atoms for several RF pulse lengths,

the slope given by a linear fit yields the CPA.

With the CPA determined, the images can be analyzed and the number of atoms

in each cloud counted. Andor cameras come with their own interface and software,

where we can define counting regions, or regions of interest (ROIs), which gives us

an estimate of the number of atoms in each cloud, once the background has been

subtracted. A more precise image analysis is performed in Mathematica R©, where

the atom counts per pixel are uploaded. Unlike in Andor where the ROIs are fixed,

a program automatically finds the centers of the atom clouds and centers the ROIs
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around them. This is relevant because the distortion of the clouds caused by fluores-

cent imaging changes the center of the area where atoms are present depending on

the number of atoms in the cloud. In addition to the mean background subtracted

in Andor, the program analyzes every image one by one and determines the amount

of extra scatter image by image by averaging the counts in the regions outside the

ROIs, which is then subtracted to the counts of atoms inside the ROIs. This became

extremely useful when the Andor camera started having issues that caused the back-

ground to fluctuate from shot to shot. This essentially prolonged the usefulness of

the camera before a need for repair. Once the number of atoms per cloud was accu-

rately determined, the data analysis could begin. It was also done in Mathematica R©,

which automatically determined whether the image was a “bad shot.” In rare occa-

sions (< 0.1%), the lens mover would stay still during the experimental cycle, thus

preventing the efficient rethermalization of atoms during evaporation, resulting in a

small atom cloud instead of a BEC. This image would yield a small number of atoms

which would impact the analysis of the rest of the data run, so automatically detect-

ing this kind of image was essential. The subsequent steps included calculating the

means and standard deviations of the numbers of atoms, as well as other quantities

that will be discussed in the following chapters.

To complete the description of the experimental apparatus, we will mention the

cooling requirements. In fact, without cooling, several parts of the experiment would

suffer from instability, affect other pieces of equipment, or even be permanently dam-

aged. The elements depending on a stable temperature for stability include the CO2

laser and the AOM that controls its power. For stability, we use a chiller with a large

thermal bath. It relies on heat exchange with the cold (∼ 10◦C) facility water, and

provides the experiment with a stable supply of coolant (a mix of water and ethylene

glycol) at 17◦C. The elements cooled by the chiller are the CO2 laser head and power

supply, the CO2 laser AOM and its RF amplifier. For the elements that need to avoid
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overheating but do not require stability, we use tap water. The elements cooled this

way are the auxiliary and MOT gradient coils, the IGBTs, the microwave amplifiers,

and the CO2 laser beam dump that receives the beam that is not deflected towards

the vacuum chamber. To prevent accidents, several parts of the experiment are now

rigged with thermocouples, and an alarm rings as soon as a temperature threshold is

reached.
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CHAPTER V

METHODS

In order to measure KZM scaling and extract a scaling exponent, one must first

precisely determine the value of the magnetic field corresponding to the critical point.

The quantities t̂ and q̂ used to determine the scaling exponents express how far the

system resumes evolution from the critical point. Since the location of the critical

point is directly linked to the spinor dynamical rate, which itself depends on the trap

parameters, as well as density and the total number of atoms, a robust method is

needed to accurately and efficiently determine the critical magnetic field. In fact, it is

measured before data is taken in order to characterize the system, but also at regular

intervals during the data runs to make sure that the experiment has not become

unstable, due to the misalignment of the CO2 trapping laser and the 852 nm laser

used for the cross trap, for example.

Once the location of the critical point is known, the ramps lowering the magnetic

field through the critical point can begin. This is how all the raw data used in this

thesis was gathered. As discussed earlier, the KZM predicts the scaling of the freeze-

out time with respect to ramp speed, so the key is to determine where the system starts

to evolve. The method used is to choose a threshold for the fractional population ρ0

in the mF = 0 state. ρ0 is measured at regular intervals during the ramp, and when

it drops under the threshold, the system is considered to have “unfrozen.”

5.1 Critical Magnetic Field Determination

Before every data-taking session, the external magnetic field must be zeroed, and the

magnetic field along the quantization axis must be calibrated, such that the control

setting exactly corresponds to the field at the BEC. Once that step is complete,
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the determination of the magnetic field Bc corresponding to the critical point can

commence.
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0.99

1

t (s)
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Figure 5.1: Evolution close to the critical point (simulation). When the field
is suddenly lowered to a constant field near the critical point, the amplitude of the
spin dynamics is related to how far the constant field is from the critical point. If the
constant field is over the critical point, no measurable evolution takes place. However,
when the field is under the critical point, the system will evolve out of its initial state
of ρ0 = 1. The traces shown go from 240 mG (red) to 250 mG (violet) with a step
of 1 mG, for a critical field of 245 mG. The trace corresponding to the evolution at
a field equal to the critical field is dashed. The slight dip in the dashed trace, which
is too small to be experimentally measured, is due to the finite number of atoms
(5.7 × 104) used in the simulation. For final fields larger than 245 mG, the traces
are practically indistinguishable and remain at ρ0 = 1. The vertical line shows the
evolution time tevol used to compare ρ0 with the data in Fig. 5.2 and Fig. 5.3.

This procedure starts by initializing the system in the polar phase ground state

at a high magnetic field, well above the critical point (Bi ≈ 2 G� Bc), where ρ0 = 1

is the ground state. The magnetic field is then quickly (2 ms) lowered to a fixed

value Bf near the expected critical field. If this final magnetic field value is above the

critical point, the creation of mF = −1 and mF = +1 will be suppressed. However, if

the system finds itself in the ferromagnetic phase, spin-mixing dynamics will occur.
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These spin population dynamics are determined by how far the final magnetic field

is from the critical point. A sample of simulated evolution dynamics for fields close

to the critical point is shown in Fig. 5.1.

The system is allowed to evolve at the constant magnetic field Bf for a time tevol

(ranging from 150 ms in the cross trap to 500 ms in the single focus trap) prior to

measurement, which is long enough to observe spin mixing when the field has been

lowered below the critical point. This process is repeated for several final fields and

the spin population transfer is measured. The mean of the fractional population ρ0

and its standard deviation ∆ρ0 are then plotted against the final value of the field, as

shown in Fig. 5.2. Determining the field for which the system has started to evolve

after tevol would be difficult to precisely determine looking at the data alone. In

Fig. 5.2 for example, ρ0 is still 1 when the final field is 246 mG, but no longer for

242 mG, and ∆ρ0 has also started to increase. This would suggest that the critical

field is somewhere between 242 mG and 246 mG, but solely relying on these two data

points is delicate, since intrinsic fluctuations and experimental noise could cause a

slight offset, thus affecting the subsequent data analysis.

Determining the critical field with higher reliability and precision is necessary for

a meaningful investigation of KZM scaling. One of the issues is the small amplitude of

evolution close to the critical point. Previous studies from our group have examined

the evolution of our system following a fast quench [43], which is essentially what is

being performed here, but the final field used in the earlier work was much lower,

corresponding to q ≈ |c| = 0.5 qc. In that case, the mean value of ρ0 dipped as low as

0.3 during early evolution. In comparison, the value of q for a field 5 mG under Bc is

q ≈ 0.96 qc (when Bc = 245 mG), in which case ρ0 remains above 0.98 (red trace in

Fig. 5.1). This small amplitude of evolution motivated us to take measurements for

a larger range of fields, allowing us to determine the critical field with much higher

precision.
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Figure 5.2: Evolution compared with simulations best match. Measurements
of ρ0 (red squares) and ∆ρ0 (blue circles) after 500 ms of evolution at constant mag-
netic field (shown on the horizontal axis) following a fast (2 ms) drop from 2 G
(q � 2|c|). The data is compared with simulations, represented by solid lines. The
simulations are performed using the same method as the experiment with a critical
field setting of 245 mG (represented by a the vertical line). The shaded regions show
± one standard deviation.

Once ρ0 has been measured after the evolution time tevol at different fields, its

mean value is plotted and compared with simulations. An example of data and the

simulation that is the best match is shown in Fig. 5.2, where not only ρ0 but also its

standard deviation ∆ρ0 show good agreement. This method is robust in the sense

that it mitigates the effect of possible outliers due to the finite amount of data taken

and experimental fluctuations.
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Figure 5.3: Evolution compared with range of simulations. Measurements of
ρ0 (red squares) and ∆ρ0 (blue circles) after 500 ms of evolution at constant magnetic
field (shown on the horizontal axis) following a fast (2 ms) drop from 2 G (q � 2|c|),
similarly as for Fig. 5.2. In this plot, the data is compared with five simulations,
represented by solid, dashed, and dotted curved lines. The solid line shows the
simulation performed using a critical field of 245 mG, whereas the dashed and dotted
lines represent simulations with critical fields of ±1 and ±2 mG, respectively. The
vertical lines indicate the different critical fields used in the simulations.

The precision of the determination of the critical point can be estimated by com-

paring the data with simulations performed using other critical fields, as illustrated in

Fig. 5.3. The figure shows five simulations overlaid with the data, displaying the best

match (solid) as well as ±1 mG (dashed) and ±2 mG (dotted). Note that the grey

envelopes do not represent uncertainties, but instead guide the eye to differentiate the

ranges of different critical fields. Even though all the data points do not fall right on

one single trace, it is possible to pick the best match amongst the several simulations.
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Depending on the quality of the match, the uncertainty in the determination of the

critical field can be as low as 1 to 2 mG.

5.2 Magnetic Field Ramps

We now discuss the magnetic field ramps that will cause the system to cross the critical

point at different speeds, which is how we will determine the KZM scaling. Once the

critical point is precisely known, the next step is to monitor the spin populations as

the magnetic field is ramped down through the critical point. The system is prepared

in the polar ground state at high magnetic field (B ≈ 2 G � Bc), and all the atoms

are in the mF = 0 state. The system is first brought closer to the critical point by

rapidly (2 ms) lowering the field such that q = q0 = 2.2|c| = 1.1qc. This value is still

over the critical point, so the system is still very close to the polar ground state.

The system is then driven through the critical point by decreasing the magnetic

field such that q varies linearly as q(t) = q0(1− t/tr), where tr is the time it takes to

ramp the field from q = q0 to q = 0. Figure 5.4 shows the magnetic field for a 100 ms

ramp.

The reason why the field is first quickly lowered close to the critical point is due

to the limited lifetime of our condensates. In an ideal system, the slow ramps would

start at higher fields to guarantee a slow evolution towards the critical point, but due

to atom loss, that is unrealistic. In fact, for such ramps, too high a fraction of the

atoms would be lost by the time the system reaches the critical point. More details

about atom loss and the model we use to mitigate its effect during the data analysis

will be covered in the next chapter.

The experiment is repeated for several values of tr. The fastest ramp uses tr =

100 ms, whereas the slowest ones last up to 4 s in the cross trap and 9 s in the single

focus trap. The limited lifetime also affects our ability to test very long ramps, since

a large number of atoms would be lost by the time the system reaches the critical
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Figure 5.4: Magnetic field control settings. Magnetic field control settings for a
100 ms ramps from 500 mG to 0 mG. The initial magnetic field is 2 G, where the
system is in the polar ground state. For this data set, the field is then quickly lowered
to 500 mG (q ≈ 1.1qc), followed by the slower ramp, whose beginning is indicated
by the left vertical line. This ramp is linear in q, but recall that B ∝ √q. The data
is measured 15 ms after the beginning of the slow ramp (right vertical line), and at
regular times thereafter.

point. Immediately after entering the ferromagnetic phase, the system rests around

what was the polar ground state, which is now an unstable equilibrium point, and

eventually, quantum fluctuations cause the system to evolve out of this equilibrium.

After a freeze-out time t̂ following the quantum phase transition, the system starts

evolving along the separatrix. ρ0 is measured multiple times at regular intervals

during the ramp, and its mean and standard deviation ∆ρ0 are determined.

The real magnetic field at the condensate actually has a short delay compared

to the control field. This is due to the inductive delay of the bias coils along the

quantization axis that control the field responsible for the quadratic Zeeman energy

q. By measuring the magnetic field during a fast rise and fast drop of the control value,
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Figure 5.5: Magnetic field response to the control settings (simulation). The
actual magnetic field (red dotted line) at the condensate is delayed from the control
values (blue solid line). The real field is calculated from the control field using an
exponential decay time constant of 1 ms and numerically integrating the decay using
steps of 10 µs. This plot corresponds to a ramp time of 100 ms, but the focus is on the
initial part, when there is a significant offset between the control and real magnetic
fields. After 15 ms, which is when the measurements begin, the real field follows the
control with a delay of 1 ms. In other words, the control field changes slower than how
fast the real field can follow the control. This only breaks down during and following
the fast drop from 2 G, as well as at the very end of the ramp when the field nears 0,
as the field drops sharply due to the B ∝ √q relationship, but that has no effect on
our current study.

we have determined that the real field reacts to the control with a 1 ms exponential

decay time constant. The effect of this delay is analyzed with simulations to estimate

the effect on the data. An example showing both the control value and a numerical

simulation of the actual magnetic field is shown in Fig. 5.5. The spin populations are

measured starting from 15 ms after the beginning of the ramp, when the gap between

the control and the actual magnetic field is negligible.

74



□ □ □ □
□

□
□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

ρ0

t (s)

q/|c|

tc

□ □ □ □
□

□
□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

■ ■ ■ ■ ■ ■ ■ ■ ■

■

■
■

■ ■ ■
■

■
■

■

■
■

■ ■ ■ ■ ■ ■ ■
■ ■

■

■
■

■
■

■
■

■

■

■

■
■

0 0.1 0.2 0.3 0.4 0.5

0.8

0.9

1

2 1.8 1.6 1.4

Figure 5.6: Measurement of spin populations during a magnetic field ramp.
The mean of ρ0 (red squares) during a typical experimental run where the magnetic
field is slowly ramped down through the critical point such that q decreases linearly.
The system shows good agreement with a simulation (black curve and envelope show-
ing ± one standard deviation) for long evolution times beyond the freeze-out period.
The top axis shows q in units of |c|, and the vertical dashed line at q = 2|c| marks
the critical point, which is crossed after an evolution time tc.

5.2.1 Measurement of Spin Populations

Figure 5.6 and Fig. 5.7 show data taken during a ramp where the field goes from

500 mG to 0 mG in 1.25 s. Since this study focuses on the scaling of the “freeze-out”

time with ramp speed, data was only taken for the first 500 ms of the ramp. A given

point in a plot such as Fig. 5.6 is the mean of the output of at least 10 measurements

(usually more, depending on the data set). Since every measurement takes at least

20 s and there are up to 21 points per plot, it usually takes over one hour to generate

a single plot like Fig. 5.6. As will be shown in the next chapter, one ramp ends up

as a single point in a plot of t̂ or q̂. That is why data was often only taken for the

initial parts of the ramps, at least until the system has clearly started to evolve.
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Figure 5.7: Standard deviation of spin populations during a magnetic field
ramp. The standard deviation ∆ρ0 (blue circles) of ρ0 in the same experimental
conditions as in Fig. 5.6. ∆ρ0 agrees also agrees well with a simulation long after the
critical point, marked by the vertical dashed line.

5.3 Experimental Settings

Measurements were performed using several settings. One of the parameters explored

was the trap geometry. Most of the data used in this thesis was taken using a cross

trap, but the single focus trap was also used. Even though the condensate in the

single focus trap is no longer in the single mode approximation, this trap geometry

provides a longer lifetime, as well as a different range of magnetic fields and dynamics.

Spin domains were observed for long evolution times, but their formation took place

long after the system had crossed the threshold indicating the resuming of dynamics.

See Appendix B for details about the data set taken in the single focus trap.

Experimental conditions also changed somewhat between data sets. The ZnSe

lens used to focus the beam from the CO2 laser inside the chamber ended up being

coated with rubidium after years of operating in rubidium vapor, to a point where

76



■

■ ■

■
■

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ●

▲

▲ ▲ ▲

▲ ▲
▲

▲

▲

▲
▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲

▼
▼

▼
▼

▼ ▼ ▼

▼
▼ ▼

▼

▼

▼

▼ ▼ ▼ ▼ ▼ ▼ ▼

◆
◆

◆
◆

◆
◆

◆
◆

◆
◆ ◆

◆
◆ ◆

◆
◆ ◆ ◆ ◆ ◆

ρ0

q/|c|

q ramps

Ramp time

■

●

▲

▼

◆

150 ms

200 ms

250 ms

400 ms

1500 ms

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Figure 5.8: Spin populations for several ramp times. Measurements of ρ0 for
different ramp times tr as a function of q. The legend shows the times tr to ramp
down the magnetic field from q = 2.2|c| to q = 0. The longer ramps show evolution
after a smaller change in q than the shorter ramps. For the latter, the system stays
“frozen” in the polar ground state (ρ0 = 1) until a larger change in q, as expected
from the KZM. The vertical dashed line indicates the location of the critical point,
and the envelopes are guides for the eye.

the intensity of the laser caused them to heat up and glow (see Appendix C). These

thermal effects induced motion of the single focus trap, thus causing limitations as

the overlap with the 852 nm laser beam used for the cross trap was compromised.

In parallel, the data-taking techniques were refined as our understanding of the

KZM increased. While the first data sets took data for the whole ramp time, we later

focused on the early part of the ramp, discarding the times beyond the beginning

of evolution of the spin populations. Measuring the evolution of the system all the

way through the ramp allowed us to get a good qualitative picture of the behavior

of the system, but determining the KZM scaling was the main priority, so we turned

our interest to shorter evolution times. This strategy motivated us to increase the

time resolution of the measurements by taking data with shorter time steps, thus

pinpointing the moment at which evolution started with more precision. Spending
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less time taking data during the long-term evolution also allowed us to take more

shots per data point in the early evolution. The spin populations at a given time

have an intrinsic distribution [43] due to the quantum nature of our system, which

is why taking a large number of shots for every measurement time is crucial to the

validity of the study.
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CHAPTER VI

RESULTS

The previous chapter described the methods used to gather the data necessary to

study KZM scaling. This chapter presents the analysis of the raw data and the

extraction of scaling exponents to characterize KZM scaling.

6.1 KZM Scaling

6.1.1 Determining the Beginning of Spin Dynamics

The measurements of ρ0 during different ramp speeds through the critical point as

described in the previous chapter provides the raw data we need to extract the scal-

ing exponents. Once a precise measurement of the location of the critical point is

obtained, the next step is to determine the moment when the system resumes its

adiabatic evolution towards the ferromagnetic ground state after the freeze-out time

[62]. The process consists of using thresholds for ρ0 and ∆ρ0. In the case of ρ0, it

is measured at regular intervals during the ramp, and the time when its mean drops

below the threshold determines the beginning of evolution out of its initial state. The

same threshold is used for every ramp. The choice of the threshold does not signif-

icantly impact the value of the scaling exponent, as long as it is not too far from

the initial value of ρ0 = 1 [62]. For this work, the ρ0 threshold is ρ0 = 0.99, unless

indicated otherwise. The similar approach is taken with ∆ρ0, except the system is

deemed to have resumed evolution once ∆ρ0 goes above the threshold. The choice of

threshold is ∆ρ0 = 0.005. Comparisons of data analyzed using ρ0 and ∆ρ0 thresholds

shows no significant difference. Unless stated otherwise, the rest of this thesis will

focus on the analysis of the evolution of ρ0.

The measurements of ρ0 are performed at regular intervals of evolution time that

79



depend on the ramp length and the data set. For each ramp, the measurements

are analyzed to determine the first measured time tunder at which the mean of ρ0

falls below the threshold, ρ0,th. Let tover be the last measurement time before the

threshold is crossed. This gives a first estimation of the time tth when the system

actually crosses the threshold: tover < tth < tunder. This estimation can be narrowed

by simply performing a linear interpolation between the values of ρ0 at tover and tunder

and finding the time corresponding to the value of ρ0 that matches ρ0,th. The precision

with which tth is determined incorporates the time step size between measurements.

In order to determine the freeze-out time t̂, we also need to know the time tc at

which the system crosses the critical point. The magnetic field ramps are designed

such that the quadratic Zeeman energy q changes linearly during the ramp such that

q(t) = q0(1− t/tr). (6.1)

Using the fact that q(tc) = qc = qzB
2
c , where qz ≈ 71.6 Hz/G2, it is straightforward

to find that

tc = tr

(
1− qz

q0

B2
c

)
.

The freeze-out time t̂ = tth − tc can now be calculated. However, this approach does

not take atom loss into account. The effect of atom loss and how we model it by

incorporating it into the analysis is detailed in the next section.

6.1.2 Loss Model

Since the condensates used in our experiment have limited lifetimes (2 s in the cross

trap and 15 s in the single focus trap), it is essential to know how the loss of atoms

affects the spin dynamics. The effect is significant for the intermediate and long ramps

and must be characterized and incorporated in the data analysis for an accurate

determination of the KZM scaling. Here we present a brief derivation of the expected

scaling of the spinor dynamical rate |c| with the total number of atoms in the BEC.

This theoretical prediction is then compared with experimental data.
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Within the Thomas-Fermi approximation [4], a relationship between the spinor

dynamical rate c and the number of atoms can be calculated. When the kinetic energy

is neglected, the density of atoms in the trap is given by

nTF(~r) = max

[(
µ− U(~r)

c0

)
, 0

]
, (6.2)

where µ is the chemical potential, U(~r) is the trap potential, and c0 = 4π~2a/m is

the mean field density interaction strength. a = (2a2 + a0)/3 is an average scattering

length which depends on the s-wave scattering lengths aF for the collisions with total

spin F , and m is the mass of the atom.

In a harmonic potential with frequencies ωi,

nTF(~r) =
15N

8πΠiRi

max

[(
1−

3∑
i=1

r2
i

R2
i

)
, 0

]
, (6.3)

where N is the total number of atoms and the Thomas-Fermi radii Ri are given by

Ri =

√
2µ

mω2
i

. (6.4)

Using the normalization condition
∫
n(~r)d3r = N , the chemical potential of the

condensate can be calculated:

µ =

(
15~2m1/2

25/2
Nω̄3a

)2/5

, (6.5)

where ω̄ is the mean trap frequency. From Eq. (6.2), we get a peak density n0 = µ/c0.

The value of c is determined using c ≡ c2N
∫
|φ(~r)|4d3r, where c2 = 4π~2

3m
(a2 − a0).

Solving the integral gives ∫
|φ(~r)|4d3r =

4

7

µ

Nc0

. (6.6)

The factors of N in front of and inside the integral in the expression for c cancel out,

which yields

c =
4

7

c2

c0

µ. (6.7)
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Recall from Chapter 3 that the relative coupling strengths c0 and c2 only depend on

the scattering lengths and the mass of the atom. In other words, the only dependence

on the number of atoms N in c comes form the chemical potential µ from Eq. (6.5):

c =
4

7

c2

c0

(
15~2m1/2

25/2
Nω̄3a

)2/5

. (6.8)

This expression yields the scaling we are interested in: c ∝ N2/5.

The next step is to test this derivation with experimental data. Using the tech-

nique described in the previous chapter, the magnetic field corresponding to the criti-

cal point is determined for different numbers of atoms in order to quantify the effect of

atom loss on the spin dynamics. The spinor dynamical rate |c| is calculated from the

magnetic field B. Recall that the quadratic Zeeman energy q is given by q = qzB
2,

where qz ≈ 71.6 Hz/G2, and that the critical point takes place at q = qc = 2|c|.

Figure 6.1 shows a measurement of |c| vs. the number of atoms in the condensate.

The inset shows the data in a log-log plot, showing a clear power law dependence.

The exponent determined from a linear fit of the logarithm of the data gives 0.44(2),

which is within 10% of the 0.4 exponent predicted by theory.

This relationship between the spinor dynamical rate and the number of atoms

in the condensate allows us sensibly to incorporate atom loss in the data analysis.

Instead of using the freeze-out time t̂ = tth − tc, which does not take atom loss into

account, we use the dimensionless quantity q̃(t) = q(t)/|c(t)|. A measurement of the

critical field at the beginning of the ramp Bc(t = 0) is needed, as well as the total

number of atoms N(t) in the condensate throughout the ramp. The initial critical

field is measured in order to know when the system crosses the critical point, and

the total number of atoms is recorded every time a measurement is performed. To

characterize the measurement of N(t), we use a double exponential model to fit the

measured total numbers of atoms:

N(t) =
1

2
N(0)

(
e−t/τ1 + e−t/τ2

)
. (6.9)
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Figure 6.1: Spinor dynamical rate |c| as a function of total number of atoms.
The critical magnetic field was measured for different numbers of atoms in the con-
densate using the technique described in the previous chapter. The data shown was
taken in the single focus trap. The right axis shows the critical magnetic field. The
inset shows the data in a log-log plot, exhibiting a clear power law dependence. A
linear fit of the logarithm of the data yields an exponent of 0.44(2), in close agreement
with the 2/5 predicted form theory.

This model fits our our data well, and an example is shown in Fig. 6.2.

Equation (6.9), with the experimentally determined values of τ1 and τ2, is used to

calculate the changing spinor dynamical c(t) with

c(t) = c(0)e
2
5
N(t)
N(0) , (6.10)

where c(0) = 1
2
qzB

2
c (0).

The loss of atoms and the resulting shift in c has two direct consequences on the

analysis. First, it changes the time at which the system crosses the critical point,

since the critical field Bc is related to c by Bc(t) =
√

c(t)/2
qz

. In fact, this is the

limiting factor that prevents us from using the data from the longest ramp times in

the analysis. The losses shift the critical point so much that the slowest ramps are

not able to reach the critical magnetic field until the very end of the ramps, at which

point the evolution of the spin populations can no longer be measured.
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Figure 6.2: Total number of atoms in the condensate during a magnetic
field ramp. The total number of atoms in the condensate is measured in the cross
trap. The solid line shows a double exponential fit as in Eq. (6.9), yielding an initial
number of atoms N(0) = 38981(251), and lifetimes τ1 = 1.20(3) and τ2 = 4.32(7).
These parameters are used to incorporate the effect of atom loss in the data analysis.

The other consequence resulting from the drift in c has to do with how fast the

parameters in the Hamiltonian are evolving as the system crosses the critical point.

Losses do not affect the rate of change of the magnetic field during the ramp, but

since the critical field is changing due to losses, the rate of change of the ramped

field relative to the drifting critical point is affected. These effects are illustrated in

Fig. 6.3 and Fig. 6.4.

The KZM predicts scaling of the freeze-out period with respect to the time it

takes to cross the critical point. Without atom loss, the quantity used as this time is

simply the ramp time tr from the applied ramp q(t) = q0(1− t/tr). We use this linear

ramp in q in the experiment because it is easy to implement, but the predictions of

the KZM would be equally valid in the case of a more complicated ramp shape. This

holds true as long as the passage through the critical point can be linearized close to
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Figure 6.3: Effect of atom loss on q and q̃. The ramp times tr shown are, from
red (steepest) to violet: 100 ms, 250 ms, 500 ms, 1 s, 2 s, 3 s, and 4 s. Every ramp
starts from 500 mG (q ≈ 17.9 Hz and q̃ ≈ 2.17, given an initial critical magnetic field
Bc = 480 mG). Plots (a) and (c) illustrate the loss-less case: q decreases linearly with
time, as does q̃ = q/c since c remains constant. The horizontal dashed lines show
the critical point (q = 2|c| ≈ 16.7 Hz and q̃ = 2). Plots (b) and (d) show q and q̃
when atom loss is included in the analysis. The loss of atoms is modeled by a double
exponential decay, as illustrated in Fig. 6.2. In plot (b), the q ramps remain linear,
but the value of qc corresponding to the critical point decreases with time (dashed
trace), following the dropping value of |c|, as modeled by Eq. (6.10). In plot (d), the
critical point remains at q̃ = 2 (horizontal dashed line), regardless of the value of c,
but the q̃ ramps are distorted by the changing c. The faster c changes, as is the case
during early evolution times, the slower the drop in q̃. Comparing the solid (with
loss) and dashed (no loss) color lines in (d) clearly shows that atom loss not only
delays the time at which the system crosses the critical point, but also lowers the rate
of change of q̃ at the critical point.
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Figure 6.4: Effect of atom loss on the critical time tc and the rate of change
of q̃ at the critical point. As in Fig. 6.3, the ramp times tr shown are, from red
to violet: 100 ms, 250 ms, 500 ms, 1 s, 2 s, 3 s, and 4 s. For both plots, the circles
represent the loss-less case, and the squares show the atom loss case. The dashed
lines are guides for the eye. Plot (a) illustrates the delay caused by atom loss to the
time tc at which the system crosses the critical point. Plot (b) shows how the rate of
change of q̃ at the critical point becomes less negative with the loss of atoms.

the transition, in which case a characteristic time τQ is used, such that τQ = 1/q̇ at

the critical point. Due to atom loss, we cannot rely on tr or τQ for the data analysis,

so we need a time scale to describe how fast the system crosses the critical point. We

use the rate of change of q̃ = q/|c| at the critical point. For each ramp, a characteristic

ramp time τ̃Q ≡ 1/
∣∣ ˙̃q(tc)∣∣ is calculated, where ˙̃q(t) = d

dt

(
q(t)
|c(t)|

)
.

Similarly than for t̂, we can now derive an expression using q̃ as a variable:

q̂ = q̃(tc)− q̃(tth) (6.11)

where tc and tth are the times the system crosses the critical point and the assigned

threshold, respectively.

6.1.3 Error Analysis

Once the effects of atom loss have been characterized and included in the data analy-

sis, the next step is to calculate the uncertainties to use when determining the KZM

scaling. The sources include the uncertainty in the determination of the time tth at
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which the system crosses the critical point and the uncertainty in the critical mag-

netic field Bc. The finite time steps taken while collecting data, as well as the finite

number of measurements for a given evolution time, also contribute to the final error

when determining the scaling exponents.

We will begin with the uncertainty when determining tth. As described earlier

in the chapter, tth is found for a given ramp speed by finding between which two

consecutive data points the mean of ρ0 (or its standard deviation ∆ρ0) crosses the

predetermined threshold. This first step is followed by taking a linear interpolation

of the data between the two points, and finding the intersection with the threshold,

which results in the value of tth for the given ramp. However, measurements in our

system are subject to an intrinsic uncertainty. In fact, both ρ0 and ∆ρ0 show non-

Gaussian distributions during the evolution, which were studied in [43], so accounting

for this quantum noise in the analysis is essential. For every evolution time, between

10 and 20 measurements (depending on the data set) of the spin populations are per-

formed, from which we extract the mean and standard deviations of ρ0. As described

earlier, the mean of ρ0 is used to find tth. From the mean and standard deviation of

ρ0 we calculate ρ−0 = ρ0 −∆ρ0 and ρ+
0 = ρ0 + ∆ρ0. The upper and lower bounds for

the uncertainty in tth are found by finding when ρ−0 and ρ+
0 cross the ρ0 threshold.

The same method as for finding tth from ρ0 is used. The error range used for the rest

of the data analysis is t−th < tth < t+th, where t−th and t+th are the times when ρ−0 and ρ+
0

cross the threshold, respectively. This is illustrated graphically in Fig. 6.5. The lower

bound t−th corresponds to the intersection between the red horizontal line showing the

ρ0 threshold of 0.99 and the dashed line connecting the lower ends of the error bars,

which are the ρ−0 values defined above. The same reasoning is applied to ρ+
0 and the

upper ends of the error bars in order to find t+th.

The same method is used to find tth with ∆ρ0. However, unlike for ρ0 where the

amplitude of the uncertainty was simply given by the standard deviation of the ρ0
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Figure 6.5: Measurements of ρ0 during a magnetic field ramp. The data shown
was taken during a ramp lowering the field from 500 mG to 0 mG in 1 s. Each point
and its associated error bars correspond to the mean of and standard deviation of
10 measurements at a given time. The solid red line that connects the data points
illustrates how the time tth when ρ0 crosses the threshold is determined. Graphically,
tth corresponds to the x-coordinate of the intersection between the line connecting
the points and the horizontal red line, which shows the threshold of ρ0 = 0.99. The
time tth is represented by the vertical dashed line. Similarly, the upper and lower
ends of the error bars are connected by gray dashed lines. The edges of the darker
shaded region around the vertical dashed line, which show the uncertainty in tth, are
determined by the intersection between the horizontal red line and the gray dashed
lines. The lighter shaded regions show the uncertainty added by the finite time step
between the measured evolution times. The vertical red line shows the time tc of the
critical point, and the shaded area is the uncertainty in its position. For this ramp,
tc = 0.016+0.017

−0.017 s, tth = 0.136+0.036
−0.022 s, and the time step is 25 ms. This results in the

values and errors of t̂ and q̂ shown in the inset.

measurements, we need a way to estimate the error in ∆ρ0 so that we can assign an

uncertainty to the value of tth determined using ∆ρ0. When measuring a quantity

f , the fractional uncertainty for the standard deviation ∆f from a sample of N

measurements is given by [133]

∆(∆f)

∆f
=

1√
2(N − 1)

. (6.12)
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This result is applied to ∆ρ0, which gives the uncertainties shown by the error bars

in Fig. 6.6. Using this method, values of tth with an uncertainty can be extracted

from both the mean of ρ0 and ∆ρ0.
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Figure 6.6: Measurements of ∆ρ0 during a magnetic field ramp. Similarly as in
Fig. 6.5, values for t̂ and q̂ can be determined using ∆ρ0. tc and its uncertainly are the
same as when using ρ0, but tth and its uncertainty may differ slightly. The threshold
is ∆ρ0 = 0.005. The magnitude of the error bars is determined using Eq. (6.12).

Another source of uncertainty lies in the determination of the critical magnetic

field Bc. As described in the previous chapter, we have a robust method for determin-

ing Bc by taking measurements after a short evolution time at constant fields around

the critical field. The error on the estimation of Bc is determined by looking at the

agreement between the data and simulations, using plots of both ρ0 and ∆ρ0. Due

to the finite number of measurements and experimental noise, every data point may

not agree with simulations, which are performed by averaging the output of hundreds

of runs. Since the simulations are performed by numerical integration, there is no

analytical function to fit the data to and get an error from a fitting algorithm. There-

fore, the uncertainties for Bc are estimated by visual comparison of the data with
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simulations. The typical uncertainties range from 1 mG to 3 mG. Data sets where

the comparison with simulations is not satisfactory to estimate Bc with a low enough

error are deemed inconclusive and retaken. This uncertainty in Bc is significant; it

affects how precisely the critical time tc is known, and to a lesser extent, the rate

of change of q̃ = q/|c| at the critical point because the initial value of |c| (and its

subsequent drift due to atom loss) follows directly from the initial value of Bc.

As mentioned earlier, the time step size between measurements is also taken into

account when calculating the error in t̂ and q̂. We can unequivocally determine a

range for tth by finding the times before and after ρ0 crosses the threshold. However,

we assign tth a value by taking a linear interpolation between the data points at these

two times. The real value of ρ0 likely evolves more smoothly than the jagged solid red

line in Fig. 6.5. Therefore, an uncertainty must be assigned to ρ0 to account for this

interpolation method. The time step between two consecutive measurements is used

as an extra error, which will be combined with the other sources of uncertainty. The

effect of adding this uncertainty is reflected in the lighter shaded regions in Fig. 6.5.

The figures displaying the ρ0 raw data as well as the extracted values of t̂ and q̂ and

their respective uncertainties for every ramp of the data sets used in this thesis are

shown in Appendix D.

6.1.3.1 Combining Uncertainties

The sources of uncertainty are combined to yield a total uncertainty for t̂ and q̂.

Every ramp time generates a single point that will be used to determine the scaling

exponent. The fitting algorithm will be given weights to assign to each point, which

depend on the associated error. This allows the outputs of the fit to reflect not only

the quality of the fit itself, but also the reliability based on the error of each point.

The first step is to combine the error from tth and the error due to the finite time

step tstep. The range t−th < tth < t+th, where t−th and t+th are the times when ρ−0 and ρ+
0
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cross the threshold, respectively, is widened by an amount equal to the time step for

the considered ramp. This is accomplished by subtracting and adding tstep/2 to the

bounds of the original error range. The combined error from the spread in ρ0 and the

finite time step results in: t−th − tstep/2 < tth < t+th + tstep/2. The original error range

t−th < tth < t+th is represented by the darker shaded region around the vertical dashed

line in Fig. 6.5. The lighter shaded area corresponds to the widening caused by the

finite time step uncertainty. Note that the errors ∆t−th = tth −
(
t−th − tstep/2

)
and

∆t+th =
(
t+th + tstep/2

)
− tth are not necessarily equal, since t−th and t+th are determined

from the errors in ρ0, which can vary significantly throughout a ramp. In Fig. 6.5,

for example, the shaded area to the left of the vertical dashed line (indicating tth)

is narrower than the one to the right. This is due to the changing magnitude of the

error bars from point to point. In the case of Fig. 6.5, the error bars grow larger as

ρ0 drops under the threshold, which results in a larger uncertainty to the right of tth.

The uncertainty ∆Bc found when determining the critical magnetic field Bc is

incorporated in the error for tc, which is the time at which the system crosses the

critical point. This error is calculated by determining the times t−c and t+c at which the

system would cross the critical point if the critical magnetic field were B+
c = Bc+∆Bc

or B−c = Bc −∆Bc, respectively. Note that a higher critical magnetic field will make

the system cross the critical point sooner in the ramp, which is why t−c corresponds

to B+
c and vice versa, with t−c < t+c . These times t−c and t+c form the bounds of

the uncertainty range for tc. Note that, as in the determination of tc, atom loss

is incorporated, since it delays the crossing of the critical point, as illustrated in

Fig. 6.4a. In addition, due to the exponential nature of the decay of the total number

of atoms in the condensate, the number of atoms lost between t−c and tc and the

number of atoms lost between tc and t+c will not be the same, thus creating a small

imbalance between ∆t−c = tc − t−c and ∆t+c = t+c − tc. This uncertainty in tc is

represented by the shaded area around the solid vertical line in Fig. 6.5. The difference
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in the width of the shading to the left and right of the line is subtle and not noticeable

in Fig. 6.5, but it is non-negligible in longer ramps and always taken into account

when calculating the total uncertainty in t̂ and q̂. The same method is used for the

analysis with ∆ρ0, and the uncertainty ranges are displayed by the blue shaded areas

in Fig. 6.6.

The errors ∆tth and ∆tc are then added in quadrature to get the total error in t̂:

∆t̂+ =

√(
∆t+th

)2
+ (∆t+c )2 (6.13)

and

∆t̂− =

√(
∆t−th

)2
+ (∆t−c )2. (6.14)

These errors will become vertical error bars when t̂ is plotted against the character-

istic ramp time τ̃Q. We must now turn our attention to τ̃Q and determine how to

incorporate uncertainties if needed. Recall that τ̃Q is the inverse of the rate of change

of q̃ evaluated at the time then the system crosses the critical point: τ̃Q = 1/
∣∣ ˙̃q(tc)∣∣,

where q̃(t) = q(t)/|c(t)|. This means that τ̃Q will be impacted by the uncertainties

in tc, which follow from the uncertainties in Bc. The error in τ̃Q is extracted from

the values τ̃−Q and τ̃+
Q that come from calculations using B−c and B+

c as the critical

magnetic field. The errors in τ̃Q are thus ∆τ̃−Q = τ̃Q − τ̃−Q and ∆τ̃+
Q = τ̃+

Q − τ̃Q. Once

again, ∆τ̃−Q and ∆τ̃+
Q are slightly different. These errors will result in horizontal error

bars when plotting t̂ against τ̃Q.

The methods described above give error estimations for t̂, but we are also inter-

ested in q̂, since it incorporates atom loss by including the changing spinor dynamical

rate c. Recall that q̂ = q̃c − q̃th, where q̃c = q(tc)/|c(tc)| and q̃th = q(tth)/|c(tth)|. The

errors in tth and tc calculated earlier will be reflected in the error for q̂, but one can not

get the error in q̂ simply by converting the total t̂ error. Instead, the uncertainty in q̃

is calculated step by step from the bounds of the error ranges for the relevant times.

For example, to find the uncertainty in the value of q̃ as ρ0 crosses the threshold, we
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consider q̃+
th = q̃

(
t−th
)

and q̃−th = q̃
(
t+th
)
. Note the changing sign in the upper index,

which is due to the decreasing nature of q̃ with time. Switching the plus and minus

signs ensures that q̃−th < q̃th < q̃+
th. Consequently, the errors for q̃th are ∆q̃−th = q̃th− q̃−th

and ∆q̃+
th = q̃+

th − q̃th.

Similarly, an uncertainty can be assigned to q̃c, which is the value of q̃ at the

critical point. By definition, q̃c = q(tc)/|c(tc)| = 2. However, the uncertainty in tc,

which follows from the error in determining Bc, propagates an uncertainty in q̃c. This

uncertainty is determined by calculating q̃−c = q̃ (t+c ) and q̃+
c = q̃ (t−c ), where t−c and t+c

have been defined earlier. Once again, the plus and minus signs are exchanged in the

upper indices. It follows that the errors for q̃c are ∆q̃−c = q̃c− q̃−c and ∆q̃+
c = q̃+

c − q̃c.

Similarly as for t̂, the errors for q̃th and q̃c are added in quadrature, resulting in a

global uncertainties for q̂:

∆q̂+ =

√(
∆q̃+

th

)2
+ (∆q̃+

c )2 (6.15)

and

∆q̂− =

√(
∆q̃−th

)2
+ (∆q̃−c )2. (6.16)

With the values and uncertainties in t̂, q̂, and τ̃Q now well defined, the determi-

nation of the scaling exponent characterizing the KZM scaling is now possible.

6.1.4 Extraction of Scaling Exponents

In order to determine the scaling exponents characterizing the KZM scaling, t̂ and q̂

are plotted against τ̃Q, and the scaling exponents are extracted from fits to the data.

The data was originally fitted to a power law function:

t̂ = A× (τ̃Q)B (6.17)

where A and B are fitting parameters. This method is biased to the large values

of t̂ and q̂, however, which becomes evident when plotting the data and the line

93



corresponding to the power law fit and visually examining the quality of the fit. To

remove this bias, the scaling exponents are determined by fitting the logarithm of the

data to a linear function:

log10 t̂ = A′ +B′ log10(τ̃Q) (6.18)

where A′ and B′ are the fitting parameters. Note that A′ corresponds to log10A,

and B′ should be equal to B, but due to the discrepancy in the fitting methods,

that is not necessarily the case. Linear fitting the logarithm of the data treats all

points in the plot more evenly than when fitting the data to a power law. Calculating

the logarithm of the data is trivial, but converting the uncertainties is a slightly

more involved process, as one cannot simply take the logarithm of the magnitude of

the error bars. This approach is particularly vulnerable to small errors, as it yields

negative uncertainties when the error is less than 1. Therefore, another method was

used, which is summarized as follows: for a data point (x0, y0), where the uncertainties

in x0 are ∆x−0 and ∆x+
0 and the uncertainties in y0 are ∆y−0 and ∆y+

0 , the errors in

log10(x0) will be

∆(log10(x0))− = log10(x0)− log10(x0 −∆x−0 ) (6.19)

and

∆(log10(x0))+ = log10(x0 + ∆x+
0 )− log10(x0). (6.20)

The same process is applied to y0. These calculations are necessary to display the

uncertainties as error bars in the log-log plot and to determine the weights assigned

to each point for the linear fits of the logarithm of the data. The fits are performed

in Mathematica R©, and a weight given by 1/∆f 2
i is applied to each point, where each

measurement fi has an uncertainty ∆fi. The best fit is found using the Broyden-

Fletcher-Goldfarb-Shanno (BFGS) algorithm [134].
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6.1.4.1 Data Sets

The data used in this thesis was gathered in four separate data-taking sessions ranging

from January 2014 to December 2014, resulting in four distinct data sets. Each data

set uses the same concept of magnetic field ramps that decrease q linearly through the

critical point, as described in Chapter 5. While all data sets give the same qualitative

results, some changes in the details of how the data was taken yield some differences,

which are analyzed and compared with simulations in the following chapter. The

experimental settings of each data set are listed in Table 6.1.

Table 6.1: Data sets. This table describes the conditions in which the data used in
this thesis was acquired.

Date Trap Geometry Comments
1 January 2014 Cross trap Data taken for whole ramps
2 March 2014 Cross trap Data focusing on initial part of ramps
3 November 2014 Cross trap Longer lifetime and higher resolution

than data sets #1 and #2
4 December 2014 Single focus trap Very long lifetime with slower dynamics

The first three data sets used a cross trap geometry, for which the size of the

condensate is smaller than the spin healing length, therefore preventing spin domains.

However, the data set #4 was taken in a single focus trap. Unlike in the cross trap, a

condensate in this cigar-shaped trap is no longer in the single mode approximation,

and the formation of spin domains is energetically allowed. A detailed description

and analysis of the methods and results from data set #4 is presented in Appendix

B.

The results for data set #2, as well as the fits and comparison with simulations,

are shown in Fig. 6.7 and Fig. 6.8. For every data point, a simulation is performed

with the same experimental parameters (ramp time, number of atoms, and initial

value of c) and their corresponding errors, calculated in an identical way as the data.

The simulations generate values of t̂ and q̂, as well as their errors. The points
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(b) Scaling exponents: data: −0.80(8), simulations: −0.79(7).

Figure 6.7: Plots of t̂ and q̂ generated using ρ0 (data set #2). Fit range: 0.048
< τ̃Q < 1.24.
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(a) Scaling exponents: data: 0.17(4), simulations: 0.19(4).
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(b) Scaling exponents: data: −0.81(4), simulations: −0.80(3).

Figure 6.8: Plots of t̂ and q̂ generated using ∆ρ0 (data set #2). Fit range:
0.048 < τ̃Q < 1.24.
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corresponding to the outputs of each simulation are not shown — instead, the sim-

ulations are plotted by interpolating between points as a gray dashed line, with a

grey envelope displaying the uncertainty. The insets show the data and simulations

plotted in a log-log plot. The power law fits are represented by the color and black

solid lines for the data and simulations, respectively.

Table 6.2: Summary of scaling exponents determined using ρ0.

(a) Summary of t̂ scaling exponents

Data set Data Simulation
1 0.29(9) 0.32(7)
2 0.19(8) 0.21(7)
3 0.25(11) 0.32(8)
4 0.19(10) 0.27(6)

(b) Summary of q̂ scaling exponents

Data set Data Simulation
1 −0.70(9) −0.66(7)
2 −0.80(8) −0.79(7)
3 −0.75(11) −0.67(8)
4 −0.80(10) −0.72(6)

Table 6.3: Summary of scaling exponents determined using ∆ρ0.

(a) Summary of t̂ scaling exponents

Data set Data Simulation
1 0.29(6) 0.25(3)
2 0.18(4) 0.20(3)
3 0.22(6) 0.28(3)
4 0.20(5) 0.27(3)

(b) Summary of q̂ scaling exponents

Data set Data Simulation
1 −0.70(6) −0.73(3)
2 −0.81(4) −0.80(3)
3 −0.77(6) −0.71(3)
4 −0.80(5) −0.73(2)

The data clearly deviate from a power law fit at large τ̃Q. The causes of this

discrepancy are likely due to the large number of atoms lost from the trap by the

time the system reaches the critical point during the longest ramps. The limits of

the loss model used in the data analysis is explored in the following chapter by using

loss-less simulations. The fit is performed using only the linear region of the data,

indicated by solid markers, where the effect of losses is limited; the points represented

by empty markers are excluded from the fit. The results from the fits for all of the

four data sets studied for this thesis are summarized in Table 6.2 and Table 6.3. For

better comparison of the different data sets, the exponents are also combined and

displayed in Fig. 6.9 and Fig. 6.10. The t̂ and q̂ plots for all the data sets can be
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found in Appendix D.
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Figure 6.9: Summary of t̂ exponents. The dotted horizontal line represents the
scaling exponent of 1/3 predicted by the KZM.
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Figure 6.10: Summary of q̂ exponents. The dotted horizontal line represents the
scaling exponent of −2/3 predicted by the KZM.
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The results show the anticipated power law scaling, except for the slowest ramps

which tend to deviate from the power law behavior. The scaling exponents differ

slightly from the predictions of the KZM, but they agree well with simulations per-

formed using the experimental parameters.

6.2 Concluding Remarks

In this chapter we presented the analysis of our data and the determination of scaling

exponents for t̂ and q̂. The loss model used to incorporate the effect of limited trap

lifetimes was presented, and the steps of the error analysis were described. In the

following chapter, we will use simulations to explain the discrepancy between the

results and the KZM prediction, and also explore a wider range of parameters that

are inaccessible experimentally.
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CHAPTER VII

COMPARISON WITH SIMULATIONS

In the previous chapter, we determined scaling exponents from our experimental data.

Recall from Chapter 2 that the KZM predicts the following scaling for our system:

t̂ ∼ τ̃
νz

1+νz

Q ∼ τ̃
1/3
Q and q̂ ∼ τ̃

−1
1+νz

Q ∼ τ̃
−2/3
Q , (7.1)

where τ̃Q is the inverse of the rate of change of q̃ at the critical point, and the critical

exponents ν = 1/2 and z = 1 have been used.

The scaling exponents for t̂ listed in Tables 6.2 and 6.3 are slightly smaller than

the value of 1/3 that the simple theory predicts, both for the data and the simulations

performed in same conditions as the experiment. Similarly, the scaling exponents for

q̂ are slightly more negative than the predicted exponent of −2/3. In this chapter,

we use simulations to explore the causes for the discrepancies between our data and

theory, which are mostly due to the finite lifetime of the condensate. This finite

lifetime limits the ability to investigate asymptotically long ramps and also prevents

starting the ramps at a very high magnetic field; both of these limitations give rise

to the observed discrepancy of the measured (and simulated) scaling exponents as

compared to the KZM model. The presence of impurities in the form of unwanted

pairs of mF = ±1 atoms in the initial state is also explored.

7.1 Simulations

The data is compared with mean field and quantum dynamical simulations. The mean

field simulations are performed by numerically integrating the equations of motion

of the order parameter ψ = (ζ1, ζ0, ζ−1)T . These three coupled differential equations

were derived in Chapter 3 and are shown in Eq. (3.21). However, our initial state is
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the polar ground state, where all the atoms are in the mF = 0 energy level. This

state does not evolve according to these equations, even in the ferromagnetic phase

where the state is a hyperbolic fixed point. The evolution seen experimentally is due

to quantum fluctuations.

(a) 1× 106 atoms (b) 4× 104 atoms

Figure 7.1: Initial distributions of states in the polar phase space. The
semi-classical simulations are initialized with 1000 samples, randomly chosen with
the constraint that Sx and Qyz have Gaussian probability distributions. In general,
the initial distributions of S⊥ and Q⊥ are not Gaussian, but for this simulation,
Sy and Qxz are initially set to zero, therefore resulting in Gaussian distributions
in S⊥ and Q⊥. The standard deviation of the Gaussian distributions is set by the
standard quantum limit (SQL), calculated from the initial number of atoms N by
SQL = 1/

√
N . The distributions shown are for (a) 1 × 106 atoms, and (b) 4× 104

atoms (as in the experiment), which explains the different spreads. The system is
initialized in the polar phase at B = 2G� Bc, so all the energy contours (blue lines)
are phase winding. The energies of the contours are arbitrarily chosen, but are the
same for both figures. The red dot shows the location of the ground state.

In order to account for these quantum fluctuations in the mean field picture, a

quasi-probability distribution is generated from the quantum noise of the initial Fock

state |0, N, 0〉 [33]. This type of simulation using mean field dynamical equations

along with an initial distribution mimicking quantum fluctuations is referred to as

semi-classical. The effect of the initial number of atoms on the initial distribution of

states is illustrated in Fig. 7.1.
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In the context of this study, this initial distribution essentially corresponds to a

set of states slightly perturbed from the polar ground state. The quadratic Zeeman

energy q is a parameter in the mean field equations of motion, so implementing a

linear ramp in q, as in the experiment, is trivial. In order to account for atom loss,

the spinor dynamical rate c is updated with the number of atoms in the condensate

such that c ∝ N2/5, as derived in Chapter 6. The model can also be simulated by using

the quantum Hamiltonian in the Fock basis, resulting in the same dynamics. More

details about the simulations and the generation of the quasi-probability distribution

can be found in Refs. [33, 41].

7.1.1 Loss-Less Simulations

7.1.1.1 Simulations in Ideal Conditions

We begin by presenting simulations performed in ideal conditions: infinite conden-

sate lifetime, allowing asymptotically long ramps, and ramps starting at a magnetic

field much higher than the critical magnetic field. These ideal conditions provide a

benchmark from which we will attempt to recover the scaling exponents predicted by

the KZM.

We simulate ramps starting at a higher magnetic field (1 G) than in the experiment

(500 mG), with a range of ramp times reaching well beyond the longest ramps used

in the experiment. The dynamics of a condensate initialized with 1× 106 atoms are

compared with a condensate with 4 × 104 atoms (as in the experiment) in Fig. 7.2.

The trace in Fig. 7.2a shows q̂ for the larger number of atoms, and Fig. 7.2b illustrates

the effect of the lower number. Even though the plots show a slight curvature, good

quality power law fits can be preformed in different ranges of ramp speeds. The

range of slow ramps shown in red in Fig. 7.2a satisfies the asymptotic settings used

to derive the KZM scaling: slow ramps starting from a high magnetic field with a

large number of atoms. In these ideal conditions, the scaling exponent extracted from

simulations matches the value of −2/3 predicted by the KZM, which was also found
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(a) 1× 106 atoms
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(b) 4× 104 atoms

Figure 7.2: Loss-less simulations starting from a high magnetic field. The
ramps start from 8.7|c| (1 G), which is much higher than the critical point, as com-
pared to the experiment. A fit of the faster ramps (blue) with 0.05 < τ̃Q < 0.28 gives
a scaling exponents of −0.76(5) for (a) and −0.76(4) for (b). The slowest ramps (red)
with τ̃Q > 1.83 yield scaling exponents of −0.67(2) for (a) and −0.62(3) for (b).
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using numerics by Damski and Zurek in Ref. [62].

The reason the faster ramps deviate slightly from the KZM is the following: the

derivation of scaling exponents described earlier assumes that the system is close to

the critical point, which is where the universal critical exponents in the expressions

for the energy gap appear. In our case, we approximate the energy gap ∆ in the

ferromagnetic phase (q < qc) by

∆ =
√
q2
c − q2 ≈

√
2qc(qc − q), (7.2)

and in the polar phase (q > qc) by

∆ = 2
√
q(q − qc) ≈ 2

√
qc(q − qc). (7.3)

These approximations are only valid when q ≈ qc. This means that for the derivation

of the scaling exponents to be valid, the system must be driven slow enough such

that the dynamics cease and resume their adiabatic evolution where the energy gap

approximation is appropriate. As mentioned earlier, the limited trap lifetimes in our

system prevent us from performing asymptotically long ramps.

A comparison of simulations with numbers of atoms ranging over three orders of

magnitude is also shown in Fig. 7.3. There is no appreciable difference in the slopes

of the four traces in the plot. In fact, the scaling exponents in Table 7.1 reveal that

there is no significant difference within fitting errors.

From Fig. 7.2 and Fig. 7.3, we conclude that the scaling exponent is insensitive to

atom numbers ranging from 104 to 107, but the exact q̂ ∼ τ̃
−1

1+νz

Q ∼ τ̃
−2/3
Q predicted

from the KZM is only obtained with very slow ramps.

7.1.1.2 Similar Ramps as in the Experiment

The experiment begins with a condensate prepared at 2 G (q = 17.3qc), which guar-

antees that all the atoms are in the polar ground state. Ideally, the magnetic field

would be slowly ramped down from this high value through the critical point.
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Figure 7.3: Effect of different numbers of atoms (no loss). Loss-less semi-
classical simulation where the ramps begin at 1 G for a critical magnetic field Bc =
480 mG for different numbers of atoms. The numbers of atoms shown are 104 (blue,
bottom), 105 (green), 106 (red), and 107 (orange, top). For a given τ̃Q, q̂ will be
smaller for a smaller number of atoms. This is consistent with the larger SQL for
smaller numbers of atoms, resulting in a wider initial distribution (see Fig. 7.1). This
will shorten the freeze-out time, thus decreasing the change in q̃ before ρ0 reaches its
threshold of 0.99.

Table 7.1: Effect of number of atoms with ramps starting at a high magnetic
field (no loss). This table summarizes the scaling exponents for q̂ extracted from
fits of the traces in Fig. 7.3. The range of the fit is 0.08 < τ̃Q < 0.40. The ramps
start at 1 G, and the ρ0 threshold is 0.99.

Number of atoms Scaling exponent for q̂
107 −0.76(3)
106 −0.75(4)
105 −0.74(5)
104 −0.73(7)

However, the limited trap lifetimes also set a limit regarding how high we can start

the magnetic field ramps. Ideally, one would want to start a ramp at a field where

the spin interactions are completely dominated by the quadratic Zeeman energy term

from the Hamiltonian, and slowly ramp the magnetic field down towards the critical
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point. The magnetic field where we prepare the system in the polar ground state

essentially suppresses any spin dynamics. However, if we were to lower the field using

linear ramps in q starting from that value, we would be constrained to using ramps

that reach the critical point without significant losses, which would result in a fast

rate of change of the field at the critical point. In the lab, a compromise is reached by

starting with a fast drop from 2 G to a value close to the critical field (see Fig. 5.4),

but still sufficiently above it so as to prevent any spin-mixing dynamics.

Figure 7.4a shows a loss-less simulation using a large number of atoms (1 × 106)

and a similar initial quench as in the experiment. The faster ramps show a clear

power law dependence in q̂, followed by an oscillatory behavior as the ramp times

increase. When the number of atoms is reduced to 4 × 104, as in the experiment,

the oscillations are still present, and their amplitude is somewhat increased, as shown

in Fig. 7.4b. For the faster ramps, corresponding to the regions plotted in blue in

Fig. 7.4, the scaling exponents are −0.81(3) for 1×106 atoms and −0.82(4) for 4×104

atoms, confirming that the number of atoms has no effect in the range studied in the

experiment.

The oscillations in Fig. 7.4 are caused by the 2 ms fast quench that lowers the

magnetic field from 2 G to 500 mG. Even though 500 mG is higher than the critical

field of 480 mG and the system is still in the polar phase, the energy contours in the

spin-nematic phase space around the polar ground state suddenly change from circles

to ellipses, as illustrated in Fig. 7.5. Before the quench, the initial distribution that

corresponds to a slightly perturbed polar ground state is circularly symmetric and

precesses around the ground state on the high field circular energy contours, as seen

in Fig. 7.5a. Following the initial fast quench, the energy contours become ellipses,

shown in Fig. 7.5b. As the initially circular distribution precesses around the ground

state, its shape morphs back and forth from circular to elliptical until crossing the

critical point and reaching the transition to the ferromagnetic phase. The ground
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(a) 1× 106 atoms
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(b) 4× 104 atoms

Figure 7.4: Loss-less simulations. The ramps start from 500 mG after a fast 2 ms
drop from 2 G, as in the experiment. (a) is run with a large number of atoms (106),
while the atom number is set at the same value as the experiment (4 × 104) in (b).
The fits of the linear region (blue) with 0.06 < τ̃Q < 0.31 gives a scaling exponent of
−0.81(3) for (a) and −0.82(4) for (b). A fit for the slower ramps (red) for (a) gives an
exponent of −0.64(3) for τ̃Q > 3.58. For (b), the fit yields an exponent of −0.56(5)
with τ̃Q > 2.65.
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(a) Before the quench (2 G) (b) After the quench (500 mG)

Figure 7.5: Initial distributions of states and energy contours before and
after the initial quench. These figures illustrate the effect of the 2 ms quench on
the energy contours in the polar phase space. The distribution is identical to the one
shown in Fig. 7.1. The figures shows energy contours at magnetic fields of 2 G (a)
and 500 mG (b). The critical magnetic field is 480 mG.

state, which lay on the pole of the spin-nematic sphere in the polar phase, drifts

down the (degenerate) sides of the sphere along the S⊥ axis, which happens to be

the major axis of the elliptical energy contours around the polar ground state. The

reaction time of the system depends on the shape and orientation of the distribution

as the system enters the ferromagnetic phase.

At that time, the top pole of the spin-nematic sphere is a hyperbolic fixed point.

As illustrated in Fig. 7.6, a separatrix (green) marks the boundary between the closed

orbits (red) and the phase-winding orbits (blue). A state situated in the vicinity of the

separatrix will evolve parallel to it, clockwise around the ground state. This means

that states in the neighborhood of the pole will tend to evolve towards or away from

it, depending in which quadrant of the polar phase they are located. The quadrants

where S⊥ and Q⊥ have the same sign contain the converging branch of the separatrix,

while the other two quadrants contain the diverging branch.

If the distribution is in a stretched elliptical shape aligned along the diverging

branch of the separatrix, as in Fig. 7.6a, most states in the distribution will be able
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(a) (b)

Figure 7.6: Polar phase space right after the critical point (q̃ = 1.99). The
polar phase space shows the separatrix in green, the phase winding contours in blue,
and a red closed orbit, centered around the ground state represented by a red dot.
The black dots represent 1000 samples initialized with a Gaussian distribution (for
4× 104 atoms) around the pole, as in Fig. 7.1b. (a) shows the distribution during a
1.66 s ramp from 500 mG to 0 mG, and (b) during a 2 s ramp. Due to the precession
of the distribution on the elliptical phase winding energy contours above the critical
point, the distribution will be aligned along the diverging arm of the separatrix in (a),
and the converging arm in (b) as the system crosses the critical point. This results
in oscillations in the q̂ plots for ramps beginning at q̃ = 2.2, as in Fig. 7.4.
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to follow energy contours leading away from the pole, shortening the mean reaction

time of the system. However, if the distribution is in a circular shape, or as an ellipse

aligned with the converging branch of the separatrix at the critical time, as illustrated

in Fig. 7.6b, most states will be evolving around energy contours bringing them back

to the pole and away from the ferromagnetic ground state, thus delaying the evolution

and increasing the freeze-out time.

The peaks of the oscillations in the q̂ plots indicate a larger delay between the

time the system crosses the critical point and the time it reaches the ρ0 threshold.

They correspond to the ramps where the distribution was aligned with the converging

branch of the separatrix. Conversely, the dips correspond to the ramps where the

distribution was stretched and aligned along the diverging branch of the separatrix

right after the critical point. These oscillations are present in both Fig. 7.4a and

Fig. 7.4b, with a slightly smaller amplitude for the larger numbers of atoms.

As shown earlier, starting the ramps at a higher magnetic field eliminates the

oscillations in the q̂ plots, which are only observed when the ramps start at the same

field as the experiment. The comparison of both cases in a single plot is shown in

Fig. 7.7, which reveals that despite the lack of oscillations for the ramps starting at

1 G, the traces seem to observe a similar asymptotic behavior for the longest ramps

shown. Nevertheless, the left side of the plot, which is linear for both simulations,

shows that the scaling exponent is less negative for the ramps starting at higher fields.

The fits from Fig. 7.2b and Fig. 7.4b for the faster ramps were −0.76(4) and −0.82(4),

respectively, and while the ramps starting at a higher field give a less negative scaling

exponent than when starting at a lower field, it is still more negative than the −2/3

exponent from theory. The exponents extracted for different initial magnetic fields

are included in Table 7.2.
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Table 7.2: Summary of exponents from loss-less simulations. This table sum-
marizes the scaling exponents for q̂ extracted from fits of loss-less simulations.

Initial ramp field Number of atoms Fast ramps Slow ramps
1 G 1× 106 −0.76(4) −0.67(2)
1 G 4× 104 −0.76(4) −0.62(4)
0.5 G 1× 106 −0.81(3) −0.64(3)
0.5 G 4× 104 −0.82(4) −0.56(5)
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Figure 7.7: Effect of ramp initial magnetic field (no loss). In this loss-less
semi-classical simulation with 4 × 104 atoms, the ramps that begin at 500 mG as in
the experiment result in the red trace, while the ramps that start at 1 G are shown
by the blue trace. In both cases, the critical magnetic field Bc = 480 mG, and the
threshold for ρ0 is 0.99. This plot shows the overlap of the simulations plotted in
Fig. 7.2b and Fig. 7.4b.

7.1.2 Simulations Including Atom Loss

The loss model we use, which was detailed in the previous chapter, shows good agree-

ment with measurements of the critical magnetic field for a large range of numbers

of atoms, as shown in Fig. 6.1. However, despite clear power law fits shown by the

data for the short ramps, the values of both t̂ and q̂ depart from the power law for

the slowest ramps.
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(a) 1× 106 atoms
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(b) 4× 104 atoms

Figure 7.8: Simulations including atoms loss. (a) Simulation with 1×106 atoms.
(b) Similarly as in the experiment, the initial number of atoms is 4× 104 atoms. Fits
of the linear region (blue) with 0.05 < τ̃Q < 0.31 give scaling exponents of −0.80(3)
and −0.81(4) for (a) and (b), respectively.
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Figure 7.9: Effect of different numbers of atoms (with loss). In this semi-
classical simulation with atom loss where the ramps begin at 500 mG for a critical
magnetic field Bc = 480 mG, q̂ is plotted against τ̃Q for different numbers of atoms.
The numbers of atoms shown are 4 × 104 (red, bottom) and 106 (blue, top). The
shaded regions show ± one standard deviation. The threshold for ρ0 is 0.99. This
figure combines the two plots from Fig. 7.8.

When atom loss is included for simulations, the number of atoms is modeled using

a double exponential N(t) = N(0)
2

(e−t/τ1 + e−t/τ2), with lifetimes determined from the

typical behavior of our experiment. When simulating the conditions in the cross trap,

the lifetimes are τ1 = 1 s and τ2 = 4.5 s. In the single focus trap, which has a much

longer lifetime, we use τ1 = 15 s and τ2 = 30 s. The effect of atom loss is included in

the analysis by changing the spinor dynamical rate c, in the same fashion as for the

data analysis. Unless specified otherwise, the threshold used to determine the return

to the adiabatic regime is ρ0 = 0.99, and the ramp times tr range from 100 ms to 5 s.

For ramps longer than 5 s, the number of atoms lost by the time the system crosses

the critical point is too large to draw meaningful conclusions.

In order to emulate the behavior of our experiment, the simulations use the same

magnetic field ramps as for the data. The linear q ramps start from 500 mG given a
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critical magnetic field Bc = 480 mG, following a fast drop from 2 G. Unlike the loss-

less simulations presented earlier in this chapter, we are constrained by limited trap

lifetimes, which means we cannot initialize the ramps at higher magnetic fields than

the experiment or test very slow ramps, but one parameter that can be investigated

despite atom loss is the initial number of atoms in the condensate. Simulations with

atom loss for 1 × 106 and 4 × 104 atoms are shown in Fig. 7.8. The plot combining

the data from Fig. 7.8a and Fig. 7.8b can be seen in Fig. 7.9. The key point from the

simulations that include atom loss is that despite the offset between the two traces

shown in Fig. 7.9, the higher number of atoms does not change the scaling exponents

for q̂ beyond the fit errors when fitting the same range of parameters used in the

analysis of the data.

Table 7.3: Effect of number of atoms on scaling exponents (with loss). This
table summarizes the scaling exponents for q̂ extracted from fits of the traces in
Fig. 7.8. The range of the fit is 0.05 < τ̃Q < 0.31. The ramps start at 500 mG, and
the ρ0 threshold is 0.99.

Number of atoms Scaling exponent for q̂
1× 106 −0.80(3)
4× 104 −0.81(4)

A comparison of simulations with and without atom loss is illustrated in Fig. 7.10.

The loss of atoms results in an upper limit for τ̃Q. Despite this limitation, the linear

parts of the traces in Fig. 7.10 show good overlap in the range of faster ramps, thus

confirming the validity of the loss model up to an intermediate number of lost atoms.

The scaling exponents from the fits of the linear regions are shown in Table 7.4.

7.1.3 Comparison of Semi-Classical and Quantum Simulations

The simulations presented so far were semi-classical, using the mean field dynamical

equations along with an initial distribution of states that mimics the quantum fluctu-

ations due to the finite number of atoms. Semi-classical simulations are used instead
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Figure 7.10: Effect of atom loss. The effect of atom loss is tested using semi-
classical simulations with 4×104 atoms and ramps starting at 500 mG, with a critical
magnetic field set at Bc = 480 mG. The red line shows the loss-less case, and the
blue line represents the simulation with loss. This plot combines the simulations from
Fig. 7.4b and Fig. 7.8b, and the resulting scaling exponents are in Table 7.4..

Table 7.4: Effect of atom loss on scaling exponents. This table summarizes the
scaling exponents for q̂ extracted from fits of the traces in Fig. 7.4b and Fig. 7.8b.
The range of the fit is 0.06 < τ̃Q < 0.31. The number of atoms is 4 × 104, and the
initial ramp magnetic field is 500 mG, given a critical magnetic field of 480 mG. The
overlap of the traces yielding these scaling exponents are shown in Fig. 7.10.

Without loss With loss
q̂ scaling exponent −0.82(4) −0.81(4)

of quantum simulations simply because the former are orders of magnitude faster to

run, even though the use of graphics processing units (GPUs), recently implemented

by fellow lab member Matthew Boguslawski, is helping to narrow the speed difference

between the two methods.

One may question the validity of using semi-classical simulations over quantum

simulations for the following reason. The KZM theory insists on the fact that the

energy gap between the ground state and the first excited state vanishes at the critical
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Figure 7.11: Comparison of semi-classical and quantum simulations. The
outputs from loss-less semi-classical and quantum simulations for 4 × 104 atoms are
compared. The ramps start at 500 mG, with a critical magnetic field set at Bc =
480 mG, which explains the oscillations for longer ramps. The solid red line is the
output of the quantum simulation, and the shaded region represents one standard
deviation. The blue dots show the output of the semi-classical simulation, performed
with 1000 samples.

point, thus preventing the crossing of the critical point from occurring adiabatically.

However, this claim is only strictly valid in the thermodynamic limit, for an asymp-

totically large numbers of atoms. With ∼ 4 × 104 atoms, the energy gap is actually

non-zero because of the finite size of the condensate. In theory, it is possible to

cross the energy gap without any excitations, provided the ramping is slow enough.

However, given the limitations in the ramp times that were pointed out above, it is

unlikely to cross the critical point slow enough for the limited number of atoms to

have an effect on the dynamics. Even though the finite number of atoms is reflected

in the width of the initial distribution through the standard quantum limit, testing

the effect of this non-vanishing energy gap requires the quantum version of our simu-

lations. A comparison of semi-classical and quantum simulations using 4× 104 atoms
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is shown in Fig. 7.11. The overlap of the two outputs is excellent, thus justifying the

interchangeable use of semi-classical or quantum simulations.

7.1.4 Pollution

One issue we faced is the presence of unwanted atoms in the mF = ±1 sub-levels in

the initial state, which we refer to as pollution or impurities. The reason this pollution

is an issue is that we expect our experiment to begin in the polar ground state, where

all the atoms are in the mF = 0 energy level. During evaporation, a strong magnetic

field gradient is applied along the quantization axis, which induces preferential losses

of mF = ±1 atoms by pushing them along the weak axial confinement of the CO2

laser dipole force trap. This creates a BEC which is uniquely composed of mF = 0

atoms at the end of evaporation. However, data sets #1 and #3 have revealed that

this purification is not consistently reliable, particularly when the cross trap is used.

When pollution was detected, the fractional population of the impurities was typically

lower than 0.2% in each undesirable state, but for a condensate of 4×104 atoms, this

corresponds to 80 atoms.

The reason why this must be taken into account is that the KZM assumes that

the system is initialized in the ground state. Having these impurities corresponds to

a slightly excited state, more akin to thermal fluctuation than the inherent quantum

fluctuations which are expected to drive our system out of an unstable equilibrium as

it enters the broken-symmetry ferromagnetic phase. Due to the difficulties of bringing

certain systems to the ground state, such as ion chains [93–96], the case of crossing

QPTs in nonequilibrium steady-states has also been studied [135]. Nevertheless, if

the system is not in the ground state, the unwanted atoms can be considered “seeds”

for the unfreezing of the system out of the impulse period. Intuitively, the polluting

atoms could precipitate the evolution of the system, thus influencing the freeze-out

time t̂ and the related q̂. The presence of impurities is not a new problem in our
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experiment. It has been discussed, and the potential effect has been quantified in

previous studies, namely in the experiment presented in Ref. [43], which dealt with

the evolution of the spin populations out of the polar ground state after an instant

quench through the critical point.

In addition to the unwanted atoms in the initial state, the creation of additional

mF = ±1 atoms has also been detected in data sets #1 and #3 before the system

crosses the critical point. During that time, the system is still in the polar phase since

the magnetic field is higher than the critical field Bc, and all the atoms should remain

in mF = 0, which is the polar ground state. This means some mechanism other than

spin mixing is taking place. We have determined the cause to be linked to the 852 nm

light used for the cross trap. In the events when impurities were being created above

the critical point, turning the cross trap off rids the system of pollution. In addition,

increasing the power of the 852 nm laser increased the rate of creation of impurities.

We believe the mF = ±1 atoms could be created by off-resonant excitations by the

852 nm laser. The D1
87Rb line has transitions around 795 nm [124]. An off-resonant

excitation to one of the 52P1/2 energy levels followed by a decay to the 52S1/2 could

explain the creation of impurities. The straightforward way to permanently avoid

this problem would be to replace the 852 nm light by the output of a fiber laser at

1064 nm. The much larger detuning from the optical transitions of the D1 and D2

lines should remove the risk of off-resonant excitations.

7.1.4.1 Data Analysis of Data Sets with Pollution

Despite the initial pollution and the appearing of unwanted atoms during evolution

above the critical point, the data sets showing pollution can still be analyzed and

compared to the clean sets. Values of t̂ and q̂ can still be extracted using two methods.

The first method relies on the fact that despite the slow linear decrease in ρ0

before the critical point, the value of ∆ρ0 remains constant, as shown in the plots
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(b) ∆ρ0 with pollution.

Figure 7.12: Measurements of ρ0 and ∆ρ0 with pollution. This data is taken
during a 3 s ramp from 500 mG to 0 mG, with a critical magnetic field of 480 mG.
(a) shows a linear decrease in ρ0 before the critical point, followed by a sharper drop
at the end of the freeze-out period. In (b), ∆ρ0 remains under its threshold until the
end of the freeze-out period.
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in Fig. 7.12. For the longest ramps, ρ0 can slowly drop as low as ρ0 = 0.95 before

the more sudden drop caused by spin mixing after the freeze-out period. This rules

out using the ρ0 = 0.99 threshold to determine when the system unfreezes, since

that would yield a negative value for t̂ and q̂. However, ∆ρ0 remains under its

threshold of ∆ρ0 = 0.005 until the end of the freeze-out period. The drop in ρ0

caused by spin-mixing is accompanied by an increase in ∆ρ0, and it is only then

that ∆ρ0 reaches its threshold. The ∆ρ0 measurements corresponding to the ρ0

measurements in Fig. 7.12a are shown in Fig. 7.12b. Once the time tth when ∆ρ0

crosses the threshold is known, the values of q̂ and t̂ can be calculated.
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Figure 7.13: Measurements of ρ0 at constant high magnetic field showing
pollution. The magnetic field is kept at 2 G, which is higher than the critical
magnetic field of 480 mG. Despite ρ0 = 1 being the ground state, ρ0 still decreases
linearly during evolution. A linear fit yields ρ0(t) ∝ −0.013 t.

The second method consists of characterizing the rate of pollution and incorpo-

rating it into the data analysis. The generation of impurities was analyzed by letting

the system evolve at constant fields over the critical point, as shown in Fig. 7.13. The

rate at which ρ0 decreases is practically constant, and a linear fit is performed. The
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rate for Fig. 7.13 is ρ0(t) ∝ −0.013 t. The data is then compensated by adjusting the

populations using the calculated rate, as plotted in Fig. 7.14.

● ● ●
● ●

●

●

●

●

●

■ ■ ■ ■ ■ ■
■

■

■

■
t (s)

ρ0

q
˜

tc0 1 2
0.9

0.95

1

2 1.6 1.2 0.8 0.4

Figure 7.14: Measurements of ρ0 with pollution compensation. The values of
ρ0 from Fig. 7.12a are adjusted to compensate for the linear decrease in ρ0 due to
pollution by using the data from Fig. 7.13.

7.1.4.2 Simulations with Pollution

In order to estimate the effect of pollution on our system, we use quantum simulations

with N = 4×104 atoms. The ramps start at 500 mG, given a critical magnetic field of

480 mG, similarly as in the experiment. However, instead of initializing the system in

the |0, N, 0〉 Fock state, we set k pairs of atoms in the mF = ±1 states, which results

in an initial Fock state of |k,N − 2k, k〉. This is a particular state that is unlikely

to exist in the laboratory. Indeed, one would expect a more complex superposition

of Fock states, but the approach used is the most straightforward way to create a

polluted initial state in the quantum simulation.

Simulations have been run with different numbers of impurities, and the results
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Figure 7.15: Quantum simulations with pollution. Quantum simulations are
performed using an initial Fock state |k,N − 2k, k〉, where N = 4 × 104 is the total
number of atoms and k is the number of pairs of atoms in the mF = ±1 states. The
ramps start from 500 mG with a critical magnetic field Bc = 480 mG. The top red
trace is the baseline with no pollution, and the numbers of pairs k shown are 1 (blue),
2 (magenta), 3 (brown), 6 (green), and 11 (orange) pairs. The ρ0 threshold is 0.99.
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are plotted in Fig. 7.15. Similarly to the decreasing number of atoms in the semi-

classical simulations, the dynamics are accelerated when pollution is present. The

scaling exponents from fits in the linear part are shown in Table 7.5.

Table 7.5: Effect of pollution on scaling exponents. This table summarizes the
scaling exponents for q̂ when pollution is added to the initial state in the form of
k pairs of atoms in the mF = ±1 states. The fits are performed on the traces in
Fig. 7.15 for 0.046 < τ̃Q < 0.231, which corresponds to the linear region for all traces.
The exponents are also displayed in Fig. 7.16.

Pairs of atoms in mF = ±1 Scaling exponent for q̂
0 −0.84(7)
1 −0.85(6)
2 −0.86(7)
3 −0.87(10)
6 −0.89(12)
11 −0.93(17)

It is not clear from looking at Fig. 7.15, but we see in Table 7.5 that the scaling

exponents become more negative for larger numbers of impurities. For the simula-

tion without pollution, the exponent is already more negative than the −2/3 value

predicted by the KZM, which is not unexpected given the parameters used for the

simulation. We saw earlier in the chapter that fits from simulations performed with

ramps starting at a magnetic field closer to the critical point yield scaling exponents

more negative than −2/3. We also argued that fitting the faster ramps also tends to

give a more negative exponent than asymptotically long ramps.

Due to the time-consuming nature of running quantum simulations, a limited

number of ramp times were tested, which explains the larger errors that for semi-

classical simulations. Nevertheless, according to these quantum simulations with

pollution in the initial state, the effect is stronger than what is observed, given that

22 pollution atoms out of a total of 4 × 104 can shift the scaling exponent from

−0.84(7) to −0.93(17).
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7.1.4.3 Effect of Impurities on Scaling Exponents

As suggested above by simulations, pollution in the form of pairs of ±1 atoms in the

initial state seems to have a noticeable effect on the scaling exponents. The trend

shown is that increasing pollution makes the scaling exponent for q̂ more negative.

However, as made clear in the bottom of Fig. 7.16, the fitting errors significantly

increase with the number of pairs, and the error bars still overlap with the exponent

given by the simulation without pollution. Out of the four data sets analyzed in this

thesis, two showed signs of pollution: data sets #1 and #3. Using the first method

described previously to compensate for pollution yields very similar scaling exponents

extracted from ρ0 and ∆ρ0. When comparing the scaling exponents from data sets

#1 and #3 with those from data sets #2 and #4 (no pollution), the data sets with

pollution show less negative exponents, even though the error bars from every data set

still overlap. The scaling exponents extracted from simulations performed without

impurities in similar conditions as the experiment are in stronger agreement with

the results from the clean data sets. The data shows that additional impurities are

created during the subsequent evolution, which is more complicated to implement

numerically. We have also mentioned earlier that the initial Fock state is unlikely to

happen in the lab. Attempting more complex initial states may give more insight in

the role of pollution.

7.2 Concluding Remarks

The simulations in this chapter have proven useful to compare with our data and to

go beyond the experimental constraints encountered in the lab, mainly a result of

the limited lifetime of the condensate. Figure 7.16 presents a summary of the scaling

exponents extracted from the data and the simulations studied in this chapter. We

have shown the equivalence of quantum and semi-classical simulations, thus justify-

ing the interchangeable use of the two methods. We initially studied the system in
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Figure 7.16: Summary of scaling exponents. The scaling exponents for q̂ from the
experimental results and all the simulations are combined. The 1 M and 40 k labels
indicate the number of atoms in the condensate (1 × 106 and 4 × 104, respectively).
For the simulations without loss, the exponents are grouped by ramp speeds and
by initial magnetic field (1 G or 500 mG). The pollution in the form of number of
pairs of atoms in the mF = ±1 state is indicated in the quantum simulations. The
gray line and shaded envelope indicate the scaling exponent and error from the semi-
classical simulation performed in the same conditions as the experiment, and the
vertical dashed line indicates the KZM theory value of −2/3.
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asymptotic conditions, characterized by long ramps starting much higher than the

critical point, with a large number of atoms and infinite condensate lifetime, and

found that the scaling exponents converge to the KZM theory value. We also ana-

lyzed the consequences of atom loss and the effect of the initial number of atoms on

the dynamics. When comparing the results from our data with simulations performed

with experimental parameters, we determined that the scaling exponents determined

experimentally matched well with simulations and were also slightly lower than the

value predicted by the KZM.
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CHAPTER VIII

CONCLUSION AND OUTLOOK

The focus of this thesis is the study of our system as it crosses a second-order quantum

phase transition at a finite rate. In this context, we gave an overview of phase transi-

tions, which range from simple first-order classical phase transitions to more complex

continuous quantum phase transitions occurring at absolute zero. The history behind

the inception of the Kibble-Zurek mechanism was presented. This theory was orig-

inally developed to predict the density of topological defects following the crossing

of a continuous phase transition, and the scaling of their density with quench speed.

Based on the premise that the energy gap between the ground state and the first ex-

cited state vanishes during a continuous phase transition, it also predicts a freeze-out

time where the dynamics cease to be adiabatic in the vicinity of the critical point.

The scaling of the time between the crossing of the critical point and the recovery of

adiabatic evolution as the system is driven through the critical transition at a finite

speed is the key measurement of this thesis. After having described our experimental

apparatus, we presented the methods used to gather the data used in this study, as

well as the data analysis including a loss model to determine the power law scaling

exponent characterizing the dependence of the freeze-out time with the speed the

system is driven through the critical point. A power law scaling was observed for

the faster magnetic field ramps in the experiment, with a departure from the power

law scaling for very slow ramps. The experimental results were discussed and com-

pared with simulations, which suggest that the differences with the predictions from

the KZM were likely due to atom loss and the resulting limitations in driving pa-

rameters. In fact, when simulations were performed in ideal conditions, with a large
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number of atoms and asymptotically slow ramps starting at very high magnetic field,

the critical scaling predicted from the KZM was recovered.

8.1 Future Work

As a closing to this thesis, we will now present an outlook in the form of some potential

future projects to be performed by our group.

8.1.1 High Precision Measurements

As shown in Chapter 3, a measurement of the critical magnetic field Bc is equivalent

to a measurement of the spinor dynamical rate c, given that c = 1
2
qzB

2
c . Therefore, a

precise measurement of Bc can lead to the precise determination of quantities relating

to the spin dynamics of the condensate, such as the chemical potential or the peak

density in the Thomas-Fermi approximation, as detailed in Chapter 6. The peak den-

sity can be expressed as n0 = 7
2
c
c2
∝ B2

c [4]. The uncertainty ∆n0 in the determination

of the peak density is thus related to the uncertainty ∆Bc in the measurement of the

critical magnetic field by ∆n0

n0
= 2∆Bc

Bc
. For a measurement yielding Bc = 0.480(2) G,

the peak density can be determined with a relative uncertainty of ∆n0

n0
= 0.8%.

Alternatively, if the total number of atoms and trap frequencies are well known,

a precise measurement of Bc can result in a precise determination of the coupling

strengths c0 and c2, and eventually yield values for the scattering lengths a0 and a2.

8.1.2 Spin Domains

As previously mentioned, the KZM was originally formulated in the context of the

scaling of topological defects with quench speed during continuous phase transitions.

In this thesis we instead focused our attention to the temporal evolution of the spin

populations alone. Indeed, one of the main points in this thesis was to avoid the

presence of defects in the form of spin domains. This was either performed by having

a BEC small enough that the formation of domains would be energetically suppressed,
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or at least by ensuring that the evolution after the critical point took place before the

creation of domains if the BEC was large enough to allow them to form. However,

now that the temporal scaling has been studied, one can consider moving on to the

study of defect formation when the critical point is crossed at different rates. The

measurement of the number of domains may also reveal a scaling law, establishing

another connection with the KZM.

8.1.3 Energy Gap

A work in progress relies on the fact that the finite number of atoms in our BEC

gives a non-zero value to the energy gap at the critical point. This energy gap is

challenging to measure with the current number of atoms, but along with smaller

BECs and specially tailored magnetic field ramps, the width of the energy gap might

be measured. These conditions also open the door to an adiabatic crossing of the

critical point.

8.1.4 Improving Spin-Nematic Squeezing

Another objective could be improving the measurement of the previously observed

spin-nematic squeezing [33]. This work would primarily require enhancing our imag-

ing capabilities in order to lower the detection limit, currently restricted by several

sources of noise. Having the ability of reliably detecting small numbers of atoms

would also open the door to a whole new category of experiments, including metrol-

ogy techniques.

8.1.5 Measurement of Entanglement

Entangled states are distinctive quantum states that display nonlocal correlations,

demonstrating the non-existence of any local hidden variable theory that is equiva-

lent to quantum mechanics. The first observation of nonlocality and entanglement

came in 1982, in optical systems [136]. However all the experimental realizations of
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entanglement have been limited to microscopic systems (a few atoms or photons). It

remains a challenge to prepare entangled states in many-body systems. Spinor BECs

are known for their characteristic display of non-classical phenomena. The ground

state of a ferromagnetic BEC at low magnetic field is a Dicke state with large value

of total spin, which is known to have a strong many-particle entanglement. Prepar-

ing this state in our system could generate an entanglement of several thousands

of atoms. This state can be prepared experimentally by adiabatically reducing the

applied magnetic field to zero, or by using a reasonably long magnetic field ramp

as the ones used in this thesis. These ramps been already implemented successfully,

but the entanglement of the resulting state has not been established with certainty.

Therefore, entanglement resulting from this technique can be detected by developing

an entanglement witness that can be evaluated using easily measurable quantities

[137]. This would not only lead to a deeper understanding of quantum effects in the

macroscopic world, but also result in useful applications in quantum metrology.
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APPENDIX A

FUNDAMENTAL CONSTANTS AND EXPERIMENTAL

PARAMETERS

Table A.1: Fundamental constants (Source: 2014 CODATA) and useful 87Rb prop-
erties [124].

Quantity Symbol Value
Fundamental Constants

Speed of Light c 2.997 924 58 ×108 m/s (exact)
Permeability of Vacuum µ0 4π × 10−7 N/A2 (exact)
Permittivity of Vacuum ε0 (µ0c

2)−1

Planck Constant h 6.626 070 040(81)×10−34 J s
Elementary Charge e 1.602 176 620 8(98)×10−19 C

Bohr Magneton µB 9.274 009 994(57)×10−24 J/T
Bohr Radius a0 0.529 177 210 67(12)×10−10 m

Boltzmann Constant kB 1.380 648 52(79)×10−23 J/K
Basic Properties of 87Rb

Atomic Number Z 37
Atomic Mass m 1.443 160 60(11)×10−25 kg

Natural Abundance 27.83(2)%
Nuclear Spin I 3/2

Ground (52S1/2) State Properties
Fine Structure Landé g-factor gJ 2.002 331 13(20)

Nuclear g-factor gI −0.000 995 141 4(10)
Hyperfine Splitting νhf 6.834 682 610 904 310(2) GHz

D2 (52S1/2 → 52P3/2) Transition
Wavelength (vacuum) λ 780.241 209 686(13) nm

Lifetime τ 26.2348(77) ns
Decay Rate Γ 2π·6.066 6(18) MHz

|F = 2,mF = ±2〉 → |F ′ = 3,mF = ±3〉
Saturation Intensity Isat 1.669 33(35) mW/cm2

Resonance Cross Section σ0 2.906 692 937 721(66)×10−9 cm2

Scattering Lengths (s-wave)
Scattering Length for Spin-0 Channel aF=0 101.8(2) a0

Scattering Length for Spin-2 Channel aF=2 100.4(1) a0
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APPENDIX B

SINGLE FOCUS TRAP

The first three data sets used a cross trap geometry, which guarantees that the size

of the condensate is smaller than the spin healing length, therefore preventing spin

domains. However, the fourth data set was taken in a single focus trap. Unlike in

the cross trap, a condensate in this cigar-shaped trap is no longer in the single mode

approximation, and the formation of spin domains is energetically allowed.

The formation of spin domains (or the lack thereof) during a magnetic field ramp

can be tested by observing the condensate in absorptive imaging. Absorptive images

of the condensate are taken at regular intervals during the ramp and are shown in

Fig. B.1. The same data is taken in fluorescence imaging and the values of ρ0 are

plotted in Fig. B.2. By comparing the images in Fig. B.1 with the data in Fig. B.2, it

is clear that no domains are formed by the time tth the system crosses the threshold.

In fact, the mF = ±1 clouds are barely visible in the absorptive imaging pictures at

that time. After an evolution of 1 s, ρ0 is less than 0.75, and there are still no visible

domains in the mF = ±1 clouds.

Given the lack of domains at times much later than tth, we are confident that

despite the large size of the condensate compared to the spin healing length, the

determination of a scaling exponent is not impacted by spatial defects. The t̂ and

q̂ plots for this data set (#4) are included in Appendix D, and the data shows a

clear power law. The scaling exponents determined from the data set are tabulated

in Tables 6.2 and 6.3.
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(a) 0.6 s (b) 0.65 s (c) 0.7 s

(d) 0.75 s (e) 0.8 s (f) 0.85 s

(g) 0.9 s (h) 0.95 s (i) 1 s

Figure B.1: Monitoring domain formation in the single focus trap. The
condensate is observed in the single focus trap during a magnetic field ramp using
absorptive imaging. The ramp brings the magnetic field down from 300 mG to 0 mG
in 1.5 s, and the critical magnetic field is 260 mG. The measurements of ρ0 for this
ramp are shown in Fig. B.2. The threshold of ρ0 = 0.99 is crossed between 0.65 s and
0.7 s.
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Figure B.2: Measurements of ρ0 during a magnetic field ramp in the single
focus trap. This plot shows the measurements of ρ0 during a magnetic field ramp
from 300 mG to 0 mG in 1.5 s. The horizontal dashed line shows the threshold of
ρ0 = 0.99, and the vertical dotted line indicates the time the threshold is crossed.
This is the ramp used for the images shown in Fig. B.1.
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APPENDIX C

EXPERIMENTAL ISSUES AND IMPROVEMENTS

In this appendix we address some of the issues faced while taking data for this thesis.

The goal is not only to learn from these problems and improve the experiment, but

also to estimate and if possible to quantify the impact on the results.

C.1 CO2 Laser Modes

Here we will discuss the issues encountered with the mode of the CO2 laser we use

as the main dipole force trap. We assume that the dipole force trap has a perfect

Gaussian mode, and in general it is a good approximation to calculate the trapping

parameters, such as frequency. However, imaging the cross section of the CO2 laser

beam using a thermal camera shows that the mode is not always as clean as we

expect, which sometimes results in double traps.

C.1.1 Laser Beam Cross-Section

Measurements are made with a Pyrocam Spirocon thermal camera. The mode of the

CO2 laser beam looks very much Gaussian until it reaches the AOM which is used to

control the power sent to the chamber. A cross section of the CO2 laser before the

AOM can be seen in Fig. C.1.

The effect of the AOM on the beam can be characterized by looking at the cross

section of the beam at different locations along the beam path. Our setup allows us

to take a shortcut by taking advantage of the motorized translation stage. Recall that

the experiment uses a 1:1 telescope on the way to the chamber that can be lightly

tuned to change the waist of the beam inside inside the chamber. Instead of moving

the thermal camera to multiple locations along the beam path, we can gradually

136



Figure C.1: Cross section of the CO2 laser before the AOM. The mode is close
to Gaussian, not only by looking at the color gradient, but also as indicated by the
white traces showing the amplitude along the horizontal and vertical dashed lines.

translate one of the two lenses from the 1:1 telescope, which effectively displaces the

focus through the plane of the camera. A sequence of cross sections of the beam are

shown in Fig. C.2.

C.1.2 Double Trap

The previous section used cross sections of the CO2 laser beam for its characterization,

but another method can also be used to diagnose the mode of the optical trap. Once

the temporal dark MOT sequence has ended, the collapsed MOT is overlapped with

the optical trap. At that point, the trapping beams from the MOT are turned off, and

the atoms can transfer to the dipole force trap. This takes place during ∼ 300 ms,

after which enough atoms have been collected in the optical trap and evaporation can

begin. If the power of the CO2 laser is turned off right before evaporation starts, the

trapped atoms can expand and reveal information about the trap’s geometry. This

is the technique used to diagnose the shape of the trap for different positions of the
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure C.2: Cross sections of the CO2 laser beam while changing the position
of the lens mover. Between each image, the first lens of the telescope is translated
by 1 mm towards the chamber, which increases the divergence of the beam. The
beam in image (a) is slightly convergent and focuses before the camera. The focus
of the beam is located in the camera’s plane in image (c). The position used for the
loading part of the experiment when the atoms are transferred from the collapsed
MOT to the optical trap corresponds to image (e). The lens mover is then translated
10 mm towards the direction of propagation, which considerably increases the width
of the beam at the chamber.

motorized translation stage.

After the atoms are released from the dipole force trap, they are free to expand

for 2 ms, and then probed for 0.1 ms with the MOT beams and imaged with the

COHU camera. The time of flight (TOF) of 2 ms was chosen because a shorter TOF

gives too small an image for the COHU’s resolution, and waiting too long washes

out the possible spatial features. A TOF of 2 ms saturates the camera’s sensor, but

the interest here is qualitative rather than quantitative. In fact, when counting the

number of atoms transferred from the MOT to the optical trap, we let the atoms fall

for 6 ms, which is enough time for the cloud to expand, thus bringing the intensity

under the sensor’s saturation threshold.

The COHU is located over the chamber, and the vertical axis on the images in
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Figure C.3: Double trap in the CO2 laser dipole force trap. This sequence
of images from the COHU camera illustrates the case where the CO2 laser optical
trap actually consists of two traps. The first lens of the telescope is moved in the
direction of propagation of the beam. When the problem was diagnosed, the location
of the MOT had been optimized such that the collapsed MOT would be centered at
the cross hairs, and the lens mover was in the position corresponding to image (f).
In this case, the final number of atoms in the BEC was lower than usual, since the
atoms transferred to the bottom trap in (f) would be lost as that trap disappears.
The workaround is to change the location of the lens mover such that the collapsed
MOT overlaps with what will become the final trap, such as in image (l).
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Fig. C.3 correspond to the CO2 laser beam’s axis, with the top of the image being

closer to the laser head. When translating the lens mover, one can clearly see the

presence of two distinct traps, aligned along the axial direction of the laser. The first

trap shrinks and disappears as the second appears above. If the transfer of atoms

from the MOT to the optical trap takes place when the bottom trap is dominant,

or even when there are two traps, the atoms in the bottom trap will likely be lost.

The workaround is to setup the lens mover at a location where the overlap with the

collapsed MOT is maximized with what will become the final trap for the BEC. In

comparison, the ideal case with no double trap is shown in Fig. C.4.

C.2 Thermal Effects

Sometime during 2013 we noticed that one of the ZnSe lenses inside the vacuum

chamber was glowing when the CO2 laser was set at full power. It was only a small

area of ∼ 1 mm2. It turns out that after years of being surrounded by Rb vapor, the

lenses became coated with a layer of Rb, or some compound created by the contact

between Rb and ZnSe. As worrisome as this seemed at the time, the issue was not

noticeable when looking at the images of BEC or the measured numbers of atoms.

The power of the CO2 laser measured after the chamber didn’t show an abnormal

loss in transmission, so the experiments continued. In the following months, the

transmission through the chamber dropped little by little, but the atoms were still

being trapped as usual, and the dynamics didn’t show any change. It is only in the

middle of 2014 that the effects of this glowing lens started to be felt. We noticed that

the single focus trap would drift when the power of the CO2 laser was kept at the low

post-evaporation power. This issue is illustrated in Fig. C.5, and the displacement of

the single focus trap is plotted in Fig. C.6.

This does not impact the dynamics when performing the experiment in the single

focus trap. However, when the cross trap is used, the effect can be noticeable. The
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Figure C.4: Single trap in the CO2 laser dipole force trap. This sequence of
images from the COHU camera shows the geometry of the CO2 laser dipole force trap
as the second lens of the telescope is being translated along the beam’s axis. Unlike
in Fig. C.3, here we see the ideal case where a single trap is being compressed. The
atoms are transferred from the MOT when the trap is in the position corresponding
to image (f).
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Figure C.5: Drifting single focus trap. This sequence of images shows the drift of
the single focus trap along the trapping beam’s direction of propagation. The images
are taken 1 s apart. One pixel corresponds to 2.6 µm, and the width of every image
is 155 µm.
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Figure C.6: Single focus trap displacement. The position of the focus of the CO2

laser single focus trap is tracked along the propagation axis after various evolution
times.

852 nm laser used for the cross trap has a waist of ∼ 20 µm. Considering the images

in Fig. C.5, the 852 nm laser would intersect the CO2 laser beam at their respective

foci, represented by the cross hairs. After a few seconds, the 852 nm laser meets the

CO2 laser trap far from its focus, and after 4 s of evolution, the 852 nm beam no

longer intersects with the BEC.

This issue was diagnosed between the second and third of the four data sets studied

in this thesis. The fourth only considered the dynamics in the single focus trap, so

the data was not affected. However, the third data set was still taken using the cross

trap. The fix for that data set was to wait 10 s with the CO2 laser at low power before

the start of the magnetic field ramps. Since the lifetimes in the cross trap prevent

ramps longer than ∼ 5 s, waiting an extra 10 s allowed the trap to undergo the faster

part of the drift, and gave the opportunity to align the 852 nm laser with the single

focus BEC still moving, but slow enough to allow several seconds of evolution in an
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adequate cross trap.

C.3 IGBT

Another problem faced a few times has to do with the control system of the gradient

coils. The experiment uses a single power supply to send current through the two

pairs of large gradient coils, which are the MOT coils and the auxiliary gradient coils.

Since the current used can be as high as ∼ 500 A, a pair of robust switches must

be used to orient the current to the pair of coils required at any given time. We

rely on insulated-gate bipolar transistors (IGBTs), which can handle the required

current. However, they show some vulnerabilities. Attempting to use the IGBT as a

fast switch, in order to create a short magnetic field gradient pulse, for example, is

lethal for the IGBT. An inductance spike due to the high inductance of the coils is

the likely culprit for this scenario.

The other cause of failure is exposing an IGBT to a high current for a long

time. This has happened in the past when keeping the purifying gradient on during

long evaporation times (in the order of ten seconds). The consequence is an unusable

IGBT, or burnt components on the gate driver circuit board that controls the IGBTs.

To lessen the effect of inductance spikes, the system was improved by integrating a

large snubber capacitor in the control circuit. Due to the repeated nature of these

issues, the lab policy is now to constantly have spare IGBTs and control boards, or

at least enough parts to recreate one. As a matter of fact, my first task when joining

the lab was to solder one of the new driver circuit boards. In any case, a steady state

experiment where none of these damaging conditions are met should not destroy any

more IGBTs.

C.4 AC Stray Magnetic Field

The last issue presented in this appendix is the perturbation caused by a stray mag-

netic field oscillating at 60 Hz. Due to the large amount of electronic components
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in the lab, the magnetic field has small fluctuations at 60 Hz and higher harmonics.

The amplitude of these fluctuations have been measured by magnetometers in various

locations in the lab, as well as at the location of BEC by measuring the linear Zeeman

energy shift using microwave or RF transitions. The technique is the same whether

microwaves or RF are used. The following explanation will be for microwaves, but

the principle is the same for RF.

The method consists in using the |F = 1,mF = 0〉 to |F = 2,mF = −1〉 transition

( |1, 0〉 to |2,−1〉 for short). The |1, 0〉 to |2,+1〉 transition can also be used. The

interest is that these transitions are subject to Zeeman shifts due to an applied bias

magnetic field. At the fields used for these diagnoses (∼ 100 mG), the quadratic

Zeeman shift can be neglected, and the effect can be attributed to the linear Zeeman

shift alone. This gives a linear relationship between the bias magnetic field along the

quantization axis and the frequency detuning ∆ from the clock transition ( |1, 0〉 to

|2, 0〉 ), which is insensitive to the Zeeman shift. Once the detuning ∆ is known, the

power of the microwaves is adjusted such that the peak at the transition’s frequency

is broad enough to be ∼ 10 kHz wide. Recall that the linear Zeeman energy shift

is ∼ 700 Hz/mG. This means that the frequency range of ∼ 3.5 kHz between the

minimum and the center of the peak in Fig. C.7a corresponds to a magnetic field

range of ∼ 5 mG.

By setting the detuning to an intermediate value on the side of the peak and

measuring the spin populations as the system evolves in time, one can determine the

range of the magnetic field fluctuations along the quantization axis. In the case of the

data shown in Fig. C.7, the detuning was−209 kHz, as shown by the blue solid vertical

line in Fig. C.7a. The evolution of the fractional population ρ−1 transferred to the

|2,−1〉 state is plotted in Fig. C.7b. The graph shows a periodic pattern, with a clear

period of 16.7 ms, as pointed out by the time scale on the upper axis. The minimum

and maximum values reached by ρ−1 are indicated by the horizontal dotted lines. The
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Figure C.7: Effect of the 60 Hz magnetic field fluctuations. (a) Spectrum
of the fractional population ρ−1 on the −∆ transition from |1, 0〉 to |2,−1〉. The
vertical blue line indicates the detuning used for plot (b), which shows oscillations in
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same lines are reproduced in Fig. C.7a, and the corresponding detunings are shown

by two vertical dashed lines. Finally, the range of the magnetic field spanned by the

fluctuations can be estimated. For these measurements, the minimum and maximum

field reached are are −299.1 mG and −296.9 mG, which yields a range of 2.2 mG.

This calculation gives the order of magnitude of the fluctuations of the magnetic field

around the lab due to the 60 Hz (and higher harmonics) perturbation.

This is not a new problem, and the reason is still unclear. A guess is that it

may stem from the organic growth of the experiment with new contributions to the

electronic setup over the years, perhaps inducing a variety of ground loops and other

nuisances. We mitigate the effect of this 60 Hz perturbation by syncing the beginning

of every experimental cycle with the rising edge of the AC line, which is taken directly

from an electrical outlet. The goal is to have the same magnetic field offset at any

given evolution time during every experimental cycle.

C.5 Concluding Remarks

In this appendix we have presented some of the issues confronted while gathering

data for this thesis, as well as some techniques to suppress them, and estimated the

effect on the experiment. These issues included the imperfect modes of the CO2

laser, causing a double trap in certain conditions. The drifting of the single focus

trap caused by thermal effects was also discussed. Finally, the vulnerability of the

IGBTs and the characterization of the AC stray magnetic field were addressed.
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APPENDIX D

ADDITIONAL DATA

D.1 Measurements of ρ0 for Every Magnetic Field Ramp

D.1.1 Data Set #1
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Figure D.1: Measurements of ρ0 during magnetic field ramps (data set #1).
The measurements of ρ0 for all the ramp times from data set #1 are shown with the
resulting values and errors of t̂ and q̂. The ramps bring the magnetic field down from
500 mG to 0 mG in a time tr.

148



t

= 0.10 -0.01

+0.03

q = 0.67 -0.09
+0.23

ρ0

t (s)

q
˜

0 0.1 0.2 0.3

0.9

0.95

1

2 1.6 1.2 0.8 0.4 0

(e) tr = 300 ms

t

= 0.09 -0.01

+0.02

q = 0.43 -0.07
+0.11

ρ0

t (s)

q
˜

0 0.1 0.2 0.3 0.4

0.9

0.95

1

2 1.6 1.2 0.8 0.4 0

(f) tr = 400 ms

t

= 0.10 -0.02

+0.04

q = 0.40 -0.07
+0.17

ρ0

t (s)

q
˜

0 0.1 0.2 0.3 0.4 0.5

0.9

0.95

1

2 1.6 1.2 0.8 0.4 0

(g) tr = 500 ms

t

= 0.14 -0.01

+0.01

q = 0.34 -0.04
+0.04

ρ0

t (s)

q
˜

0 0.2 0.4 0.6

0.9

0.95

1

2 1.6 1.2 0.8 0.4 0

(h) tr = 750 ms

t

= 0.15 -0.01

+0.05

q = 0.26 -0.01
+0.09

ρ0

t (s)

q
˜

0 0.2 0.4 0.6 0.8 1

0.9

0.95

1

2 1.6 1.2 0.8 0.4 0

(i) tr = 1000 ms

t

= 0.20 -0.01

+0.06

q = 0.22 -0.01
+0.07

ρ0

t (s)

q
˜

0 0.5 1 1.5

0.9

0.95

1

2 1.6 1.2 0.8 0.4 0

(j) tr = 1500 ms

Figure D.1: Measurements of ρ0 during magnetic field ramps (data set #1,
continued).
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Figure D.1: Measurements of ρ0 during magnetic field ramps (data set #1,
continued).
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D.1.2 Data Set #2
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Figure D.2: Measurements of ρ0 during magnetic field ramps (data set #2).
The measurements of ρ0 for all the ramp times from data set #2 are shown with the
resulting values and errors of t̂ and q̂. The ramps bring the magnetic field down from
500 mG to 0 mG in a time tr.
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Figure D.2: Measurements of ρ0 during magnetic field ramps (data set #2,
continued).
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Figure D.2: Measurements of ρ0 during magnetic field ramps (data set #2,
continued).
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D.1.3 Data Set #3
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Figure D.3: Measurements of ρ0 during magnetic field ramps (data set #3).
The measurements of ρ0 for all the ramp times from data set #3 are shown with the
resulting values and errors of t̂ and q̂. The ramps bring the magnetic field down from
500 mG to 0 mG in a time tr.
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Figure D.3: Measurements of ρ0 during magnetic field ramps (data set #3,
continued).
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Figure D.3: Measurements of ρ0 during magnetic field ramps (data set #3,
continued).
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D.1.4 Data Set #4
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Figure D.4: Measurements of ρ0 during magnetic field ramps (data set #4).
The measurements of ρ0 for all the ramp times from data set #4 are shown with the
resulting values and errors of t̂ and q̂. The ramps bring the magnetic field down from
500 mG to 0 mG in a time tr.
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Figure D.4: Measurements of ρ0 during magnetic field ramps (data set #4,
continued).
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Figure D.4: Measurements of ρ0 during magnetic field ramps (data set #4,
continued).
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D.2 Plots of t̂ and q̂ for Every Data Set

In the following plots, q̂ and t̂ are plotted with respect to the characteristic magnetic

field ramp time τ̃Q, given by the inverse of the rate of change of q̃ at the critical point.

The vertical error bars are found by combining the uncertainties in the determination

of the time tc when the system crosses the critical point and in the time tth when the

system crosses the ρ0 (or ∆ρ0) threshold. The characteristic ramp times τ̃Q integrate

atom loss by including the changing value of c, whose initial value is calculated from

the measurement of the magnetic field at the critical point. The error in the determi-

nation of the critical point therefore induces an uncertainty in τ̃Q represented by the

horizontal error bars. For every data point, a simulation is performed with the same

experimental parameters (ramp time, number of atoms, and initial value of c) and

their corresponding errors. For clarity, the simulations are plotted by interpolating

between the output points as a gray dashed line, with a grey envelope displaying the

error calculated using the same method as for the data. The insets show the data

and simulations plotted in a log-log plot. Linear fits to the logarithm of the data

and simulations give the scaling exponents. For the fits, the points represented by

empty markers are not used, which restricts the fitting to the linear regions of the

data, indicated by solid square markers. For each of the four data sets shown, the red

plots show the values of q̂ and t̂ determined by measuring ρ0 and using a threshold

of ρ0 = 0.99 to determine tth. The blue plots use the standard deviation ∆ρ0 and a

threshold of ∆ρ0 = 0.01.
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Figure D.5: Data set #1, t̂, ρ0. Plot range: 0.048 < τ̃Q < 1.54. Fit range: 0.048

< τ̃Q < 1.03. Scaling exponents from fits: data: 0.28(7), simulations: 0.30(7).
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Figure D.6: Data set #1, q̂, ρ0. Plot range: 0.048 < τ̃Q < 2.88. Fit range: 0.048

< τ̃Q < 1.03. Scaling exponents from fits: data: −0.70(9), simulations: −0.65(7).
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Figure D.7: Data set #1, t̂, ∆ρ0. Plot range: 0.048 < τ̃Q < 1.54. Fit range: 0.048

< τ̃Q < 1.03. Scaling exponents from fits: data: 0.27(4), simulations: 0.24(3).
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Figure D.8: Data set #1, q̂, ∆ρ0. Plot range: 0.048 < τ̃Q < 2.88. Fit range: 0.048

< τ̃Q < 1.03. Scaling exponents from fits: data: −0.70(6), simulations: −0.65(3).
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Figure D.9: Data set #2, t̂, ρ0. Plot range: 0.046 < τ̃Q < 2.18. Fit range: 0.048

< τ̃Q < 1.24. Scaling exponents from fits: data: 0.18(7), simulations: 0.20(7).
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Figure D.10: Data set #2, q̂, ρ0. Plot range: 0.046 < τ̃Q < 4.1. Fit range: 0.048

< τ̃Q < 1.24. Scaling exponents from fits: data: −0.80(8), simulations: −0.79(7).
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Figure D.11: Data set #2, t̂, ∆ρ0. Plot range: 0.046 < τ̃Q < 2.18. Fit range: 0.048

< τ̃Q <. Scaling exponents from fits: data: 0.17(4), simulations: 0.19(4).
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Figure D.12: Data set #2, q̂, ∆ρ0. Plot range: 0.046 < τ̃Q < 4.1. Fit range: 0.048

< τ̃Q < 1.24. Scaling exponents from fits: data: −0.81(4), simulations: −0.80(3).
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Figure D.13: Data set #3, t̂, ρ0. Plot range: 0.07 < τ̃Q < 4.52. Fit range: 0.07

< τ̃Q < 1.82. Scaling exponents from fits: data: 0.20(9), simulations: 0.26(8).
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Figure D.14: Data set #3, q̂, ρ0. Plot range: 0.07 < τ̃Q < 4.52. Fit range: 0.07

< τ̃Q < 1.81. Scaling exponents from fits: data: −0.75(11), simulations: −0.67(8).
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Figure D.15: Data set #3, t̂, ∆ρ0. Plot range: 0.07 < τ̃Q < 4.52. Fit range: 0.07

< τ̃Q < 1.82. Scaling exponents from fits: data: 0.17(5), simulations: 0.25(4).
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Figure D.16: Data set #3, q̂, ∆ρ0. Plot range: 0.07 < τ̃Q < 4.52. Fit range: 0.07

< τ̃Q < 1.81. Scaling exponents from fits: data: −0.77(6), simulations: −0.70(3).
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Figure D.17: Data set #4, t̂, ρ0. Plot range: 0.15 < τ̃Q < 3.86. Fit range: 0.15

< τ̃Q < 3.86. Scaling exponents from fits: data: 0.17(8), simulations: 0.24(9).
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Figure D.18: Data set #4, q̂, ρ0. Plot range: 0.15 < τ̃Q < 3.86. Fit range: 0.15

< τ̃Q < 3.86. Scaling exponents from fits: data: −0.80(10), simulations: −0.74(7).
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Figure D.19: Data set #4, t̂, ∆ρ0. Plot range: 0.15 < τ̃Q < 3.86. Fit range: 0.15

< τ̃Q < 3.86. Scaling exponents from fits: data: 0.18(5), simulations: 0.25(4).
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Figure D.20: Data set #4, q̂, ∆ρ0. Plot range: 0.15 < τ̃Q < 3.86. Fit range: 0.15

< τ̃Q < 3.86. Scaling exponents from fits: data: −0.80(5), simulations: −0.73(7).
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