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SUMMARY

Density or pressure modulation of materials is an important method for tuning and

engineering interactions within materials studied in condensed matter systems. This tuning

is often used to alter or modify the underlying properties of the material, leading to the

crossing of a phase transition or enhanced chemical or mechanical properties. This thesis

investigates the possibility of whether a similar approach might be employed in the study of

ultracold atoms present within a spinor condensate. In our system we use the confining trap

potential to modulate and increase the density of the system in such a way as to push the

cloud of atoms from non-interacting to interacting, and across a quantum critical point. By

crossing over into this new phase, we are able to perform a constant magnetic field quench

to observe both spin mixing and spin-nematic squeezing. This allows us to achieve -8.4 ±

0.8 dB of squeezing and shows promise for future density-driven interactions.

xx



CHAPTER 1

INTRODUCTION AND BACKGROUND

From the macroscopic transformation of ice to water to steam, to the microscopic creation

of a superconductor, phase transitions are a part and parcel of our daily lives. The same

can be said for quantum phase transitions [1]. From a thermodynamic perspective, the

crossing of a critical point from one phase to another occurs from the increase in ther-

mal fluctuations. In the case of quantum phase transitions, these transitions are driven by

quantum fluctuations. Just like in conventional, thermodynamic phase transitions, these

transitions can be first order or second order (continuous) [2]. Continuous phase transi-

tions often exhibit other interesting properties, such as spontaneous symmetry breaking. It

stands to reason then, that with the advent of cold atomic systems and their high degrees

of control-ability, that one natural avenue of research would be to try and employ these

tools to explore quantum phase transitions. These endeavors have probed the many-body

behavior of quantum gases in a variety of contexts.

A large aspect of experimentation in the field of condensed matter is designing desir-

able samples to study. One way to explore particular types of transitions, is to choose a

material with the desired properties or phase transition. This however, may still present ex-

perimental challenges if the interesting aspects of the material are still outside the available

experimental controls, such as a phase transition that occurs at absolute zero or a material

with only weak to moderate structural coupling. However, if one could take a material that

has close to the desired qualities, one might be able to devise a way to slightly alter its

properties to achieve more manageable outcomes. This is where the technique of pressure-

tuning comes into play. A technique often used in condensed matter, it can be utilized to

change the structure and correlations in a given material, allowing for critical points and

in some cases, exotic phases, to become accessible. We use this to draw parallels to our
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own system where we have devised a means of traversing the quantum critical point in our

system using density modulation. This will involve us briefly reviewing the background of

our spinor BEC system, as well as touch on how pressure-tuning can be used in condensed

matter systems, before we return to the question of how cold atoms can be used to study

the behavior of quantum phase transitions.

1.1 Density and Pressure-Tuned Quantum Phase Transitions

As mentioned, many condensed matter studies revolve around the types of materials used

or created. These studies center around a wide-range of topics from the practical to the

purely scientific. However in many of these areas, pressure tuning has been found to be a

useful tool both for the engineering and the testing of the properties of a material.

In the realm of quantum studies, many studies have used pressure-induced QPT’s in the

study of quantum and fundamental scientific studies [3, 5, 6, 7, 8, 9, 10, 11, 12, 4]. Pressure

tuning, along with other types of experimental tuning such as temperature, voltage, doping,

or magnetic field, can be used to look at a wide range of phenomenon. One early example

of this are studies investigating Mott transitions [5], in which pressure was used to search

for the first order phase metal to Mott insulator transition in (V1−xCrx)2 O3 materials.

This work has been extended to other studies of similar systems [11]. Mott insulators are

important in the studies of superconductivity, and the transition between metal to Mott in-

sulator is a first-order transition. A similar study was performed in an organic material [7],

and showed a similar relationship to pressure tuning that the original metallic studies had

shown. This largely has to do with the role that pressure and temperature play in the tuning

of these transitions which look at the correlations of electrons. In these studies, doping has

nearly the same effect as pressure-tuning [11, 5]. Additionally, some of these materials

also touch on other interesting topics, as the organic material (κ - (BEDT-TTF4)Hg289B8)

in [12] is additionally a quantum spin liquid candidate material.

The studies of Mott insulators using pressure and doping as experimental knobs show
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us there are even more complex topics to study using pressure-tuning of transitions. Topics

involving superconducting to charge-density wave phases have been explored in [8] using

rare-earth materials. For the spin-1/2 ladder compound C9H18N2CuBr4, pressure tuning

affected the magnetic structure and spin dynamics [9] in such a way as to exhibit rarely

seen fractionalization from an organized Neel order when the continuous quantum phase

transition is crossed using high pressures.

Different types of material geometry also exhibit interesting collective behavior, when

tuned with pressure. The triangular lattice system found in Cs2 CuCl4 [10] shows that

the application of pressure at low temperature leads to field-induced magnetic phases; fur-

thermore, high pressures can be used to suppress quantum fluctuations for precise measure-

ment. The hexagonal, kagome lattice found in Co3Sn2S2 undergoes a magnetic-topological

phase transition when tuned with pressure and appropriate temperature, opening a new av-

enue to investigate potential Weyl semimetal and 3D topological insulator transitions.

The effects pressure has on the creation of frustrated magnets in the spin dimer system,

TiCuCl3, is also a very interesting system [13, 14, 7]. It has a continuous transition which

goes from disordered (spin liquid) to ordered (antiferromagnetic) for a critical pressure.

This critical pressure point can be similarly shifted using other external parameters, as the

point where the spin energy gap is closed is between the singlet and triplet states.

Other applications of pressure-tuning involve engineering a material’s properties for

more practical purposes, such as changing the band gap and absorption profiles of quantum

dots to create more favorable photovoltaic structures [15], or changing the magnetic and

electronic properties of nanoribbons [15, 16].

These examples underpin the importance of pressure-tuning in condensed matter sys-

tems. We draw analogy from this and compare it to the quantum phase transition in our

own system. For us, the “pressure-tuning” is performed by the increase in the trap power,

which increases the density of the cloud of atoms trapped in its minimum potential. The

density in our system is a tuning parameter, as the relationship for the quantum critical point
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(QCP) occurs when the density is equal to the quadratic magnetic field divided by two. For

sufficiently high densities, we are able to cross our quantum critical point to induce spin

interactions in the cloud. In the next section, we will outline the previous quantum work

that has lead up to the work presented in this thesis.

1.2 Spinor BECs and Our Work

Describing the quantum phase transition of our system, requires us to first describe the

creation and evolution of our spinor BEC work. Spinor BEC’s are so termed because

they involve atoms cooled to quantum degeneracy that still retain their spin degrees of

freedom. BEC’s were famously first created in 1995 [17, 18, 19] in a Nobel Prize-winning

invention. Owing to their ease of controllability and relative theoretical simplicity, BECs

have been an important tool for many researchers investigating many-bodied effects and

phenomena. Early experiments with BECs studied the coherent nature of the condensate

itself [20, 21], as well as designing atom-optics with them [22, 23, 24]. The quantum

properties of the macroscopic condensates were also investigated, looking at their quantized

angular momentum [25, 26, 27] and quantum tunneling [28, 29].

Many of these early condensates were created by performing evaporative cooling in

magnetic traps. The first optical confinement of BEC was in 1998, but was not created in

the optical trap itself [30]. All-optical evaporation first occurred in our lab in 2001 [31].

From there, many experiments developed looking at the spin domain formation [32, 33,

34], spin mixing [35, 36], and mean-field formulation of the ground states [37, 38]. The

quantum formalism for these spinor collisional interactions for an optical potential were

further elaborated on by the Bigelow group [39, 40, 41].

In our lab, we looked at the mean-field dynamics of the hyperfine levels through theo-

retical description [42, 43], and experimental observation in rubidium-87. Our lab looked

at the interactions within the F = 1 ground state [44, 45]. The excited manifold of F = 2

states were studied by the Sengstock group [46, 47, 48]. Other groups also began to look at

4



the collisional properties of BECs in optical lattices [49, 50]. More complex studies of spin

and spatial structures were looked at with larger rubidium condensates [51, 52], magnetic

trap studies in the F = 2 manifold [53], and spin wave demonstrations [54].

By looking at higher spin in spinor condensates [51, 52], studies grew involving quan-

tum phase transitions present in several spin-1 species. This was investigated early on [35],

but the observation of polar and ferromagnetic regions in rubidium [44], and later the mea-

surement of an antiferromagnetic transition in sodium [55], led to theoretical explorations

of the effects of magnetic field quenches [56] and ferromagnetic spinor BECs [57] in the

context of a quantum phase transition. The ferromagnetic quantum phase transition in ru-

bidium is the heart of this thesis and will be described in the next section, along with a brief

overview of explorations of quantum phase transitions in cold atoms.

1.2.1 Quantum Phase Transitions in Cold Atomic Systems

Early work involving the study of quantum phase transitions with ultracold atoms began

with the use of the optical lattices [58]. The interactions between the atoms in the lattice are

controlled by changing the trap depth by changing the laser potential, allowing the system

to be driven from the Mott to superfluid phase, as described by the Bose-Hubbard model.

The Bose-Hubbard model describes the occupation and tunnelling between lattice sites for

bosonic atoms. These experiments [59] offered insight into the simulation power of cold

atoms, and led to further studies such as the Fermi-Hubbbard model [60], two-component

quantum magnetism [61, 62] and nematic spinor phases with spin-1 gases [63].

In the case of spinor BECs, the mean-field theories referenced in the previous section

lead to phase diagrams for our particular quantum phase transition. These can be used

to study the many-body behavior of the system, by looking at the change in the order

parameter across the transition. This has been looked at in a number of different dimensions

as well, including studies dealing with QPTs in zero-dimensions [64, 65, 66, 67, 68]. Zero-

dimensionality is a feature by which the spatial evolution of a system is inhibited, such
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that the other degrees of freedom carry the dynamics. In our case, the interactions of the

system are restricted to the spin variables under a simplified Hamiltonian (see chapter 2 for

details).

Our system exhibits a continuous transition which results in a change in the spin sym-

metry of the ground state when quenched into the broken-axis symmetry phase (or BA

phase) [57]. The effective potential for the system, when written in terms of the collective

atomic spin, exhibits a potential of the form of a Landau, or double-well, potential [69].

The choice of what well to occupy creates a simultaneous breaking of a U(1) symmetry.

This has been shown experimentally for rubidium and has been investigated in detail in the

Chapman lab’s work, as will be touched on in the next section.

Previous Chapman Lab BEC Work

From our early, innovative work on all-optical BEC formation [31], to our description

and understanding of the mean-field dynamics [70, 71, 72, 73], our many efforts greatly

enhanced our current understanding of ferromagnetic, spin-1 BECs. Other important works

as a result of these findings led to the description of the mean-field dynamics as an inverted,

unstable pendulum [73]. Meanwhile, the evolution of the state across the quantum critical

point, was described to lead to “number suppression" in the magnetization, as pair-wise,

spin-interacting collisions led to the formation of correlated pairs [74]. We were able to

measure this phenomenon experimentally leading to an effect called “number squeezing."

This has become a standard protocol on our experiment and has given us a clear way to

measure our detection system to determine our overall detection limit.

Likewise, a short time after, formulism for the understanding of spin-squeezing was

developed and measured in our lab as well [75]. With the ability to accurately determine

our detection limits, we were able to measure a high degree of squeezing called “spin-

nematic" squeezing. Using a magnetic field quench to lower the quadratic Zeeman energy,

the spin contact interaction dominates to create correlated pairs. The tomography of this
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state is then performed to measure the degree of spin-nematic squeezing. Its development

is crucial to the current understanding of what squeezing in higher spin systems looks like.

We were able to measure a high degree of squeezing in that system, as well as develop

a deeper theoretical understanding of the spin-1 space. This has also become a standard

experiment to attempt to replicate for our system.

Quantum Kibble-Zureck Mechanism

A more recent and important work for the study of crossing the quantum phase transi-

tion (QPT) in our rubidium spin-1 BEC, is our work investigating the quantum version of

the Kibble-Zurek mechanism. This investigates the effects the speed of a quench has on

the system dynamics as it crosses the quantum critical point (QCP). The affect applies to

continuous QPTs, such as our spin-1 polar to broken-axis transition, to the Kibble-Zurek

Mechanism (KZM) [56, 76]. It was originally studied with cold atoms initially in the con-

text of the Mott to superfluid transition in optical lattices, but did not show good agreement

with the KZM predicted behavior [77]. However, the transition to the broken-axis phase

was a good candidate for observing the quantum KZM dynamics [78, 56, 57, 77], as it

restricts the experiment to a zero-dimensional system. The first evidence of the quantum

KZM was measured and confirmed in our lab, showing good agreement with the predicted

theory [79]. A key development out of this experiment was the ability to measure the spin

interaction energy (c) of the system, using a critical magnetic field scan (see Sub-Section

3.9.3). This is currently used in the lab to measure the critical field at which the quadratic

energy is equal to two times the spin interaction energy of the condensate – the critical

point of our system (see Chapter 2). This is a fast and reliable tool that we employ often in

our daily measurements.
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Adiabatic Passage of a QPT

A particularly relevant work is the adiabatic passage and characterization of our spin-1

quantum phase transition [69]. This work used coherent oscillations to measure the energy

gap and gave predictions for potential finite-numbered condensate studies in the future

(see Section 5.1). Additionally, this work looked at a piece-wise optimized magnetic field

quench to cross the QCP with minimal disruptions to the ground state. Unfortunately, the

atom loss due to the finite lifetime of the trap lead to too many atoms being lost for an

accurate number of highly entangled pairs to be counted, but this would also be a future

goal from this work. Measuring the coherent oscillations of the energy gap is an important

tool in our experiments for confirming and checking the stability of the spinor dynamics.

Other Recent Chapman Lab Efforts

Other recent experiments that the lab has been involved in is the study of the measure-

ment of geometric phases in spin-1 atoms [80], and the development of a circular polar-

ized antenna used to selectively drive individual microwave transitions [81]. While these

studies did not necessarily use condensates for their work, their theoretical understand-

ing and experimental demonstration help illustrate the versatility of the spin-1 system for

addressing and solving both theoretical and technical challenges. The study of geomet-

ric phases demonstrates the existence of topological phases in our experiments, and how

we might measure and control them. Our microwave work is a very interesting technique

which could be used in quantum state preparation for quantum engineering. The ability

to individually drive transitions and suppress off-resonant excitations is very important to

performing precise computations with microwaves which provide low fault occurrences.

Our most recent work involves using the changing of the ground state near the critical

point to engineer a partially squeezed state [82]. This state can be preserved because it never

actually crosses the critical point, meaning that it does not exponentially evolve away. By

timing the quench sequence appropriately, we can create and preserve a squeezed state for

8



the duration of the lifetime of the condensate. This is an experimentally interesting result as

it demonstrates the ability to create a long-lived squeezed state which could prove a useful

tool for future metrological applications which may hope to utilize spin squeezed states.

1.3 Thesis Organization and Contribution

The structure of this thesis starts out with an overview of spin-1, spinor BEC theory. In

Chapter 2, we will introduce the mean-field description of the dynamics and how it is used

in our experiments. A quantum description of the spin interactions is also presented, along

with a discussion of the connection to our semi-classical representations.

Next, we build on this understanding in Chapter 3, as we highlight the key aspects of the

experimental apparatus which creates our spinor condensates. Furthermore, we describe

several procedures performed routinely on the experiment, and how they demonstrate our

control and understanding of the spin interactions.

The content of Chapter 4 contains the main thrust of this thesis’s work, as we present

the technique of density modulation of the condensate. We are able to do this to a precise

degree and use trap modulation shift the quantum phase transition of the system. Doing so,

allows us to control the interactions of the system and to observe these interactions through

spin mixing and spin-nematic squeezing.

The final chapter, Chapter 5, details previous, relevant investigations performed on the

experiment. The descriptions of our work involving finite-numbered condensates demon-

strate the motivations behind these investigations and the progress we’ve made in beginning

this work. A technical upgrade to our experiment with the potential addition of a 2D-MOT

as a cold atom source is also discussed. We examine the main results of our previous

studies and present future designs where a 2D-MOT could be readily incorporated into the

experiment. The final section of this chapter relates improvements to our imaging system

and how it could impact our current studies, as well as our future studies of condensates

involving finite atoms.
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CHAPTER 2

SPINOR BECS: BACKGROUND AND THEORY

2.1 Gross-Pitaevski Equation and our Simplified Hamiltonian

In order to understand our contributions to the understanding of quantum phase transi-

tions, it is important to contextualize the experimental system with which we work. Our

laboratory specializes in working with what are now termed as “spinor Bose-Einstein con-

densates" or “spinor BECs." BECs were originally Nobel prize-winning inventions, first

created in 1995 [18, 19, 17] by cooling a bosonic atomic species to quantum degener-

acy, as predicted by Bose-Einstein statistics [2]. Over the years, they have proven their

utility in many fundamental and applied fields of physics, owing to their ease of theoreti-

cal description and range of experimental control. While BECs were first created through

evaporative cooling in a magnetic trap, the innovation of trapping and creating a BEC using

all-optical means (first pioneered in our lab [31]) allows all (hyperfine) atomic spins in the

ground state to be preserved. In our lab, our rubidium BEC is called a “spin-1" BEC, as

the hyperfine ground state of the atom is in F = 1, leaving the mf = −1, 0, 1 Zeeman

sublevels to interact. As we will demonstrate, this creates a rich environment in which to

study the behaviors of more complex topics, such as the connection between quantum and

semi-classical theories, and the crossing of quantum phase transitions.

2.1.1 Our Hamiltonian

The Hamiltonian forN -identical atoms in an optical potential, or dipole trap, can be written

in the form known as the Gross-Pitaevskii equation:

H =
N∑
i=1

(
− ℏ2

2m
∇2

i + VT (r⃗i)

)
+ U. (2.1)
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Here, the terms summed over N pertain to the kinetic energy of the atoms and the trapping

potential energy of the optical dipole trap. U represents a psuedo-potential term which

arises from the two-body contact interaction between the atoms. The form of this contact

interaction depends greatly on the properties of the particles themselves. For example,

because our system reaches such low temperature, the effective scattering of the system is

dominated by s-wave scattering. Likewise, as the system consists of bosonic particles, only

values of the total hyperfine spin state (the combined hyperfine values of the two atoms

colliding), are allowed. This yields for our f = 1 bosons, a total spin F channel of 0 or 2,

where F = f1 + f2 represents the sum of the atoms’ maximum hyperfine spin value. This

allows us to represent the psuedo-potential U as,

U =
∑
i<j

δ(r⃗i − r⃗j)
∑
F=0,2

gF
∑

mF=−F

|F,mF ⟩⟨F,mF | (2.2)

Here, gF = 4πℏ2aF/M , where aF is the s-wave scattering length used to describe the

two-body coupling strength of the total spin channel. Expanding the outer product sum-

mation we obtain a number of terms which, in combination with the other terms in our

original Hamiltonian, can be rewritten in the form of symmetric spin-preserving terms, and

asymmetric spin-dependent terms. Doing so, we find:

H = Hsymm +Hasym, (2.3)

where for i = 0,±1,

Hsymm =
∑
i

∫
d3r

ˆ
Ψ†

i

(
− ℏ2

2m
∇2

i + VT

)
Ψ̂i +

c0
2

∑
ij

∫
d3r

ˆ
Ψ†

i
ˆ
Ψ†

jΨ̂iΨ̂j (2.4)

and,
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Hasym =
c2
2

∫
d3r(

ˆ
Ψ†

1
ˆ
Ψ†

1Ψ̂1Ψ̂1 +
ˆ

Ψ†
−1

ˆ
Ψ†

−1Ψ̂−1Ψ̂−1

− 2
ˆ
Ψ†

1
ˆ

Ψ†
−1Ψ̂1Ψ̂−1 + 2

ˆ
Ψ†

1
ˆ
Ψ†

0Ψ̂1Ψ̂0

+ 2
ˆ

Ψ†
−1

ˆ
Ψ†

0Ψ̂−1Ψ̂0 + 2
ˆ
Ψ†

0
ˆ
Ψ†

0Ψ̂1Ψ̂−1

+ 2
ˆ
Ψ†

1
ˆ

Ψ†
−1Ψ̂0Ψ̂0)

(2.5)

Note that the symmetric and asymmetric expressions of the Hamiltonian share their own

coupling strengths denoted by c0 = (2g2 + g0)/3 and c2 = (g2 − g0)/3. Both arising

from a linear combination of the coupling strengths, gF , listed above and grouped into spin

preserving (symmetric) and spin-dependent (asymmetric) channels. Thus, Hsym describes

the spatial dynamics of the atoms, and Hasym describes the spin exchanges.

2.1.2 Single Mode Approximation

Using these expressions, one can now describe the spatial and spin evolution of the system

of spin-1 bosons in an optical potential. However, if we would like to consider a subset

of the dynamics, say solely the spin interactions, we need to compare the relative length

scales of the respective Hamiltonians. In the case of the spin-dependent Hamiltonian, the

relevant length scale is defined by the so-called spin-healing length, ξ = 2πℏ/
√
2m|c2|n,

where n is the number density, and c2 is as defined above. This defines the characteristic

scale in which spin domains in the clouds of atoms are formed. For typical densities and

our rubidium-87 atoms, this value is typically on the order of ∼ 10 µm. That means for

clouds smaller than this size, all atomic spins will reside within the same domain, and be

allowed to interact [38]. Such is the case in our all-optical, spin-1 BEC which typically

consists of 40,000 87Rb atoms in a 10.6 µm dipole trap, crossed with an additional 850 nm

laser to create a roughly spherical trap. The trap volume is such that these spin domains

are inhibited, and the spatial degrees of freedom can be largely ignored in the problem,
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consistent with what’s known as the single-mode approximation (or SMA)[38, 83, 39, 84].

The SMA allows us to write all the spin components into the a single wave function of

the form

ψ̂i ≈ âiϕ(r⃗), (2.6)

where âi = |1, i⟩ is defined as a bosonic annihilation operator for each spin component,

and ϕ(r⃗) is the spatial wave function. This spatial wave function is a simultaneous solution

of the symmetric Hamiltonian, Hsymm, defined above. This is the dominant term, as the

coupling constants for the Hamiltonians have the relationship where c0 ≫ |c2| determined

by the scattering lengths for Rb87 which has a0 > a2 by about a 2% difference [85].

We can now define the spin mixing Hamiltonian by taking the mean-field form of the

Gross-Pitaevskii equation written as:

Ĥsymϕ =

(
− ℏ2

2m
∇2 + VT + c0N |ϕ|2

)
ϕ = µϕ,

∫
d3r|ϕ(r⃗)|2 = 1, (2.7)

and integrate over the condensate. Neglecting the kinetic energy in our low momentum,

ultracold case, we arrive at the SMA Hamiltonian in the symmetric and asymmetric forms:

Ĥsym = µN̂ − c̃N̂
(
N̂ − 1

)
(2.8)

Ĥasym = c̃2(â
†
1â

†
1â1â1 + â†−1â

†
−1â−1â−1 − 2â†1â

†
−1â1â−1

+ 2â†1â
†
0â1â0 + 2â†−1â

†
0â−1â0

+ 2â†0â
†
0â1â−1 + 2â†1â

†
−1â0â0).

(2.9)

In the above case, N̂ = â†1â1 + â†0â0 + â†−1â−1 represents the total number of atoms, and

c̃i =
ci
2

∫
|ϕ(r⃗)|4d3r is the spatially integrated interaction strength. If the total number of

atoms is constant, along with the trap potential, then Hsym is constant, and the dynamics
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Table 2.1: Spin-1 Operators and Matrices. Matrices are in the spherical polar basis of
|f,mF ⟩.

Sx = 1√
2

0 1 0
1 0 1
0 1 0

, Ŝx = 1√
2

(
â†+1â0 + â†0â+1 + â†0â−1 + â†−1â0

)

Sy =
i√
2

0 −1 0
1 0 −1
0 1 0

, Ŝy =
i√
2

(
−â†+1â0 + â†0â+1 − â†0â−1 + â†−1â0

)

Sz =

1 0 0
0 0 0
0 0 −1

, Ŝz =
(
â†+1â+1 − â†−1â−1

)

can be attributed solely to the spin-dependent Hamiltonian, Hasym.

This simplified case can now be looked at through the lenses of both mean field and

quantum mechanical approaches.

2.2 Quantum Mechanical Description

The quantum representation of the asymmetric, spin-dependent Hamiltonian is made pos-

sible by expressing the states of the system in terms of second-quantized operators [75, 86,

87, 88]. This is written as,

Ĥasym = c̃2

(
Ŝ2 − 2N̂

)
, (2.10)

where Ŝ2 = Ŝ2
x + Ŝ2

y + Ŝ2
z and can be shown to be written as spin-1 dipole operators [86]

(see Table 2.1). N̂ is as defined above. The final consideration we must look at involves the

addition of the magnetic field interaction to our system, given by the linear and quadratic

Zeeman effects.

This becomes easier to see when we note that the quadratic moment operator can be

defined as Q̂zz = 2
(
N̂1 + N̂−1

)
− 4

3
N̂ (see Table 2.2) and can be used to represent the

quadratic Zeeman interaction, while Ŝz = N̂1 + N̂−1 represents the linear Zeeman terms.

This gives,
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Table 2.2: Spin-1 Nematic, Quadrapole Matrices. Matrices are in the spherical polar basis
of |f,mF ⟩.

Qxx = 1
3

−1 0 3
0 2 0
3 0 −1

, Q̂xx = −1
3
â†+1â+1 +

2
3
â†0â0 − 1

3
â†−1â−1 + â†+1â−1 + â†−1â+1

Qyy =
1
3

−1 0 −3
0 2 0
−3 0 −1

, Q̂yy = −1
3
â†+1â+1 +

2
3
â†0â0 − 1

3
â†−1â−1 − â†+1â−1 − â†−1â+1

Qzz =
1
3

2 0 0
0 −4 0
0 0 2

, Q̂zz =
2
3
â†+1â+1 − 4

3
â†0â0 +

2
3
â†−1â−1

Qxy = i

0 0 −1
0 0 0
1 0 0

, Q̂xy = i
(
−â†+1â−1 + â†−1â+1

)

Qxz =
1√
2

0 1 0
1 0 −1
0 −1 0

, Q̂xz =
1√
2

(
â†+1â0 + â†0â+1 − â†0â−1 − â†−1â0

)

Qyz =
i√
2

0 1 0
1 0 −1
0 −1 0

, Q̂yz =
i√
2

(
−â†+1â0 + â†0â+1 + â†0â−1 − â†−1â0

)

Ĥasym = c̃2

(
Ŝ2 − 2N̂

)
+ pŜz +

q

2
Q̂zz (2.11)

with p = µBBzgF and q = µ2
BB

2
z/(ℏ2∆Ehf ) = qzB

2
z , defined with constants the

Bohr magneton (µB), the Landé g-factor (gF ), and the hyperfine energy gap (∆EHF ). This

Hamiltonian is nontrivial to find simultaneous eigenstates for, as not all of the operators

commute with each other, namely Q̂zz and Ŝ2 (see Table 2.3). This can be further simpli-

fied by noting that both the magnetization (Ŝz = M = 0) and the atom number (N ) are

conserved, and so won’t affect the dynamics. The simplified version of this Hamiltonian

(Ĥ becomes:

Ĥasym = c̃2Ŝ
2 − q

2
Q̂z, (2.12)

as we define the new variable, Q̂z = − N̂
3
− Q̂z,. This version of the Hamiltonian is
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useful in our simulations and depictions of the dynamics in the spin-1 space.

Looking back at Equation 2.11, the asymmetric Hamiltonian was constructed in the

spin-1 Fock basis, |N−1, N0, N+1⟩. This can equivalently be transformed to be written in

terms of |N,M, k⟩, where N is the total number of atoms, M is the magnetization, and k is

the number of pairs of atoms in the mf = ±1 state. As we will see, this basis is convenient

due to several conserved quantities.

The total atom number can be assumed to be a constant throughout our experiments.

Likewise, the magnetization, defined as M = N1 −N−1, is also conserved; this leaves the

parameter k as the single parameter over which the Hamiltonian can be solved. The Fock

states therefore have a dimensionality of N/2+ 1, as it spans the number of available pairs

for k ∈
[
0, N

2

]
.

Taking this, we can write Equation 2.11 in the Fock number basis as,

Hasym = c̃2

((
N̂1 − N̂−1

)2
+
(
2N̂0 − 1

)(
N̂1 + N̂−1

))
+ c̃2

(
2â†1â

†
−1â0â0 + 2â†0â

†
0â1â−1

)
+ p

(
N̂1 − N̂−1

)
+ q

(
N̂1 + N̂−1

)
+ N̂E0.

(2.13)

From the above equation, noting again that ∆M = 0 and the initial state for the atomic

cloud is |f,mf = 0⟩, we gather that the elemental form of the Hamiltonian matrix follows

as [75],

Hk,k′ = (2c̃2k (2 (N − 2k)− 1) + 2qk) δk,k′

+ 2c̃2[(k
′ + 1)

√
(N − 2k′) (N − 2k′ − 1)δk,k′+1

+ k′
√
(N − 2k′ + 1) (N − 2k′ + 2)δk,k′−1].

(2.14)

These elements form a symmetric, tridiagonal matrix. Using this form, we can numerically

integrate the Schrödinger equation of the form iℏ ∂
∂t
ψ = Hψ, to look at the dynamics of the

system in the quantum formulation.
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2.3 Mean-Field Approach

In the mean field description, we can describe a large number N of atoms in the form

of N -independent wavefunctions which satisfy the constraints given by the solution to the

Gross-Pitaevski equation [39]. For our tightly confining trap, our system satisfies the single

mode approximation (or SMA) [39] and we can consider the whole condensate to be in the

same spatial state. This allows us to write a spinor wavefunction of the form,

ψi =
√
N |ζi|eiθi (2.15)

where |ζi|2 = ρi = Ni/N are the fractional spin populations and θi are the phases for the

mF = 0,±1 modes. This can be written as a form of coupled Gross-Pitaevskii equations,

which we can use to simulate the evolution of the states in time. They take the form:

iℏ
∂ζ1
∂t

= E1ζ1 + c[(ρ1 + ρ0 − ρ−1)ζ1 + ζ20ζ
∗
−1]

iℏ
∂ζ0
∂t

= E0ζ0 + c[(ρ1 + ρ−1)ζ0 + 2ζ1ζ−1ζ
∗
0 ] (2.16)

iℏ
∂ζ−1

∂t
= E−1ζ−1 + c[(ρ−1 + ρ0 − ρ1)ζ−1 + ζ20ζ

∗
1 ]

with c = 2c̃N (the spinor dynamical rate) and EmF
= −(mF )p + q (the expression for

the linear (p = pzB) and quadratic (q = qzB
2) magnetic field energy shifts felt by each

hyperfine sublevel (mF )) being defined above. This allows us to write the wavefunction:

ψ = (ζ1, ζ0, ζ−1)
T . (2.17)

Additional constraints further simplify our expression, as we take into account the con-

servation of magnetization (m = ρ1 − ρ−1) and the normalization condition Σ3
i=1ρi =

Σ3
i=1|ζi|2 = 1. This leads us to rewrite the order parameter by defining χ± = θ±1 − θ0 to
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give:

ψ =

(√
(1− ρ0 +m)

2
eiχ+ ,

√
ρ0,

√
(1− ρ0 −m)

2
eiχ−

)
. (2.18)

Defining the spinor phase, θs = θ+1 + θ−1 − 2θ0 and the magnetization phase, θm =

θ+1 − θ−1, we can write the mean field spinor energy per particle [72]:

E =
c

2
m2 + cρ0

[
(1− ρ0) +

√
(1− ρ0)

2 −m2 cos θs

]
+ pm+ q (1− ρ0) . (2.19)

As will be seen in the next section, the mean-field description can be linked to the quantum

formulism to provide a semi-classical picture, making it easier to simulate the complex

dynamics for our ensemble of atoms.

2.4 Phase Space and Spin-1 Pictures

Several useful pictures can be described using the mean-field and quantum descriptions.

They help us visualize the space and dynamics in which our spin dynamics reside. The

first of which is obtained by looking at the phase space created by the conjugate variables

ρ0 and θs [72]. These can be obtained by taking the derivative of the energy functional in

Equation 2.19:

ρ̇0 =
2

ℏ
∂E
∂θs

, (2.20)

giving,

ρ̇0 =
2c

ℏ
ρ0
√

(1− ρ0)2 −m2 cos θs. (2.21)

Likewise,

θ̇s =
2

ℏ
∂E
∂ρ0

(2.22)

yields,

θ̇s = −2q

ℏ
+

2c

ℏ

[
(1− 2ρ0) +

(1− ρ0)(1− 2ρ0)−m2√
(1− ρ0)2 −m2

cos θs

]
. (2.23)
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As will be discussed below, our system undergoes a change in observable behaviors for

certain values of spin collision energy (c̃2, hereafter simplified to “c") and quadratic Zeeman

energy (q). Using the ρ0, θs phase space, we can simulate the mean-field behavior of a

collection of atoms for various q/c values. These dynamics follow orbits around constant

energy contours, and give us insight into how the semi-classical phase space changes. We

can express the mean-field variables ρ0, θs, χ, and m in terms of the expectation values of

the spin-1 operators presented earlier as [86, 88]:

tanχ+ = − Sy +Qyz

Sx −Qxz

tanχ− =
Sy −Qyz

Sx −Qxz

ρ0 =
1

2

[
1 +

√
1− 1

2

((
Sx +Qxz

cosχ+

)2

+

(
Sx −Qxz

cosχ−

)2)]

m =
1

8ρ0

((
Sx +Qxz

cosχ+

)2

−
(
Sx −Qxz

cosχ−

)2
)

θs = χ+ + χ−

(2.24)

Furthermore, we can use the ρ0 and θs variables to create a spherical projection of the

spin-1 space. We call this the “spin-nematic" (SN) sphere. Remembering the operator Q̂z

presented in our Hamiltonian (Equation 2.12), we note that we can define a sphere with the

normalized, mean-field relation:

1 = S2
⊥ +Q2

⊥ +Q2
z. (2.25)

This incorporates the definitions of the transverse spin, S2
⊥ = S2

x+S
2
y , and the off-diagonal

quadrupole moments, Q2
⊥ = Q2

xz +Q2
yz. These equations take the form [86, 88]:
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Figure 2.1: Energy contours in the spinor phase space (ρo, θs) for different values of q/|c|.
The plots in clockwise order, from top left to bottom left, show the contours for values of
q/|c| = 10, q/|c| = 2, q/|c| = 1, and q/|c| = 0.5. Values for q/|c| > 2 reside in the polar
phase space, while values less than two belong to the broken-axis symmetry phase, where
the oscillations away from the closed orbit ground state (shown in red) are characterized by
larger phase-winding oscillations.
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Sx = ⟨ψ|Sx|ψ⟩ = 2
√
ρ0(1− ρ0) cos θ cos θL = S⊥ cos θL

Qyz = −2
√
ρ0(1− ρ) sin θ cos θL = −Q⊥ cos θL

Sy = −2
√
ρ0(1− ρ0) cos θ sin θL = −S⊥ sin θL

Qxz = −2
√
ρ0(1− ρ0) sin θ sin θL = −Q⊥ sin θL

Qz = 2ρ0 − 1

(2.26)

This creates a projection onto a Bloch-type sphere and is useful for watching the evo-

lution of the semi-classical space constructed from dipole-quadrupole operators defined as

Qij = Q̂ij/N . Qz is constructed in a way to maintain a range of [0, 1] for the variable

ρ0 − N0/N . Together, the set of variables S⊥, Q⊥, and Qz don’t create a proper SU(2)

subspace of the SU(3) phase space, shown in [86], but they do allow us to visualize the

dynamics in the higher, spin-1 space. Moreover, it becomes an excellent way to understand

the squeezing dynamics which develop in the S⊥, Q⊥ space, which we will demonstrate in

the next section. Various values of q/|c| are shown on the spin-nematic spheres to shown

the energy contours for the various phases of the system.
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Figure 2.2: Energy contours in the spin-nematic phase space (Ŝ⊥, Q̂⊥, and Q̂z) for different
values of q/|c|. The plots in clockwise order, from top left to bottom left, show the contours
for values of q/|c| = 10, q/|c| = 2, q/|c| = 1, and q/|c| = 0.5 as projected on the spin-
nematic sphere. Values for q/|c| > 2 reside in the polar phase space. As in the spinor phase
space, values of q/|c| < 2 are characterized by closed oscillations (in red) near the ground
state, while phase winding oscillations appear in blue. The black line depicts the separatrix
between these two types of oscillations.
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Table 2.3: Commutation relations for the spin-1 operators.

[↓,→] Sy Sz Qyz Qxz Qxy Qxx Qyy Qzz

Sx iSz −iSy i(Qzz−Qyy) −iQxy iQxz 0 2iQyz −2iQyz

Sy - iSx iQxy i(Qxx−Qzz) −iQyz −2iQxz 0 2iQxz

Sz - - −iQxz iQyz i(Qyy−Qxx) 2iQxy −2iQxy 0
Qyz - - - −iSz iSy 0 −2iSx 2iSx

Qxz - - - - −iSx 2iSy 0 −2iSy

Qxy - - - - - −2iSz 2iSz 0
Qxx - - - - - - 0 0
Qyy - - - - - - - 0
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CHAPTER 3

EXPERIMENTAL APPARATUS

In order to perform our particular flavor of spinor BEC studies, our experimental techniques

rely on a number of generational advances, many of which are the by-product of many

Nobel-worthy advances the field of atomic physics. The apparatus and techniques written

about in this section also span several generations of graduate students in the Chapman

laboratory, many of who’s work is describe in other works [89, 81, 90, 91, 86, 92, 93].

This chapter will present an overview of the current apparatus used to create and per-

form the studies described in this thesis. We will briefly discuss the general types of tech-

niques used to cool, trap, interact, and measure our BEC. We’ll then outline how these tools

are made to work practically in an experimental sequence to study spinor dynamics.

3.1 Lasers

Lasers are a key part of our experiment, as they provide the cooling, trapping, and imaging

of the atoms in the experiment. The sections below detail the setup and operation of these

lasers, as well as their roles and layouts in the experiment.

3.1.1 Experimental Diode Lasers

Diode lasers provide an economic and effective way to interact with rubidium [94], as its

atomic transitions are in the near-infrared wavelength range of many diode lasers (for us

∼ 780 nm). These lasers are easy to make a stable frequency, or single mode, through

appropriate temperature and current controls. In the previous versions of our experiment,

the stability of our diode lasers were further strengthened through the use of an external

grating. This grating is a standard technique which reflects the first order diffractive order

back into the diode’s internal cavity [94], allowing one to create a coherent laser beam of a
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single, narrow frequency. This laser setup is referred to as an “external cavity diode laser"

of ECDL. A schematic of a typical setup is shown below Figure 3.2.

A second type of diode laser newly introduced in the experiment is the distributed Bragg

reflector laser or “DBR" laser. Similar to the conventional ECDL laser, it involves a grating

to provide the single mode feedback for the laser; however instead of being located external

to the diode housing, the grating is microfabricated to be located within the diode housing.

This allows for more stable control of the temperature of the laser, and thus stability and

tunability of the laser itself.

Our experiment currently employs both types of diode lasers. The former, ECDL type

was used in the experiment for many decades. Within the last two years however, we added

DBRs to our arsenal and after some testing, swapped out some of the ECDLs for equivalent

DBR lasers. We’ll talk about how we use these diode lasers now in the experiment and

some of their locking characteristics.

3.1.2 Frequency Stabilization of Diode Lasers Used in the Experiment

Our system uses a saturation absorption spectroscopy lock to electronically feedback to

and lock our lasers onto a single frequency. First demonstrated in 1995 [95], it works

by dithering the lasers’ current with a high frequency modulation (∼ MHz). This is then

electronically mixed [86] to create an error signal using the signal from the photodiode

signal and the input modulation (see Figure 3.2). Once the current and temperature settings

are found to put the laser near resonance, the lines from the sub-Doppler peaks can be used

to lock the lasers (see Figure 3.1).

A table for the modulation and locking settings used in the experiment is shown below

in Table 3.1. Here the reported values are from Fall 2022. These modulations were later

updated (circa Spring 2023) in our heterodyne studies of the DBR lasers to give smaller

frequency spreads (FWHMs) of the output from the laser beams. Data presented in this

thesis is taken primarily with the laser modulations listed in the table below.
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Figure 3.1: DBR cycling laser saturation absorption signal (yellow) and the DBR error
signal (blue) depict the main signals used to lock the experimental cooling and imaging
transition. Full schematic shown in the following figure to depict how this signal is used to
stabilize our laser to a particular frequency to less than a 5 MHz linewidth [89].

Table 3.1: Experimental diode lasers listed with their modulation strengths and measured
with heterodyne measurements to estimate the linewidth of the laser’s output when locked
using the FM modulation.

Diode Laser Est. FWHM Modulation Freq. Modulation Strength
Probe ECDL 3-4 MHz 0.3 MHz +10 dBm
Cycling DBR 5+ MHz 1.8 MHz -4.3 dBm
Repump DBR 5+ MHz 1.8 MHz -4.1 dBm

Once this light is generated from the FM spectroscopy, it can be locked by the locking

electronics using our home-built boxes [86]. Our locks use only proportional and integral

feedback to the error signal to maintain the lock at its setpoint. In our older setup, the slower

integral feedback went to the piezoelectric motor which controlled the grating position for

the ECDL lasers, while the proportional feedback was applied to modulate the current

of the diode itself. In the current configuration for the DBRs, we instead combine the

proportional and integral outputs, with appropriate attenuation, to directly feedback to the

DBR current (see Figure 3.3). In this configuration, the lasers can remained lock for most

of the day, in the case of the ECDLs, and for many days, in the case of the DBR lasers.

Additionally, while the ECDL lasers are temperature sensitive above a change of a few
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Figure 3.2: FM locking electronics circuit used to lock the ECDL laser on the experiment.
Currently only used for the probe laser, as it incorporates a separate integral feedback for
the piezo grating.

degrees in the room (as the external grating and experiences thermal shifts outside of the

correctable range of the electronic feedback), the DBR lasers stay on resonance as the diode

and grating are thermally and internally isolated from the environment.

A final point of consideration for the laser lock of the DBR lasers controlling what’s

known as the cycling or cooling transition of rubidium, is the frequency shifts provided

by acoustic-optical modulators (AOMs). As will be discussed in the next section, the fre-

quency shifts determine the output light’s precise frequency used to cool or image the

atoms. The AOMs for the DBR lasers, however lie within the laser locking path, and when

the frequency of the AOM is changed, both the direction and amplitude of the outgoing
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Figure 3.3: FM locking electronics circuit used to lock the DBR lasers used on the ex-
periment. This circuit applies to both the cycling and repump DBR lasers and is used to
stabilize the output frequency of the lasers.
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beam is changed (see Figure 3.9 for optical layout). This inevitably changes the amount of

light going to the saturation spectroscopy setup, effectively changing the error signal size

(and offset to a smaller extent.) With appropriate gain settings, and a slow enough shift in

the frequency, the DBR cycling laser can reliably follow the experimental cycle for the du-

ration of the day. More details of the timing and size of the frequency shifts will be further

discussed below.

3.1.3 MOT and Imaging Beams

As noted above, the diode lasers used in our experiment perform the initial stages of cooling

and trapping for our rubidium atoms, and are used at the end of the cycle to image the

atoms. The way we accomplish this is through a series of AOMs (mentioned above). As

depicted in the level diagram shown below, the cycling transition (F = 2 → F = 3) is

responsible for the initial cooling stage of the room temperature rubidium-87 atoms to the

millikelvin range. This occurs in a process known as “Doppler cooling," which originated

in an Nobel-worthy advancement in the laser cooling of atoms [96]. Likewise, we use a

simpler, though similar, locking scheme for the repump laser, which helps create a closed

cooling system for our rubidium-87 system.

Rubidium is one of the easier atoms to cool because as an alkali atom, it is relatively

simple to create a “closed" cooling system with two frequencies (the cycling and the re-

pump, as mentioned previously). The cycling laser provides the

Frequency Scanning of the Laser Detuning

The so called “cycling laser" is called that as it is close in frequency to the “cycling" tran-

sition (F = 2 → F ′ = 3, see Figure 3.4). This transition is used for both the main cooling

mechanism in the first stage of the experiment (also known as the MOT phase). To cool and

trap the most atoms we find a detuning of around -20 MHz to be the optimal detuning from

the resonant, cycling transition. The second stage is used to further cool the lasers using a
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Figure 3.4: MOT Transitions in Rubidium-87
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far-detuned, “dark" MOT setting, which is typically found to be optimal around -200 MHz

from the cycling resonance. The final use of these lasers comes from In order to achieve a

lockable laser capable of scanning over 200MHz, while staying locked, we use a series of

AOMs and locking points to create a laser capable of reaching an on-resonance frequency.

We lock the cycling DBR laser, used for both the MOT and imaging light, to the

“crossover" peak. This peak appears from the moving atoms that are resonant with either

the incoming or reflected beam [95] and so produce a peak that lies between two resonant

lines (here F = 2 → F = 3′ and F = 2 → F ′ = 1). The crossover we us is the “3-1"

crossover, which is -211.8 MHz away from resonance. This peak is large enough to lock to

and when combined with the available AOMs allow us to reach the cycling frequency. The

locking point combined with the AOM shifts works out to:

Table 3.2: Frequency shifts for the cycling light used to generate the MOT and imaging
light for the experiment. Shifts produced by a combination of the locking point and the
shifts provided by various AOMs (depicted in optical outline below).

Frequency Shifts MHz Type
Lock Point - 211.8 Fixed
Lock AOM - 160 Fixed
Double Pass + (2x)(111.6 → 241.8) Variable
Post-TA AOM - 110 Fixed
Net Shift (-258.6 → +1.8) Range

The range of output frequencies allows us to empirically optimize the frequencies for

the MOT, dark MOT, and imaging stages. In the past, we could only scan up to a maximum

of ∼ -6 MHz. But when the new DBR lasers were installed, a 1.5x amplifier was added

which allowed the control voltage from the computer (0-10 V output) to be increased. This

allows a higher input to the voltage control oscillator (VCO), which changes the output

of the AOM. In our case, the VCO-AOM driver circuit modulates the double-pass AOM,

adding a variable frequency range to the output from this path. The plot of the net frequency

shift is shown in Figure 3.5 for the new cycling DBR laser as a function of voltage input

from the computer to the VCO. This however can be tricky, as the angle of deflection
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Figure 3.5: Net Frequency shift for the cycling DBR detuning as a function of experimental
control voltage applied from the computer to the double pass AOM in the DBR cycling
locking path. Shows wide tuning range used to tune between the dark MOT stages (around
-200 MHz detuned) to imaging stages (around 0 MHz detuned) of the experiment.

of the frequency-shifted beam is dependent on the frequency. Thus, the amount of light

downstream from the double pass AOM changes, changes due to the changing angle and

efficiency for different frequencies.

For this reason, we try top optimize the double-pass AOM’s angle in the middle of the

frequency range to ensure there isn’t a drastic change in the amount of light that makes its

way to the saturation absorption setup used for locking. As a consequence, the saturation

absorption spectra shifts by small amounts, due to the variable frequency settings, causing

the error signal to have a slight DC offset and amplitude change. By using the appropriate

locking settings (e.g. sufficient feedback, offset, etc.) and changing the detuning to be at a

sufficiently slow rate (usually 20 - 40 ms for large detuning shifts), we can lock the cycling

DBR laser for the entirety of the day without re-locking.

A similar procedure is done for the probe laser that is used in absorptive imaging of the

BEC. It works by shining resonant light onto the condensate, which effectively gets totally
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absorbed, creating a shadow of the cloud on the camera. In order for this to occur, the probe

must be resonant with the cycling transition. To ensure this, we lock to the same transition

as with the cycling DBR laser mentioned above (the (3,1) crossover, see Figure 3.6). The

locking path also has a fixed -160 MHz AOM in it, as it was formerly the “master" or

primary experimental cycling laser before we added the DBR lasers to the system. This

gives a net detuning of around ∼ -372 MHz, before the light reaches the probe’s double-

pass AOM. The frequency modulation of the AOM has a range of values if can be set to,

but the exact frequency and strength of the modulation is determined quasi-empirically, as

we look at the absorptive image. Usually this value is very close to the nominally expected

value of 186.0 MHz ± 0.1 MHz. See Table 3.3 below for the summary of the frequency

shifts for the probe laser.

Table 3.3: Frequency shifts for the probe produced by a combination of the locking point
and the shifts provided by various AOMs (depicted in optical outline below).

Frequency Shifts MHz Type
Lock Point - 211.8 Fixed
Lock AOM - 160 Fixed
Double Pass + (2x)(186.0) Set
Net Shift + 0.1 Set

The repump laser is simplest of all of the diode lasers, in terms of frequency shifts

needed to make it resonant with the “repump" transition, as it only has one frequency shift

involved. The repump laser itself is on resonance with the F = 1 → F ′ = 2 transition (see

Figure 3.4). To achieve this, we lock the repump to the (2,1) crossover of the saturation

absorption signal (see Figure 3.7). This proves to be a useful feature to lock to as it is one

of the larger features on an already smaller signal (owing to the strength of the transition).

It is also easily accessible with a fixed AOM shift of +80 MHz, as the crossover peak is

located -80 MHz away from the true repump resonance.

A final function that our AOMs provide for all three of the lasers, is that the last AOMs

in each of their respective paths have the ability to turn on and off with ns precision. This
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Figure 3.6: Probe’s scope trace of the saturation absorption signal (yellow) used to generate
the error signal (blue) to lock the laser to a specific signal. Despite the noise seen on the
trace, linewidth measured using heterodyne detection was measured to be within a few
MHz [89].

Figure 3.7: DBR Repump saturation absorption spectrum and error signal used to lock the
repump laser on transition.
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is used experimentally to turn on and off the lights on the experiment as needed. This and

other features of the optical layouts for the diode lasers can be seen in the following section.

3.1.4 Optical Layout

This section outlines schematics for the various diode lasers used on the experiment. For the

last seven years or so, the optical setup for our experiment has been largely the same as we

largely used the same types of diode lasers to provide the adequate powers and frequency

stability the experiment requires. However, in the last couple of years, we have been testing

out the use of a single high power DBR laser; this is as opposed to both a primary (master)

ECDL laser for locking, and a secondary (slave) power laser that is seeded with the light

from the primary. The light from the secondary laser would then become the seed light

for the tapered amplifier (TA) which provides the high power amplification needed for the

MOT.

Currently, we use a single DBR laser to replace the primary-seconday lasers system.

Rather than completely scrap the lasers from the primary-secondary system, the optics

were left in place and a nearly duplicate system was setup on a separate table for the DBR

setup. In the previous system (shown in [89]), the primary ECDL was split off to send a

portion of the light to both the injection path for the secondary laser and to a second path

used to generate the probe beam used for absorption imaging. This was left in tact, and the

layout is shown in Figure 3.8. The only addition to the former setup of the primary (master)

ECDL is the addition of an extra path of variable power which we use for diagnostics of

the laser to measure its frequency and linewidth.

The cycling DBR is composed of a high power diode which is capable of putting out

100’s of mW. After testing the lock stability and laser linewidth, we switched from the

primary-secondary diode laser system mentioned above. Other than that, the basic setup is

identical in terms of the AOMs used. The main difference is that now the double pass AOM

which was formerly located after the saturation absorption setup (used to generate the error
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Figure 3.8: Probe Optical Layout
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Figure 3.9: DBR Cycling Laser Optical Layout
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Figure 3.10: DBR Repump Laser Optical Layout

signal for locking), is now placed before it. Meaning the amount of light which reaches the

locking path changes slightly in direction and magnitude, thus causing shifts in the error

signal (as mentioned above). The layout for the cycling DBR is show in Figure 3.9. The

output of the remaining laser light which is not used to generate the error signal is sent to

the TA for amplification, providing enough light to send to the experiment to make a MOT

and image the atoms.

The repump DBR layout, much like the cycling DBR, replaced the formerly used two-

laser setup of a primary and injection-locked secondary diode laser. Many of the optics

from the former setup were used to setup the repump DBR, as the testing for the repump

had fewer constraints on the locking and dynamic frequency shifting needed. Just like the

former repump layout, shown in [89], there is only one fixed AOM in the repump path

which shifts the laser to be on resonance (as discussed above). The main difference in the

former two-diode system and the current DBR system, is that now the light is input into

a fiber where it is sent to the TA table to be coupled into the MOT fibers. An additional
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Figure 3.11: MOT and imaging optics that are used to send light to the experiment through
optical fibers; seed light for the tapered amplifier (TA) and repump light come from the
DBR lasers shown above.

isolator is placed in the path before the output to minimize any feedback that might enter

the DBR repump diode from the fiber. Layout for the repump DBR system shown in

Figure 3.10.

The final optics which prepare the MOT and imaging light from the DBRs to go to the

experiment are shown in Figure 3.11. These optics are identical to those shown in [89].

The modifications to the system arise from the additional optics needed to bring in the

light from the cycling and repump DBR lasers from fiber to the TA table and optics. As

a precaution when putting in the DBR lasers, and not being sure of how the cycling DBR

39



scheme would perform, the fiber for this laser was added in situ and the former secondary

(slave) laser and associated optics left in its place. They are still there, in the event that we

might need some sort of backup lasers (should the DBRs fail or be out of use for a time).

In the long-term, the DBRs could probably be moved to the TA table, avoiding the use of

a fiber and the subsequent power loss through the fiber. Even more ambitiously, one could

think about further changing the MOT and imaging light setup all together by by-passing

the TA and using the light directly from the DBRs themselves. With the use of the high

power DBR diodes, this makes this a more plausible proposition.

The repump optics are also the same, save for the introduction of a fiber coupler to

bring in the DBR repump fiber from the other table. Both the cycling (after it has coupled

into and amplified by the TA) and repump lights are combined on a cube a sent to the MOT

fibers to the experiment. A table of typical powers from these fibers is shown below in

Table 3.4.

Table 3.4: Typical powers as measured through the MOT fibers during the MOT loading
stage. Same value is used for the imaging stage of the experiment.

Fiber Cycling Repump
MOT 1 42 mW 13 mW
MOT 2 42 mW 2.5 mW
MOT 3 43 mW 3 mW

3.2 Optical Trapping Lasers

Our experiment works on the principle that the atomic spins are free to interact with one

another. This would not be possible in magnetic trap, typically used in traditional BEC

experiments. Our group was the first to develop a way to achieve a BEC in an all-optical

trap [31]. The heart of this apparatus focuses on our longest wavelength laser: the 10.6

µm laser, or “CO2" laser. Traditionally used in metal cutting, this infrared, high power

laser forms the main trap and evaporation potential for our condensate. Due to its tight

focus we are able to efficiently evaporate the pre-cooled atoms in this trap alone to reach
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condensation. Spin interactions in this “single beam" or “single focused" trap are dependent

on the density of this trap. We can increase them by adding a second beam and increasing.

We do so with a second-detuned trapping laser, the 850 nm diode laser. This configuration

is known as the “crossed dipole trap" or “crossed trap." These topics will be discussed

further in subsubsection 4.2.2. Below will be shown the basic potentials for the traps and

the optical layouts of the traps used in the experiment.

3.2.1 Trap Properties

Optical traps were first used to trap neutral atom in 1986 [97]. Since then, neutral atom

traps have become an essential tool in atomic physics experiments. Also referred to as

“dipole traps," they operate by using the interaction of the dipole moment of the atom with

the intensity of the light field. This interaction is given by: p⃗ = αE⃗, where α is the complex

frequency dependent atomic polarizability. The potential associated with this interaction is

[92]:

U = −⟨
∫
p⃗ · E⃗ ⟩ = −1

2
⟨p⃗ · E⃗⟩ = − 1

2ϵ0c
Re(α)I. (3.1)

This is representative of the time-averaged potential, over one cycle of the light field, with

light having intensity I .

From a Lorentz model of the damping (Γ) due to the radiation loss from this atom-light

interaction [92], the on-resonance Γ is estimated to be Γ = e2ω2
0/6πϵ0mec

3, where me is

the mass of the electron and ω0 is the cycling transition angular frequency. The potential

and scattering rate, as a function of the angular frequency of the trapping light (ω), can be

introduced to be [98, 92]:

U(r) = −3πc2

2ω2
0

(
Γ

ω0 − ω
+

Γ

ω0 + ω

)
I(r) (3.2)

and,

Γsc =
3πc2

2ℏω3
0

(
ω

ω0

)3(
Γ

ω0 − ω
+

Γ

ω0 + ω

)2

I(r). (3.3)
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In the regimes that we are interested in, we can use the condition that ∆ = |ω − ω0| ≪

ω0 to simplify Equation 3.2 and Equation 3.3 to:

U(r) = −3πc2

2ω2
0

Γ

∆
I(r) (3.4)

and,

Γsc =
3πc2

2ℏω3
0

(
Γ

∆

)2

I(r) = − Γ

ℏ∆
U(r). (3.5)

This is known as the FORT (far off resonance trap) approximation. This is also the regime

for our 850 nm trapping laser.

Our large and primary trapping laser is 10.6 µm. In this regime, the relation ∆ =

|ω − ω0| ≪ ω0 is no longer valid, as ω ≪ ω0. This changes Equation 3.4 and Equation 3.5

to become:

U(r) ≃ −3πc2Γ

ω4
0

I(r) = − αs

2ϵ0c
I(r) (3.6)

and,

Γsc =
2Γ

ℏω0

(
ω

ω0

)3

U(r). (3.7)

Here, αs = 6πϵ0c
3Γ/ω4

0 = 5.3 × 10−39 m2C
V

, and is the static polarizability of the ru-

bidium atom. Because ω ≪ ω0, the single focused 10.6 µm trap is essentially conservative

based on the scattering estimation, making it especially useful in our studies.

Furthermore, the intensity in Equation 3.6 can be described as that of a focused Gaus-

sian beam [92]. The transverse intensity of a TEM00 Gaussian mode is:

I(x, y, z) =
2P

πw(z)2
e
− 2(x2+y2)

w(z)2 , (3.8)

where w(z) = w0

√
1 +

(
z
zR

)2
. P is the power in watts of our single-focused trap, and zR

is the Rayleigh length, zR = πw2
0/λ for wavelength λ. Referencing Equation 3.6, we insert

the expression in Equation 3.8 for the intensity to obtain:
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U(x, y, z) = − αs

2ϵ0c
I(x, y, z)

=

(
1

4πϵ0

)
4αP

cw(z)2
e
− 2(x2+y2)

w(z)2

= U0e
− 2(x2+y2)

w(z)2

(3.9)

where the trap depth, U0, is defined as:

U0 =
1

4πϵ0

4α

cw2
0

P. (3.10)

This gives a useful relationship to relate the trap depth to the power in the laser beam for a

given waist (w0).

3.2.2 CO2 and Cross Trapping Lasers

The use of the “CO2," or 10.6 µm, laser is beneficial in many ways. In addition to the low

scattering rate, the Rayleigh length (zR, above) is quite small. This is useful for performing

all-optical evaporation in, as we can tightly focus it. This is performed with the 38 mm

lenses located at the entrance of where the CO2 beam enters the vacuum chamber. This is

then re-collimated at the output with a second 38 mm lens. Each is a zinc-selenide (ZnSe)

lens capable of focusing infrared light and is discussed further in the next section.

This on its own is not sufficient to perform the full evaporation, as high densities are

required to keep collisional rates high enough to allow evaporation to occur [93]. In order

to do this a moving telescope is inserted into the 10.6 µm trap earlier in the path (see

Figure 3.12). The moving stage starts in a position that allows for the ODT trap to have

the largest trap volume to encourage atoms to load from the MOT to the ODT with the

greatest efficiency. Once the trap is loaded, the moving stage that contains one of the

ZnSe lenses in the moving 1:1 telescope, begins to move. It takes around ∼ 1 second to

nonlinearly move 10 mm. As this occurs, the power of the beam going to the telescope is
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Figure 3.12: Optical layout for the 10.6 µm trapping laser.

lowered. This creates a trap potential that is being lowered (according to Equation 3.10),

but because of the moving telescope, the waist going to the chamber changes, creating an

even tighter confinement. The minimum waist (w0) achieve in this configuration has been

estimated to be around 25-30 µm. This allows the atoms to continue to thermalize in the

trap with the lowering power, while still maintaining sufficiently high density. The level

of axial confinement from the laser is such that we can perform a full evaporation in the

cigar-shaped, single focus trap.

The maximum power the laser (Coherent CX-10L) can output out of the laser head is

around 165 W. With power loses however, the maximum power effectively going to the

chamber (after the moving telescope and lens mover) is around 118 W. The power in the

trap is lowered by changing the voltage that goes from the computer to the pre-amplifier

(ZFL-100GH) to modify the RF power to it. The output is then sent to the CO2’s AOM

(InterAction) and amplifier (LZY-1). A switch (ZYSWA-2-50DR) allows the AOM (and

thus beam going to the chamber) to be shut off quickly. This is used for time of flight appli-

cations and at the end of experimental cycles. By measuring the power after the AOM, as a

function of computer voltage, we calibrate the computer voltage (RF power) to beam power

in the deflected beam from the AOM. This function is input into our Labview program used

to input the measured beam powers and fit them to a polynomial. The resulting calibration
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Figure 3.13: Crossed dipole trap layout

can then be used to output a laser power for a given computer input. The nominal values

put into the computer range from 122 W to 18 mW, but have a voltage output that goes

from 0-5 V [89]. When the trap power is lowered to perform the evaporation, it typically

takes four to six seconds to go from loading (∼ 180 W) to condensate (∼ 50 mW). More

will be said about this in the next section in discussing the experimental procedure.

The second trapping laser used in this setup is the 850 nm diode laser. Because the

majority of the confinement is performed by the single focus trap, the second ODT is used

to intersect with the CO2 laser, once evaporation has occurred, forming a crossed trap
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Figure 3.14: Schematic showing crossing of the 10.6 µm laser and the secondary crossed
trap 850 nm beam in the vacuum chamber. Waists are comparable for the trap making
alignment very important for the condensate.

Figure 3.14. The 850 nm laser does not need much power for the aforementioned reason.

The range of powers through the fiber to the experiment currently range from 0 to 4.5 mW.

Its layout is shown in Figure 3.13. It is focused so that it has a waist that is around the same

size of that of the single focused trap (the 10.6 µm laser).

The single focus trap is aligned with the internal lenses on the chamber. We can do

this by using a HeNe (helium-neon) laser which is made to overlap with the infrared, 10.6

µm beam. This visible wavelength laser (not depicted in Figure 3.12) can then be safely

aligned by eye with the ZnSe lenses for the different positions of the lens mover telescope.

After this is done, the CO2 beam can be aligned using thermal paper at low power, and

then thermal image plates (Macken Instruments) for intermediate powers. When the two

trapping lasers are overlapped, the cigar trap becomes approximately spherical, providing

even higher densities (∼ 2-4x higher). This is achieved by moving the output of the 850 nm

fiber beam coupler that is mounted on a translation stage. Equipped with micrometers, we

can move the cross trap with fine precision to observe the cloud shape change in absorption
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imaging. The change in aspect ratio of the cloud from vertical cigar to circular cloud for

long times of flight, let us know our alignment is accurate. This can be further confirmed

by measuring the density (|c|) in the trap (see Figure 3.38).

3.3 Vacuum Chamber

One of the first and most fundamental parts of our apparatus is the ultrahigh vacuum (UHV)

chamber where our rubidium atoms reside. A schematic of the vacuum chamber is shown

in Figure 3.15. The pressure in the chamber is so low enough that the mean free path,

the average length a particle could travel without colliding with another, is ≈ 500 km for

a nitrogen molecule at room temperature. If you compare that with normal atmospheric

pressure, where the mean free path becomes ≈ 70 nm, one can understand why lower pres-

sure is necessary for us to study trapped rubidium atoms that would be free from spurious

collisions with any background gas.

This pressure is achieved from a series of high vacuum techniques starting with good

vacuum design (such as choosing vacuum-compatible materials and providing the largest

amount of conductance needed to achieve the desired pressure), followed by a “bake out"

achieved by pumping down on a chamber that has been heated up to the highest temperature

allowed by the materials and vacuum parts. If the chamber is assembled correctly, the

design is sound, and the bake out is sufficiently long enough, UHV is readily achieved

and will last for the lifetime of the experiment or the experimental pumps attached to the

chamber (such as an ion pump or NEG getter pump, etc.).

The current vacuum chamber Figure 3.15 consists of a Kimball Physics spherical oc-

tagon with two 6" conflat viewports on the top and bottom. These large glass viewports

provide optical access and are anti-reflection (AR) coated for the 780 nm light. Likewise,

eight 2.75" conflat flanges surround the sides of the chamber, and allow optical access for

two of the three retro-reflected MOT beams, which occupy half of these viewports and

are AR-coated. Two of the remaining four 2.75" viewports are used for both camera ac-
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cess and probe beam access. Sometimes termed the "imaging access," these windows are

across from each other. One end goes to the ANDOR iKon CCD camera which we use

for all our imaging. The iKon window is AR-coated and also contains an in-vacuum, high

aperture, aspheric lens (Thorlabs AL3026-B) which has an NA of 0.51 and focal length

of 26mm. More can and will be said about the iKon and aspheric lens in the section dis-

cussing imaging below. Opposite this vacuum port is the one that goes to the pumping arm

of the chamber which connects a tee-with a viewport for the probe laser used for absorption

imaging and a smaller CMOS camera, called the Blackfly or FLIR camera, typically used

to monitor the MOT. All will be discussed again in the later Imaging section. Finally, the

last two viewports are made not from glass, as it is opaque to 10.6 µm light, but from a

single zinc-selenide (ZnSe) crystal. These are located along the axis where the 10.6 µm

trapping laser beam enters and exits the chamber. This axis is also naturally where the

lenses for the large trapping laser are. The input lens is a 27.94 mm diameter, 38.1 mm

effective focal length, aspheric lens from II-VI Infrared, Inc. The outgoing lens is a zinc-

selenide meniscus lens from Thorlabs (LE7981-F). Each of the viewports and ZnSe lenses

have anti-reflection coating for 10.6 µm.

Our current BEC chamber was built in 2016, when it was found that the previous vac-

uum chamber was no longer operational. It was at that time that Matthew Boguslawski

and Bharath H. M. began rebuilding and modifying what is now the current BEC chamber.

This is the same design as shown in Figure 3.15. The layout is very similar to previous

versions of the experiment, however some modifications were added to hopefully improve

some of the issues seen in the earlier versions. One main problem that was observed was

the proximity of the rubidium source (a SAES brand getter) to the 10.6 µm lenses. Previ-

ous iterations would inadvertently leave a deposit of these atoms stuck to the surfaces of

these lenses. Over time, this would build up and get burnt by the incoming high power

10.6 µm laser beam causing the lenses to heat up. The new design puts the getter above the

high numerical aspheric lens, further away from the 10.6 µm ZnSe lenses to prevent this
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rubidium build up.

Rounding out the tour of the vacuum chamber itself are several pumping ports and feed-

throughs. The tee’d off section from the spherical octagon is where many of the pumping

attachments are located. The initial 2.75" conflat tee has the wire feed-through for the

getter where Near the top of the structure is an all-metal valve used to separate the chamber

from the pumping station connected during the initial bakeout. This is where a pump

could be hooked up again, should the need arise. Along this same 4.5" to 2.75" reducing

conflat teem there are the titanium sublimation pump feed-throughs. This section provides

a surface area for the titanium to stick to when the filaments are fired up at around 50A for

a few minutes. This allows the newly sublimated titanium to effectively "pump" residual

hydrogen in the chamber by capturing it as it sticks to it. This is particularly useful in UHV,

stainless steel chambers, where usually the only residual gases are the harder to pump ones

such as hydrogen. Connected to this is a 2.75" six-way conflat cross, which has both an

ion gauge and an ion pump (Varian Starcell, 40 L/s). The ion pump is run continuously to

pump on the chamber and its current is used to monitor the vacuum pressure, while the ion

gauge is fired on occasionally when a more precise reading of the high vacuum is needed.

When the newly-rebuilt chamber was put in place, pressure on the ion gauge read 1×10−10

Torr. This pressure has been confirmed recently and still remains the base pressure of the

current BEC chamber.

3.4 Magnetic Coils

The study of atomic spins, necessitates a precise control of the magnetic field. Our ex-

periment uses six pairs of coils to accomplish (see schematic below of coil layouts on the

experiment Figure 3.16). Using a series of procedures, we can apply fields from each of the

coils to reliably cancel out any ambient magnetic fields, as well as apply an arbitrary bias

field to manipulate the state of the atoms. Gradient fields allow us to initially trap and then

separate the atoms for imaging. Below, I’ll touch on some of the particulars of the coils
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Figure 3.15: Schematic of current BEC experiment.
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Figure 3.16: Schematic of coil layouts on the BEC experiment showing Helmholtz, bias
field coils used to zero the field, as well as MOT gradient and Stern-Gerlach gradient coils
used during the loading and imaging of the clouds, respectively. Auxiliary gradient coils
also pictured and provide a small gradient offset to the magnetized chamber (more details
in the Auxiliary Gradient section).

and describe their function.

3.4.1 MOT Coils

A pair of coils located along the vertical (ŷ) direction, and above the large six inch view-

ports of the vacuum chamber, are responsible for helping create the magneto-optical trap

(MOT). As was described previously, the MOT is the initial cooling stage of the atoms

as room-temperature atoms are cooled to ∼ 1 mK. In addition to the Doppler cooling de-

scribed earlier, the MOT provides a restoring force to the atoms that creates a linear force

to the atoms to push them to the center of the MOT. This is achieved from large MOT
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coils which can provide a gradient of 10-20 mG/cm. The coils must also be in an anti-

Helmholtz configuration, such that a quadrupole potential is created and there is zero field

at the center of the trap.

We achieve this conditions with MOT coils made out of 1/4” hollow copper tub-

ing. This allows us to water cool the coils with tap water from the building. There are

nine turns per coil, which add up to give a total resistance of Rtot = Rcoils + Rleads =

20 mΩ + 6.7 mΩ = 26.7 mΩ for both coils. In order to achieve a strong enough of gra-

dient, we typically ran 113 A through the coils with the EMS supply, to get a calculated

gradient of 13.5 G/cm. This was close to the peak current allowed from the supply. Re-

cently however, we were able repair an older, higher power supply, which has the ability

to increase this value, and thus the gradient. As of now however, there seems to be only

small improvements for increases of the gradient MOT coil current; it plateaus after a small

increase and is no longer optimal for the MOT loading.

3.4.2 Trim Coils

Three of these coils apply a bias field and are in a Helmholtz configuration. We call these

the “trim" coils. They use smaller gauge wire and are closer to the chamber. These coils

can be "zeroed" at the point where the atoms are at a field as low as ∼ 1 mG, by using

the atoms themselves to measure the Larmor response to an applied magnetic field. We

do this by applying a voltage to each of the trim coils, and sometimes a combination of

the trim coils and measure the atom’s response to that field (see Radio-Frequency section

for more on this). The frequency with which the atoms respond to the applied field can

be converted to give the magnetic field at the atoms. Doing this for a number of different

points (usually around 10 or so) for all of the trim coil pairs, we can find the corresponding

offsets to put in the control settings to "re-zero" what the zero field voltages for each coil

pair is. The conversion from voltage to magnetic field is also calculated. This also gets put

into the control parameters (talked about later in the Data Acquisition Section), and used
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to apply a reliable bias field in any direction. The three main axes on the experiment that

have these trim coils are geometrically orthogonal, as they are close to and in some cases

wrapped onto the chamber. Trim X and Trim Y each have 15 turns per coil, while Trim Z

has 90 turns per coil. Trim Z produces the largest field of the trim coils, and it helps define

the quantization axis for the atoms, along with the 10.6 µm trap beam.

3.4.3 Auxiliary Gradient Coils

The auxiliary gradient coils are a smaller but important gradient field. This pair of coils

provides a small field which counteracts the permanent magnetization of the field along the

ẑ axis (the axis where the 10.6 µm laser enters and exits the chamber). The permanent

magnetization of the chamber itself, which arises from the magnetization of the magnetic

components created from the strong gradient applied by the Stern-Gerlach gradient coils,

needs to be cancelled out. This extra, auxiliary gradient should be on during the state "in-

teraction" or "preparation" time of the atoms (see sections below for more details). These

are the times when the atoms have been purified into the polar ground state (see chapter 2

for details), and we are ready to either transfer atoms out of the |F = 1,mF = 0⟩ sublevel

or allow the state to evolve naturally via a magnetic quench (e.g. spin mixing, number

squeezing, etc.). In the latter case, it is particularly important that there is no extra gradient

to interfere with the evolution of the state during the interaction of the atoms, hence the

application of an appropriate auxiliary gradient to eliminate the extra gradient.

In the past, we would zero the gradient by eye. Looking in absorption, one would

either quench the magnetic field (with Trim Z) above and below the critical point of the

condensate (q = 2|c|) and allow the clouds to evolve for some time. When the clouds

were separated during imaging with the Stern-Gerlach (SG) gradient, spin domains would

be observed. A similar process was done by transferring atoms from |F = 1,mF = 0⟩

to |F = 1,mF = ±1⟩ such that all sub-levels have equal amounts, and then allow the

state to interact for several 100 ms. The shape of the domains after either procedure would
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Figure 3.17: Amount of spin mixing observed in the primary ODT trap as a function of
supplied voltage to the auxiliary gradient coils for one second of evolution time. One volt
here corresponds to 250 mA. Fractional population in ρ0 shown in figure below. Moving
clockwise from top left and ending bottom left, the voltage (and current) is increased. As
can be seen when the auxiliary gradient is near the optimal value (∼5 V), the degree of spin
mixing is increased.

54



Figure 3.18: Plot of amount of evolution away from ρ0 = 1 (spin mixing) in the single
focus, 10.6 µm trap, after one second evolution. Shows a minimum value when the gra-
dient is zeroed, indicating large degree of evolution from the initial state. This result was
confirmed using the method described later in this section. The ability to see good spin
mixing in the single focus trap seems to be due to the auxiliary gradient set to an appropri-
ate value (i.e. when the auxiliary gradient cancels out the permanent gradient present in the
experiment).
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indicate whether or not the gradient was zeroed. If the clouds were facing outward, the

auxiliary gradient would be in the same direction as the SG gradient. For example the

|F = 1,mF = −1⟩ sub-level for example, would be shaped like a backwards, capital letter

“D", while the |F = 1,mF = +1⟩ would be shaped like a capital letter “D". If the clouds

are facing inward (|F = 1,mF = −1⟩ looks like a capital “D" and |F = 1,mF = +1⟩

like a backwards “D"), then the auxiliary gradient is in the opposite direction to that of the

SG gradient. If no discern-able hard edges are observable, and the m = 0,±1 clouds just

look like a bunch of lines of domains, this would indicate a near zeroing of the permanent

gradient and the auxiliary gradient would be set to that value.

More recently, my contemporary graduate student, Lin Xin, thought of a way of zeroing

the residual gradient by instead moving the atoms along the gradient axis and measuring

the change in field. By adjusting the position of the second lens of the moving 10.6 µm

telescope, the condensate’s final position changes by a small amount. Applying a known

field at various positions of the lens, one can measure the field at different points along

the trap axis (ẑ axis). Doing this for different auxiliary gradient, a slope can be fit for the

change in field as a change in position. Plotting the values of these slopes allows one to see

when the change in field is unchanged as a function of position for a certain position of the

lens, thus zeroing the auxiliary gradient with a greater precision. This has been performed

on the experiment several times over the course of a year, and gave stable and consistent

values for the auxiliary gradient. Most recent data for this measurement was performed by

myself and is included in this thesis.

3.4.4 Stern-Gerlach Gradient Coils

The Stern-Gerlach (SG) coils are experimentally important as they provide a gradient along

the quantization (ẑ or CO2, 10.6 µm) axis. This is used in two ways on the experiment. The

first comes from the “purification" stage of the cycle. At this stage, atoms are already loaded

into the optical dipole trap and the evaporation stages have begun. While the trap power
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Figure 3.19: BEC cloud position as a function of second lens mover displacement distance.
10mm is the normal amount the lens mover (Newport LM3000) is programmed to move,
and the location where we typically zero the ambient magnetic field with the trim coils.
Different images are for different distances that the lens mover is displaced with a) at 10
mm, b) at 9 mm, c) at 8 mm, d) at 7 mm, and e) at 6 mm.

Figure 3.20: Auxiliary gradient fit to measured magnetic field gradients for different cur-
rents (here shown as a function of computer voltage) through the auxiliary coils. Result is
consistent with previous measurements [91, 89].
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(and depth) are dropping, the purification field is ejecting atoms from the mF = ±1 states.

This leaves us with a cloud whose initial state is |F = 1,mf = 0⟩. This simplifies the

experiment, as conservation of angular momentum applies, such that the magnetization,M ,

is defined to always equal 0. Thus, pairs that are created in later portions of the experiment

through interactions, must be created in equal numbers in ±1. The gradient comes on at a

moderate current (around 170 amps for around four seconds), and is turned off before the

final stages of condensation.

The second key role of the SG or "gradient" coils is to apply a strong, short pulse

to separate the final condensate for imaging with either fluorescence or absorption. This

typically happens when the trap is shut off and released for free-fall to allow the condensate

to expand. The longer we can apply a SG field, the further apart the clouds will be. There

are a few limitations with that limit the SF pulse time however. As discussed in the section

on imaging, allowing the condensate to fall for too long means it falls outside the range of

the imaging optics for the camera. A comfortable upper bound for this time is around 22

ms. The second limitation revolves around turn on and off time. Ideally, we would like to

image in a "zero-field" environment, as additional fields can create a magnetically-induced

detuning from the resonant light, thus limiting the counting efficiency needed for accurate

imaging. In order to ensure this we need to turn off the SG fields in a finite amount of time

such that there is near-zero residual field from the SG coils. This pulse uses the maximum

current available from the supply, for us around 460 amps.

Pulsing on and off for the SG coils is achieved using an IGBT (insulated-gate bipolar

transistor). IGBT’s are able turn on and off a large amount of current in less than one µs.

While this does not matter much for the purification pulse, it is something we consider for

the SG pulsing before imaging. The IGBT however, is not the main limitation for the SG

pulse timing. The coils themselves have are natural inductors with a measured inductance

of 72 µH. The resistance for our current circuit is around 43 mOhms, with 35 mOhms being

from the coils alone. This gives a natural decay time of around 1.7 ms (see Figure 3.21),
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Figure 3.21: SG pulses taken with the new and current IGBT circuit as measured through
a current clamp over the returning negative lead (blue), and the current measured through
a shunt resistor (yellow).

meaning this is the minimum amount of time the circuit can turn on or turn off. This is

taken into account by turning off the SG coils approximately 2 ms before imaging is to

occur to insure any stray fields are extinguished by the time we image the atoms.

Previous and current versions of the IGBT and SG coil circuit are shown in Figure 3.22.

The gradient coil circuit was updated when we received a new power supply and the old

SG power supply had died circa February 2022. We wanted to develop a circuit that would

prevent damage to the new supply, which we had at the time suspected might have con-

tributed to the death of the old supply. (We later were told the old supply was repaired by

repairing the four internal inverters which tend to die over time.) Modifications we made to

the old circuit to include an additional varistor (S20K20) instead of one, and the removal of

a flyback diode (1N4005). This was done as it was found that the varistors were the most

effective at preventing large voltage spikes from reaching the IGBT and power supply, dur-

ing the fast turn off of current for the SG pulse, but still allowed for a small voltage drop

across them during normal operation. Two varistors were and are currently used, instead of

one, as the voltage spike from the back EMF of the coils was quite large. In the future, we

would like to improve this even further by adding varistors with higher voltage tolerances

that can individually handle the potential back EMF. In the long term, there have been talks

of using a similar but perhaps more robust solution with power MOSFETs. This has not

59



Figure 3.22: Schematic of current IGBT circuit on experiment that controls the SG pulses
for imaging.

been looked into in depth, but is done in the neighboring Parker lab, and is a future project

a student might want to look into.

The Stern-Gerlach gradient is important for our experiment as it allows us to separate

the clouds into their magnetic sub-levels. The current separation for a 20 ms SG pulse at

∼ 460 amps is around 1.45 mm (see absorption image of cloud separation in Figure 3.23).

Currently, there’s a degeneracy between the |F = 1,mf = 0,±1⟩ and |F = 2,mf =

0,∓1⟩, as the F = 1 and F = 2 manifolds have differing signs for their Landé g-factors.

For most of our purposes, this is okay, as we expect to be in the ground state F = 1,

due to our efficient purification. However, imaging without the repump beam allows us to

image the F = 2 manifold. This is particularly useful for when we image the microwave

population transfer from the clock state (|1, 0⟩ to |2, 0⟩).
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Figure 3.23: Cloud separation in absorption with new SG circuit at maximum current for
20 ms pulse time, and a 22 ms time of flight.

3.5 Control System

Our experiment runs off of two separate computers. One for data acquisition, and one for

data analysis. The two are asynchronous, and must be manually initiated together to start

and stop relevant data. This section outlines a basic overview of the experimental and data

computers. The same basic setup has been in use for several generations of the lab. Updates

and additions have been made organically over the years as devices or parts were replaced.

I’ll first talk about how the data is taken before touching on how we analyze it.

3.5.1 Data Acquisition

Our control computer or data acquisition computer runs all of the controls for our experi-

ment. This is done in Labview through the use of National Instrument (NI) cards. These

cards provide a series of voltages at specific timings; the latter of which, originates from

an editable Excel spreadsheet which outputs a table of values for each control channel.

Labview reads in this table and uses it to operate the experimental channels. The timing

resolution of these cards is 10 µs. The cards are all synchronized by on a 60 Hz trigger from

an AC line source. There are currently two analog cards used on the experiment (“A01" and

“A02" boards). These have a voltage output of 0-10 V with eight BNC channels per card.
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Figure 3.24: Labview front panel of control computer

A digital NI card has 24 BNC channels with either 0 or 5 V outputs, used mainly as trigger

pulses for various switches, shutters, etc. In addition to these three cards, one is used to

control the GPIB devices in the lab. This involves the microwave sources, the pulse gener-

ators, and the lens mover. The GPIB devices are slower than the desired pulses needed on

the experiment, so their settings are updated in the Labview front panel and applied before

the experimental run. The main labview also contains several special subVIs which operate

the CO2 power ramp parameters (as discussed in subsection 3.2.1), the microwave and RF

generators, and the lens mover.

Common Errors

As the system gets older, there are several types of errors which have seemed to appear

as the most likely reason for the experiment to stop cycling and have issues running. The

first type, is caused by a lack of connection with the “A01" analog NI card. This can occur

when there has been a power outage and the PCI chassis for the NI cards has not been

shutdown properly. Another cause of this disconnection can arise from moving any of the

direct or adjacent cables attaching the AO1 BNC’s to the AO1 board in the PCI chasis.
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Figure 3.25: Since AO1 board controls and receives the timing signal from the computer,
a failed connection to the chassis often can produce varied error, such as the ones shown.
These are easily fixed by reestablishing the physical AO1 board connection and power
cycling the chassis.

Some example errors that can appear are shown in Figure 3.25. A disconnection from the

A01 board will stop the whole Labview, as the VI (program type for Labview) will not be

able to initialize the A01 board. The A01 board is special because it is the lead board in

the daisy-chain of connections for the other PCI boards (A01, A02, and Digital boards),

and is the one the program will use to initialize and execute timings when trying to execute

the csv timing table for all the channels. If a response is seen from the A01 board (BNCs

output correct voltages when changed), then the board is connected and shouldn’t be the

issue the VI isn’t running.
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Figure 3.26: Demonstration of lens mover error, which is a very common, though not
frequent problem on the experiment. It is caused by the age of the current lens mover and
lack of local memory, that from time to time fails to store the settings that Labview sends
to it.

Another common error encountered in running the experiment pertains to the lens

mover. Because of the age of the linear motor stage for the moving 1:1 telescope, used

to compress the 10.6 µm trap, it struggles at times to "write" the requested setting to the

local memory of the device. This will allow the experiment to run, but will produce an

error when the program tries to initialize the lens mover (after MOT loading), forcing one

to stop the experiment. The message presented by the computer is shown in Figure 3.26.

This error can usually be easily cleared by turning off the lens mover linear stage driver,

clearing the error messages, and resetting the GPIB address (to 26).

This isn’t a long term solution. Ideally, we’d be able to replace the old motor with a

newer one. We tried to do this last year, but were unsuccessful as the linear stage was not
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compatible with our stage type. The Labview sub-VI did work however, so we would need

to only replace the motor with one that is compatible for our moving stage. This remains a

task for future work.

3.5.2 Data Analysis

As mentioned above, our two computers are asynchronous and must be manually synced

by starting the data analysis computer after the settings have been input into the data acqui-

sition computer and the run starts. The data analysis computer controls the cameras for the

experiment. When these are triggered to take images, usually from a digital signal from the

control computer, an image is taken with either the iKon, iXon (“Top camera," or FLIR (see

discussions on imaging section 3.6). The iKon and iXon camera are a CCD camera from

ANDOR. ANDOR comes with its own programming language. Historically, we relied on

the programs we wrote to do more of the reporting of the number of atoms in each region,

in addition to controlling the camera settings. Currently, the ANDOR programs are used

primarily to produce the images during acquisition, perform basic background subtraction,

and create a text file which lists the number of images in a run (more on this later). The

program used for absorption is a little more complicated as it converts the camera counts

from several images to make a composite image in units of “optical depth" (see section 3.6

below). The third camera, a BlackFly USB 3.0 by FLIR, is used to image the MOT and

early stages of the evaporation ramp. It has the ability to run triggered or untriggered,

making useful especially to measure the MOT loading during a normal experimental run.

Once we obtain the desired images from the camera(s), they can be imported into a

software program called IGOR for analysis. Various IGORs are used for different cameras.

The standard form of the IGOR programs uses the imaging parameters from the camera

(pixel number, binning, etc.), and reads in the images from the designated folder where

the aforementioned text file, denoting the number of images taken, resides. If the number

of images is greater than zero, but less than the number requested (e.g. 20), the IGOR
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program will continue to import images from the specified folder until the number (here,

20) is reached. Thus, there exists the opportunity to re-import old images and analyze data

that is not being actively taken by the experiment. Since the IGOR has no knowledge of

the experimental settings or operations being performed, the user must be aware of what

parameters are being measured or used to input them into IGOR correctly when plotting

or measuring various runs. Some of the standard operations programmed into the IGOR

include spectrum and rate measurements for the microwave and RF, as well as statistical

measurements used for RF calibration and noise measurements.

3.6 Imaging

3.6.1 Imaging Optics and Masks

We rely on two primary, standard atomic physics techniques to image the state of our BEC:

fluorescence and absorptive imaging. These measurements involve a form of projective

measurement in which the Zeeman sublevels are separated and counted, giving information

on the state of the condensate. Clouds are separated by magnetic sublevel using the Stern-

Gerlach coils discussed above. Based on the imaging technique used, there are advantages

and disadvantages to either method, and at times they are useful for different types of

measurements. These will be laid out below in brief, but can be found more explicitly in

the thesis of Eva Bookjans [99]. There will also be a discussion of how noise estimates

are made for our imaging system. These noise calculations play an important role in how

we take data, and also in our estimate of the noise limits of our system which dictate the

minimum number of atoms we are able to image.

3.6.2 Fluorescence Imaging

Fluorescence imaging relies on scattering and collection of scattered light of the atoms.

This requires near-resonant light at sufficiently high intensities to saturate the cycling D2

(F = 2 → F = 3′) transition. This condition, when met, creates a maximal value of
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Figure 3.27: Top down view of BEC experiment and the imaging beam layout and setup.
Probe beam for absorption imaging is denoted by red dashed line.
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Γ/2 = (2π ∗ 6.065 MHz)/2 = 19.1 MHz, where Γ = 1/γ, with γ being the natural

lifetime of the transition [100]. More will be discussed in the following sections about the

calculation for the CPA and the amount of light scattered.

The same beams used to create the MOT are the same beams used to illuminate the

condensate while imaging. Instead of using the full size of the beams though for imaging,

a homemade, pneumatic aperture is used to restrict the size of the beams from a one inch

circle to a ∼ 2x2 mm square. This leaves the intensity of the beams the same, but minimizes

the scatter off of the internal optics of the chamber. In this masked configuration, only the

horizontal beams are used for imaging, with the vertical beam being blocked by a separate

shutter. A quantitative analysis of the noise from the masked, scattering beams is presented

later in this section.

The beams are also tuned from the dark MOT detuning (∼ −170 MHz), to the imaging

detuning (∼ −2 MHz). Before we installed the DBR lasers on the BEC experiment, the

lasers locking scheme we used required a series of AOMs to bring us close to resonance

for imaging. However, this only brought us to ∼ −7 MHz (see subsubsection 3.1.3 above).

The possible effects of this are discussed quantitatively below. The amount of light scat-

tered depends on this detuning, and thus affects the light available for collection for the

fluorescence measurement.

The amount of light received by the camera is affected by the camera collection optics.

The numerical aperture (NA) provided from aspheric lens inside the vacuum chamber (see

Figure 3.28), provides a technically-specified NA of 0.51. This factors into the way we

calculate the numbers of atoms in our system. In a simple estimate, the amount of light

collected is given by a calculation for what we call the "counts per atom." This is done

to estimate the amount of light we expect to collect and register on our camera, from the

scattered light from the atoms. This naturally depends on the fractional solid angle of

light we can collect optically (Ω), the camera specifications and efficiency (η), the rate of

scattering of light from the atoms (Γ/2), and the time we expose the atoms to the resonant
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Figure 3.28: Schematic of BEC fluorescence imaging setup depicting three sources of
fluorescence imaging using the iKon, iXon and FLIR cameras. Not all are useful at all
stages of the experiment, as the cloud location and size changes within the experimental
cycle.

light (τ ). This gives the equation:

CPA =

(
Γ

2

)
Ωητ. (3.11)

It’s from this we can estimate the conversion of the number of collected photons to the

number of atoms detected. Here the solid angle, Ω, is related to the limiting numerical

aperture of our system when imaging with the iKon camera, for the aspheric imaging lens

mentioned above. This is represented by the relation Ω = (NA)2

4
= (0.51)2

4
= 0.065.

Using the iKon camera settings and specifications for detecting light at 780 nm, we find an

overall camera efficiency of η = (quantum efficiency)/(gain) = (0.91 ∗ 0.77)/1 = 0.693,

where 0.91 is the specified quantum efficiency for 780nm light for the camera; 0.77 comes

from the 780nm line filter placed in front of the camera to eliminate non-780nm light from

entering the camera, and 1 is the specified gain for the iKon camera given the imaging

settings (rate and internal preamplifier settings). Naturally, these numbers would change

for different cameras and imaging optics (see subsection 3.6.4 below). The value of Γ/2

as mentioned above is 19.1 MHz. This value is well defined for imaging light intensities

well above the saturation intensity for the D2 transition. More realistic adjustments to this
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number will be discussed later in the section for our setup. If we assume however that it

is accurate, and we use a standard imaging exposure time for τ = 200 us, we obtain an

upper-bound for the counts per atom (CPA) conversion:

CPA = 172. (3.12)

Several other imperfections can affect the system. These mainly occur from the finite

sizes of the clouds and the effects of the imaging radiation on the cloud appearance. One

of the benefits of fluorescence imaging is that the counts detected are proportional to the

time the atoms are exposed to the light (as can be seen in Equation 3.11). In theory this

can lead to larger amounts of photons for longer exposure times, however the camera itself

has a saturation limit per pixel which can be exceeded with too much light. Additional

constraints arise with large exposure times, as clouds the clouds which absorb and scatter

the radiant light are heated and pushed over time. This leads to a distortion and growth

of the cloud sizes, which can make imaging difficult when looking for distinct regions of

the camera for counting of the individual populations. To help with this, we allow the

clouds to free fall, separate, and expand for as long as possible given the constraints of the

Stern-Gerlach (SG) fields and the camera optics. Typically, we let the atoms fall for 22 ms,

and apply the SG gradient for 20 ms. This gives us close to the maximal amount of cloud

separation for our setup.

Another consideration which was mentioned earlier arises from our imaging with small

apertured beams. While it does allow for less spuriously scattered photons to enter the cam-

era, they also make imaging large clouds difficult as the separation size of the clouds (∼ 1.4

mm) is close to the width of the imaging apertures and beams (∼ 2 mm). Meaning, for suf-

ficiently long exposure times, the imaging masks don’t evenly hit all the sublevel-separated

clouds, limiting our detection accuracy. This leads to the need for the adjustment of the

masks periodically, particularly when we are looking to calibrate the imaging, as discussed
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in the subsequent section on RF calibrations. Despite these constraints, fluorescence offers

us the most accurate counting of the atoms, we believe, so it is the primary work-horse in

the lab when performing noise-limited and sensitive spin measurements.

3.6.3 Absorption Imaging

While fluorescence is currently our preferred method for taking quantitative data, it can be

difficult to use to gather spatial or structural information about the cloud, as fluorescence

tends to blur and distort the cloud shapes. Enter absorptive imaging. Absorptive imaging

involves shorter pulses, and relies on the absorption of a beam based on the atomic den-

sity. This provides a means to observe any internal structures of the condensate, which are

particularly useful when looking for domains in the condensate, or when aligning the cross

trap. It works on the principle that for a resonant beam, our atomic cloud will absorb the

light. If we direct this light onto a camera, the camera sees a beam, with a shadow in it

where the atoms interacted with the beam (see Figure 3.29). The atoms will become heated

and scatter away once they have absorbed the light from the probe and re-emit it, thus there

will be no atoms in the probe’s path if it is pulsed again and another image taken. If one

were to reference the difference in the image with the hole in the middle from the second

image taken after the atoms have been excited away, then the composite would appear as

a positive signal which would be inversely related to the amount of light absorbed by the

atoms in the original image.

Quantitatively, this relationship is related to the optical depth (OD) of the cloud [99],

and the column density (ñ(x, y)) of the atoms as imaged on the camera:

∑
x,y

OD(x, y) ≡ σ0ñ(x, y). (3.13)

Here, σ0 is the on-resonance absorption cross-section for the atoms. Likewise, in the

limit of low-intensity imaging (probe beam typically around 50-100 µW), the optical den-

sity (OD) can be written in terms of the transmission (T (x, y)) [99]:
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OD(x, y) = −ln
(
S ′(x, y)− Sb(x, y)

S0(x, y)− Sb(x, y)

)
= −ln (T (x, y)) . (3.14)

Here Si(x, y) refer to different signals measured on the camera for atoms and the probe

beam (S0(x, y)), just the probe beam (S ′(x, y)), and no atoms or probe beam (Sb(x, y)).

Thus, based on the absorption property, we can infer the local density and distribution of

the atoms in the cloud from a single absorptive image.

Experimentally, each of these signals are taken as a separate image as described briefly

above. The background is taken separately at the start of acquisition, while the signal

(image with atoms) and reference (image with probe, but no atoms) are taken for each

experimental run. Because the signal strength is dependent on the probe beam intensity, it

is important to take these images as close together as possible. Our CCD camera has some

limitations on how quickly an image can be transferred from the sensor to the readout. To

enhance the readout time, we cover half of the camera sensor (1024 pixels by 1024 pixels)

so that its size is halved. This leaves the upper half of the sensor exposed for acquiring

images, while the second, masked half of the sensor can receive the image while it is being

shifted and transferred for readout. This effectively allows the readout time to be halved.

The typical time between readout of the signal and subsequent reference images is typically

around 5-10 ms. If this time were much shorter, portions of the signal image will enter the

reference image frame, messing with the composite image made from the subtraction of

the two.

To estimate the number of atoms detected in an absorption image, we can sum over the

pixels in a composite image, given the measured optical depth (net transmittance, T (x, y)).
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This gives us a relation of the form:

N =

∫
ñ(x, y)dxdy

=
∑
pix

ñpixdApix

=
Apix

σ0

∑
pix

OD(pix)

=
−Apix

σ0

∑
pix

ln(T (pix)).

(3.15)

The summation over the effective pixel area for the measured transmittance, T (x, y), and

is equivalent to measured “counts" over the pixel area. This then equates to a CPA pro-

portional to Apix/σ0. Apix is the effective pixel size after magnification (m) is taken into

account, such that Apix = Aact
pix/m

2, with Aact
pix is the area of they physical camera pixel

(13 µm x 13 µm). Using the on-resonance, absorption cross-section σ0 from [100], and the

magnification for our imaging setup (3.846) we find the counts per atom (CPA) conversion

for our current imaging setup is:

CPA = Apix/σ0 =
(13× 13 µm2)/(3.846)2

2.907× 10−9 cm2
= 0.0245. (3.16)

This number is independent of exposure times, as well as camera settings, but only relies

on the cloud being not too dense, the light to be resonant, and the intensity to be sufficiently

below the saturation limit. As it stands now, the ANDOR software program for absorption

already takes the signal and reference images and combines them into a composite image.

The signal is also displayed in units of optical density as described above. Typically, peak

densities don’t go above 1.5 OD for the condensate. Keeping the OD to less than two is a

best practice, as it helps limit errors associated with imaging a cloud that is too optically

dense.

73



Figure 3.29: Schematic of BEC absorption imaging setup

3.6.4 Realistic Fluorescence Imaging Calculations

As discussed above in the fluorescence section, we can calculate the amount of atoms

detected by our imaging system given the amount of counts collected. This is known as our

“counts per atom conversion." This was presented in Equation 3.11 for our iKon imaging

system, assuming the light we image with is well above the saturation intensity, such that

I ≫ Isat, where Isat = 3.58 mW/cm2 ([100]). In this limit, the scattering rate reaches

its maximum value of Γ/2. Practically however, there is a finite limit to the intensity of

light that we shine on the atoms during imaging. Currently, the imaging beams we use

are masked versions of the MOT beams, which have around 42 mW per beam, are retro-

reflected, and have a one inch diameter. This would give us an intensity (Ibeam) of 8.29

mW/cm2 per beam. If we use the fact that we image using four beams (two input beams

that are retro-reflected), the total intensity becomes: Itot =
∑

n=4 Ibeam,i = 4×8.29 = 33.2

mW/cm2. This would give us a ratio of total intensity to saturation intensity of: Itot/Isat =

9.04.

In a similar vein, the amount of light being used to image the atoms is also not quite on

resonance (ω0), but is slightly detuned by an amount, ∆ = ωlaser − ω0. This would thus

give us a photon scattering rate that is less than the maximum value for a given intensity.

Using these experimentally realistic considerations, we can write a more accurate equation
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for the counts per atom (CPA) determination using a realistic rate of light scattered during

imaging (Rsc):

Natoms =
Ncounts

(CPA)real

=
Ncounts

(RscΩητ)

(3.17)

where,

Rsc =

(
Γ

2

)
(Itot/Isat)

1 + 4(∆/Γ)2 + (Itot/Isat)
. (3.18)

For a detuning of ∆/2π = −0.831 Hz, and Itot/Isat = 9.04 as mentioned above, this gives

an Rsc/(Γ/2) = 0.894, meaning the realistic scattering rate is 89.4% of the maximum

scattering rate at our density and detuning. If we assume an imaging (exposure) time of

200 µs, this would give us a more realistic conversion between the counts to atoms, as

shown by:

Natoms = Ncounts

[
(1 + 4(∆/Γ)2 + Itot/Isat)

(Γ/2) (Itot/Isat)Ωητ

]
=
Ncounts

153
.

(3.19)

Compare this to Equation 3.11, where an estimation of the CPA was shown to be 171 for a

200 µs. As can be seen, the decrease in the CPA is directly proportional to the decrease in

the amount of scattered light due to the finite intensity of the imaging beams, and the light’s

detuning subsection 3.6.4. This is an important consideration to investigate, especially as

we think of future ways to image the BEC (see section 5.3). And while the CPA is an

important number to compare to, we have for some time (for the last couple of years) relied

on an experimentally obtained number measured using an RF calibration. This will be

explored in the next section.
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3.6.5 RF Calibration

The RF calibration is an important tool for calibrating the imaging conversion of counts

to atoms using fluorescence. It works by measuring the quantum projection noise (QPN)

of the system, which is Poissonian in nature, and naively should scale as
√
N . We can

use our RF system to transfer atoms from |1, 0⟩ → |1,±1⟩ in various amounts. Since

M = N+ −N−, we can calculate noise in this parameter by measuring the variance of this

number.

Beyond the typical CPA calculated in subsection 3.6.4, we also need to take into account

other noise sources. This can be represented by:

σ2
QPN = ∆2M − σ2

PSN − σ2
BKG. (3.20)

Here σ2
QPN is the noise of the quantum projection noise, σ2

PSN is the noise associated with

the photon shot noise of the imaging light, and σ2
BKG is the noise associated with the imag-

ing system (e.g. camera noise, etc.). These are subtracted from the magnetization noise

estimate, as they obscure the atom noise in the populations themselves and are isotropic

to each of them. More details on quantifying noise estimates for the imaging system is

outlined in [99].

If our conversion of the counts to atom number is close to accurate for the system the

slope between ∆2M and the number of pairs of atoms should be close to one. Figure 3.30

shows and example of a good calibration taken throughout the day and following an esti-

mation of the CPA to be 157.911 for a 200 µs exposure time. The error bars in the plot are

derived from the uncertainty in the measurement due to the limited sampling size of the

measurement. For a finite number of samples, this can be represented by:

std. dev.(σ2
QPN) = σ2

QPN

√
2/(Ns − 1)). (3.21)
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Figure 3.30: RF Calibration for 200 µs at 500 mG. 50 shots per point are averaged. Data
was taken in a single day and agrees with historical measurement [89]. This measure-
ment produces a fit to a slope of one, indicating that the imaging conversion of 157.91
counts/atom is an accurate number. This data was also confirmed on other occasions, and
especially when sensitive data, such as number squeezing data, is being taken.
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Mask Adjustment

The imaging masks used in the system are pneumatic and are used on the experimental

MOT beams to make the beams smaller and reduce the scatter noise seen on the camera.

The mask positions are independent of the MOT beams and from time to time need to

optimized to make sure the small beams (∼ 2 mm by 2 mm) are hitting the condensate

optimally. This is done by performing our normal experiment and applying a π/2 RF pulse

to transfer the atoms into the |1,±1⟩ states. By looking at the magnetization for each of

the masks individually, the position of each can be moved to minimize the noise and cloud

imbalance between the populations. This is done in the vertical location of the masks to

optimize the atom number, and in the horizontal direction to adjust the imbalance of atom

is ±1. In general, it should be possible to make the population imbalance between |1,+1⟩

and |1,−1⟩ fall within a few percent.

3.7 State Interaction and Preparation

Light fields described earlier can drive the repump and cooling transitions in rubidium.

Other electromagnetic fields however can be used to drive smaller transitions within the

finer levels of rubidium. Using microwave and RF frequencies of radiation we are able

to drive between the hyperfine levels of the 52S1/2 level. These frequency ranges lie in

the GHz and kHz range for the microwave and and RF fields, respecively. These are par-

ticularly useful in control applications [81] and measurement of the quantum states we

generate. We also use them to calibrate the imaging system and to zero the magnetic field.

3.7.1 Microwave Fields

The microwave is useful in driving between the F=1 and F=2 manifolds themselves. The

primary transition of note is the clock state (see Figure 3.4), which goes between the two

mf = 0 levels: |F = 1,mf = 0⟩ → |F = 2,mF = 0⟩. This value (6.83468261090429(9)
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Figure 3.31: Imaging mask adjustments made on the experiment to optimize position of
imaging light with respect to the condensate. This effect can be made more noticeable
when blocking one of the beams and measuring the difference between the ±1 clouds in
the rubidium ground state. Initially unbalanced clouds (a) can become balanced (b) by
adjusting the masks positions finely, such that the magnetization or difference in atom
counting between the two states is equal (c).
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GHz) is precisely known to many digits and is synthesized by an HP function genera-

tor. This transition is magnetically insensitive to first order, and has a frequency shift of

575Hz/G2 to second order. Of course each hyperfine level also has sublevels. These tran-

sitions are magnetically sensitive to first order and are detuned from the clock state by

∆ = 700 Hz/mG for each mF = 1. For example, a transition between |F = 1,mf = 0⟩ →

|F = 2,mF = 1⟩ would be detuned by the clock frequency plus ∆, and |F = 1,mf =

−1⟩ → |F = 2,mF = −2⟩ would be detuned from the clock by (−2 +−1 =) -3∆.

We can fit the microwave resonance spectrum using the function:

ρ+1(ω) = Ω2

(
sin
(
T
√
Ω2 + (ω − ω0)2

)
√
Ω2 + (ω − ω0)2

)2

(3.22)

T is the microwave pulse length, Ω is the microwave Rabi rate, ω0 is the resonant

frequency and ω is the detuning frequency. We can fit both rate and spectra for the clock

and “delta" transitions using our analysis software to determine the driving strength and

field at the atoms’ location. In previous years, this was used to zero our magnetic field, but

in the last two years we have switched to doing this with the RF, which is also magnetically

sensitive. Circuits for the microwave circuit can be seen in [81, 89].

3.7.2 Radio-Frequency Fields

Much like the microwave fields, the RF fields are magnetically sensitive. RF transitions

however are driven with the manifold itself (e.g. between mF = 0 and ±1 for the F=1

transitions). The frequencies between the sublevels for each manifold are nearly identical,

but differ by a small amount due to the differing Landé factors. The shift for the F = 1

manifold is ∆1 = 702.4 Hz/mG, and the shift for F = 2 manifold is ∆2 = 699.6 Hz/mG.

ρ0 =

(
1− Ω2

Ω2 + (ω0 − ω)2

(
1− cos

(
T
√
Ω2 + (ω0 − ω)2

)))2

(3.23)

Circuits for the microwave circuit can be seen in [89].
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Figure 3.32: RF spectrum and rate taken at 500 mG at full power (10V). Fit parameters
output for the black trace are for the resonance (ω0, kHz, Rabi rate (Ω, kHz), offset, and
pulse length (T, 1/π ms).
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3.8 BEC Experimental Stages

The following briefly outlines the experimental procedures by step. Some key, pertinent

details are included for each stage. The process from no atoms, to thermal cloud, to pre-

cooled atoms, to condensate, then imaging, takes around 21 seconds.

3.8.1 MOT

Our MOT is loaded for 15s at the start of the experimental cycle with the initial values spec-

ified in the spreadsheet which controls the values for the experiment channels. The atoms

are loaded from a getter (SAES). There are two getters available to use on the experiment.

One is called the “old getter" and is the getter that has been primarily used on the experi-

ment. With this getter operating between 4-5 A, we can load the MOT to around 12 million

atoms for 15 seconds (as measured by the FLIR camera). This number can fluctuate from

day to day, but a number of around nine million to 15 million is considered adequate for the

“old getter" for 15 seconds of loading. The other getter called the “new getter" is typically

unused, but has been tested for times when atom number loading seems to be an issue. In

this case, a current of around four amps can be used to load the MOT for comparable atom,

but in a much shorter time (∼ seven seconds of loading time).

The getter also contributes a small magnetic field that can be seen to have an effect on

the atoms. This should be taken into account when zeroing fields or switching between

getters, as the bias field and thus MOT cloud location changes slightly. Residual fields

from the getter can be shut off by turning off a relay switch connected to the “blue lights."

The blue lights are used as a desorption mechanism for the rubidium atoms, as they tend

to coat the surfaces of the vacuum chamber when released from the getter. The blue lights

prevent rubidium atoms from sticking to the viewports, via photo-ionization with the near

UV light. The lights are left on during the majority of the MOT time and have a large effect

on the MOT atom number.
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Figure 3.33: DarkMOT images with top (iXon) and FLIR cameras showing dark MOT
intersecting with the initial optical dipole trap for loading.

The light shown on the atoms is around -20 MHz detuned from the cycling transition.

For around 42 mW and one inch diameter beams, the light has a total intensity of ∼ 14x Isat.

Once the MOT loading is completed after 15 seconds, the experiment begins the running of

the spreadsheet values. The temperature of the MOT at this stage is usually around 80 µK.

This includes changing the MOT gradient and the light detuning to what will be needed in

the dark MOT sequence.

3.8.2 Dark MOT

The dark MOT is the phase of the sub-doppler cooling stage that the experiment undergoes.

The detuning increase and gradient decrease for the dark MOT allow the MOT to be further

cooled to below that of the MOT. The detuning is typically detuned to a range between -150

MHz to -190 MHz. This range is not very sensitive and needs to be done at a finite rate (∼

10’s of ms), due to the locking configuration (see subsubsection 3.1.3). It also is helpful

to decrease the available light going to the dark MOT, typically about half. The MOT

coils are typically also decreased to near zero. The combined effects of these decrease the

temperature around a factor of 3-4 (typically around 25 µK).

The repump also plays an important role at this stage, as its power is also decreased

during the dark MOT stage. The optimal value for this stage is fairly sensitive in determin-
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ing the final amount of atoms that make it into the optical dipole trap (ODT). The value

is also more or less consistent day to day. This is because the final value of the repump

power during the dark MOT seems to determine the vertical (ŷ) height of the cloud, likely

due to the majority of the repump light going into the “MOT 1" fiber (which is aligned ver-

tically). Thus, it is a useful diagnostic for the experiment, and usually indicates the MOT

light powers or the repump fiber coupling needs to be touched up.

Measured number of atoms in the darkMOT also typically shows a small number de-

crease from the MOT, typically by around 20 %. The dark MOT typically loads directly into

the ODT. In order to optimize this loading, the various trim values are typically scanned

in the spreadsheet to move the cloud by small amounts to adjust its location relative to the

incoming 10.6 µm beam. The dark MOT stage typically takes around 40ms in total. The

ODT typically overlaps with part of the dark MOT stage, due to the loading time needed

for the dark MOT into the trap.

3.8.3 Optical Dipole Trap and Evaporation

The ODT, formed from the 10.6 µm laser, is turned on near the end of the MOT phase and

is on during the dark MOT phase. The decrease in temperature from the additional sub-

Doppler cooling stage aids in the efficient loading of the ODT. The final amount loaded is

estimated to be between 2-4 million atoms. The compression of the trap starts during the

loading and dark MOT stage (currently around 250 ms after the end of the MOT stage).

This historically was meant to occur at 400 ms, after the dark MOT and ODT stage was

completed, but recent (in the last two years) empirical measurements of the atom number

stability points to it being more beneficial to start compression at this earlier time.

The trap compression lasts for a little longer than one second. After the trap compres-

sion begins, the so-called purification stage begins (around 400 ms after the MOT). This

is so named as we use the Stern-Gerlach coils to preferentially keep atoms that are to first

order, magnetically insensitive. This leaves atoms in the ground state of |F = 1,mF = 0⟩
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and forces atoms in the |F = 1,mf = ±1⟩ out of the trap. The purification must be strong

enough that atoms are forced out of the trap, but not so strong that too many atoms are

made to leave the trap, limiting the number of atoms available to maintain a high enough

density to make a condensate. The exact timing, strength, and duration of the purification

gradient is determined empirically and typically is on for around four seconds, and turns

off around one second before the final powers of the ODT are reached and condensation is

reached.

As explained in subsection 3.2.2, the 10.6 µm laser starts at maximum power (118 W)

and is ramped down to a final power of around 40 mW. This produces a condensate of

around 50,000 atoms in the single focus, almost all of which are in the condensate (as

noted in absorption). The entire ramp takes around five seconds to complete, with the final

powers taking the longest amount of time (the last two stages take around 1-2 seconds). The

individual times between the different power steps from 118 W to 40 mW are determined

via fluorescence and absorption imaging. The typical early stages (118 W to 4 W) are

optimized using the atom number, meaning the power from one step to the next is ramped

down in the shortest amount of time that produces the maximum amount of atoms. The later

stages are typically optimized by ensuring that the cloud’s temperature is equilibrated at

each stage (see Figure 3.35), and that it reaches the predicted temperature for the predicted

trap depth (trap depth determined by Equation 3.10 and temperature should be 1/10kB of

that, where kB is the Boltzmann constant). This is hard to measure for the final stages of

evaporation when the clouds is not longer thermal, but has reached condensation. At the

end of the evaporation ramp a condensate of atoms in the mF = 0 ground state should be

prepared, and after letting the condensate stabilize for a few 100 ms, is ready for further

state preparation.
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3.8.4 State Preparation and Cross Trap

Some of the state preparation is performed through the purification stage described above.

In order to make sure the condensate is in the polar ground state however, we apply a

large bias field along the quantization access (“Trim Z" along the ẑ axis, see Figure 3.16)

of around 1.1 Gauss. Once the condensate is formed however, we are ready to begin our

desired experiment. For faster and enhanced interactions, the crossed dipole trap can be

used to add additional confinement to the single focus trap (subsection 3.2.2). To do this,

the 850 nm trap beam power is ramped up to its chosen power (typically 0.5 - 1.0 V) at a

slower rate (100’s ms) near the end of the single focus evaporation ramp.

After this, the Trim Z bias field can be lowered to its desired quench field. This ramp

takes a finite amount of time, but is chosen to be as short as possible to minimize the amount

of evolution of the state away from the polar ground state. The typical time used for us to

ramp from the high field applied during purification to the final quench field is about four

milliseconds, with three milliseconds of wait time. While the noise in the magnetization

(∆M2, for magnetization M = N+ −N−) grows fairly quickly (see subsection 3.6.5), the

mean value of ρ0 = 1 still holds for the duration of the quench (and for ∼100 ms after, see

Figure 3.42). Once the final bias field is reached, we can apply any microwave or RF field

as needed. This is done typically as the trap(s) is (are) released and the atoms are sent into

free fall for imaging.

3.8.5 Imaging the BEC

To image the BEC, we allow the cloud(s) to free fall. The fall allows the clouds to expand,

decreasing the density, preventing the chance that clouds that are too optically dense for

accurate imaging. Our typical imaging time-of-flight is 22 ms. For 20 of those millisec-

onds, the Stern-Gerlach gradient is applied at full strength. This allows any clouds that

are in the ±1 or 2 sublevels to separate from the force felt from the gradient field. This

creates adequate separation so that when we image the atoms, there is sufficient separation
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between the various sublevels to allow for accurate counting or each region.

Imaging time is set by the pulsing on of the apertured MOT beams for a variable set

exposure time. The apertures are the masks described in subsubsection 3.6.5. The light is

shifted to be near resonance (around 1-2 MHz detuned). The light is pulsed on by AOMs

and are accurate to the several nanosecond level. Shutters are used as well to ensure the

light is completely shut off when cloud is not being actively imaged. These are inherently

slower, mechanical shutters so are preemptively turned on and off a few milliseconds before

needed. Typical exposure times range from 100 µs to 300 µs. 100 µs is on the shorter end,

and hasn’t been the most reliable time. This is suspected to be due to clouds that are too

optically dense. Longer exposure times tend to blur the clouds too much. 200 µs tends to

be a good median value, and is used for most of the data taken in this thesis.

Once imaging is complete, the experiment pauses for about 1/2 a second and resets to

the MOT loading values. If the experiment is being cycled continuously, the MOT begins

loading after the reset and a new run begins. The current total time needed to complete one

cycle is around 21 seconds, with 15 of those seconds owing to the MOT.

3.9 Typical Experiments and Diagnostics

Below are a list of typical experiments on the BEC. The ability to perform each is often

used on the experiment to check the health and stability from time to time. These times

often occur when things on the experiment are not performing as expected, or when a

disruption has occurred in the normal operation of the experiment (e.g. power outage, diode

replacement, etc.). The listed experiments here range from simple to more complicated,

with some being the result of previous students’ thesis work.

3.9.1 Measuring the Temperature of the Cloud

The measuring of the temperature of the cloud is a useful tool for ascertaining which or

if certain stages of the experimental cycle are achieving the expected temperature at that
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stage. As discussed, we take room temperature atoms and cool them to condensation,

leading to several distinct stages in the experiment where we can reliably check and confirm

the final temperature at the end of that stage. The basic principle behind this is that the

temperature (T ) of the cloud expands at a rate which is proportional to the square of its

measured (Gaussian) width (σ) [92]; this takes the form of:

T =
m

kB

(σ
t

)2
. (3.24)

This works best for thermal clouds, but we use it as a rough estimate for the condensate

at times when trying to diagnose the experiment. Further, we can allow the cloud to fall

for different amounts of time and fit the profile of the clouds for different amounts of time.

The increase in spread of the thermal cloud’s density distribution can be solved to show

expansion in time (t) with:

σ(t)2 = σ2
i +

kBT

m
t2. (3.25)

Here, the temperature of the cloud can be fit to the measured Gaussian widths (σ(t)) of the

cloud, starting with the initial cloud width (σ0). An example of a TOF measurement of a

thermal cloud is shown in Figure 3.34. Temperature of a single width measurement is used

to estimate the initial cloud temperature and density distribution. As can be seen from the

longer wait times, the cloud expands and the density decreases.

This can be done after all experimental stages and as mentioned, is useful in diagnosing

the efficiency of each stage in terms of producing a cold cloud with high enough atom

number. Figure 3.35 illustrates the usefulness of this diagnostic performed in the single

focus optical dipole trap. Atom number changes for different powers and loading times,

but the temperature should be roughly the same. The measurement of different ramps to

a fixed power show different numbers, but the temperatures are in pretty good agreement,

implying the atoms at that potential have reached their equilibrium temperature.

Measurement of the cloud temperature is best done with absorption imaging, where
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Figure 3.34: Images of the MOT taken from the iXon or “Top" camera; fit to the integrated
cloud profile to estimate the Gaussian width of the cloud. MOT numbers, density and
temperature during a time of flight measurement; shows a fit to the width of the cloud
expansion to give a temperature of 77 µK. Data is taken with the Top (iXon) camera.
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Figure 3.35: Numbers and temperature measurements for different 10.6 µm trap ramp
settings for powers approaching condensation, but after compression has occurred, in the
single focus optical dipole trap.
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the spatial structure of the clouds is more pronounced, and less blurry than fluorescence

imaging.

3.9.2 Lifetimes

Lifetime measurements measure the longevity of the condensate or cloud of atoms in a

trap. Many aspects can affect these measurements, such as the vacuum and the density

of the clouds being trapped. We typically rely on the measurement of the lifetime of the

trap as a diagnostic for the vacuum health of the chamber, as we believe that density-related

(three-body) losses do not play a role in our measurement of the condensate’s lifetime when

trapped in the single-focused trap. Typical lifetimes for the SF and XT are shown below.

The lifetime in the single-focused, 10.6 µm optical dipole trap is usually around 15 ± 1

seconds. The lifetime for the second-crossed dipole trap varies quite a lot, and seems to

be limited by the density of the trap. Depending on the power of the second trap laser, the

lifetime can range from several seconds to less than a second. Lifetime shown here for the

“crossed trap" is for a moderate power of the second laser (∼ 1 mW).

3.9.3 Critical Field Scan

The critical field scan (colloquially called the “B-crit" scan) is usually performed before,

during, and after experiments involving atomic interactions, as it indicates the density of

the cloud, which thus affects the amount of interaction the atoms will undergo when held

at certain fields. Critical field scans were a method developed in our lab to help ascertain

when the system had crossed the critical point (qc = 2|c|) from the polar phase to the

broken-axis symmetry phase. It works by measuring the population in the polar ground

state (ρ0 = 1) after a quench and hold (of around 100-500 ms) to a final magnetic field.

If the final field is above the critical point, the state measured will remain at ρ0 = 1. If

pairwise creation occurs though (meaning ρ0 < 1), than the system has passed into the

broken-axis symmetry phase and the critical field has been determined. Using the relation
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Figure 3.36: Single focus trap lifetime measurements averaged over three runs. Similar is
done in the 850 nm “crossed trap" configuration to give a smaller lifetime (due the increased
confinement). This can range from three to less than a second in length at maximum 850nm
power.

for the critical point (qc = 2|c| ⇒ |c| = 71.6 Hz/G2 · B2/2) and the value of the field right

before pairwise creation or interaction occurs, the value of c can be determined. This can

be done with acceptable accuracy (± 0.1 Hz).

The c-value for the single-beam dipole trap (10.6 µm) is usually found to be between 2-

3 Hz. Anything smaller than this could indicate that the auxiliary gradient is not correct for

the interactions to take place (see Figure 3.18), or that enough time has not been allowed for

the dynamics to appear. The crossed-dipole trap has a wide range of |c| values, dependent

on the power of the second (850 nm) trap laser. This value typically ranges anywhere from

3-11 Hz. It is usually consistent throughout the day, unless the alignment of the cross trap

changes or the atom number changes drastically; thus it is generally a useful measure of

the quality of the cross trap alignment throughout the day. This |c| value is usually in good

agreement with our simulations of the dynamics, so we believe it to be fairly accurate.

Agreement with other measurements (see subsection 3.9.4) can also confirm the measured
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Figure 3.37: Absorption images of the cloud shown for the increasing confinement with a)
being the primary ODT, b) being the crossed dipole trap with the 850 nm at low power, and
c) being the crossed dipole trap with the 850 nm at higher powers. These images are used
to align the crossed trap finely by adjusting the 850 nm location to get the cloud dispersion
to change appearance. All images taken at 22 ms time of flight.

Figure 3.38: Typical critical field scan shown in crossed trap for different bias fields and a
fixed amount of wait time (usually a few 100 ms for the crossed trap measurements). Here,
deviation away from ground state occurs between 435 mG and 430 mG, leading us to put
the critical field at 435 mG. This has shown great accuracy experimentally.

93



|c| value.

3.9.4 Coherent Oscillations

Coherent oscillations are measurements of the oscillations of the phase space of our mean-

field system. These oscillations have predicted frequencies given a specific spin interaction

energy (c) and quadratic Zeeman shift (q). These are described in [69], and are based

on the Bogoliubov approximation for the ground state oscillation and are represented in

Equation 3.26:

∆P ≡ fP = 2
√
q(q + 2c),

∆BA ≡ fBA = 2
√
c2 − q2/4.

(3.26)

Example oscillations for coherent oscillations near the ground state are shown in the

figure below.

By following the procedure outlined in [69], we can initiate a small perturbation away

from either the polar or broken-axis ground state to determine the approximate c value

given the oscillation frequency. The ground states for each of these regimes are:

ρ0,GS = 1 (Polar) (3.27)

ρ0,GS = 1/2 + q/(4|c|). (Broken-Axis) (3.28)

Taking a number of oscillations near the ground states for both the polar and broken-

axis phases, we can plot the measured oscillation frequencies, ∆P and ∆BA with example

shown in Figure 3.39 as a function of q to obtain Figure 3.40. The measured frequencies can

then be fit to give a prediction for the c value we expect given the oscillation frequencies.

This provides another measure of the value of c other than that outlined in the critical field

scan outlined in subsection 3.9.3. It also can help show the stability of the system as it is
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Figure 3.39: Coherent oscillations are shown in the crossed dipole trap; starting upper
left and moving clockwise, we have coherent oscillations taken in the broken-axis sym-
metry phase for q/|c| = 1.5, 0.75, and 0.25, respectively. Sinusoidal fits used to obtain
frequencies, which are plotted in Figure 3.40.

averaged over multiple oscillations.

3.9.5 Spin Mixing

Spin mixing is a phenomenon observed early in spinor physics history [38, 71]. Nonethe-

less, it is a fundamental and essential experiment to be able to perform. Similar to the

critical field measurement, we measure the population in ρ0 and watch the evolution of the

spins away from the polar ground state (ρ0 = 1). However, now we keep the field set to a

single quench value (below the critical field, q = 2|c|), and measure the state for various

lengths of interaction time. This involves pair-wise creation in the ± 1 clouds, which os-

cillate in time. Due to damping and atom losses, these oscillations are damped [99]. The

rate at which the oscillations occur depends on the density of the atoms. The point where

the fraction of the atomic pairs (± 1) is the highest is typically the time chosen to perform

our number squeezing experiments [99] (see below).

Typical spin mixing plots shown in Figure 3.42 for the crossed dipole trap for various
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Figure 3.40: Coherent oscillations are measured for the polar (red) and broken-axis (blue)
phases. These measurements are fit to give a predicted |c| value (solid blue and red lines).
The two sets of data were taken on different days, but both show good agreement with the
critical field predictions for |c| on each day (as indicated by the dashed line). Predicted
broken-axis critical field value was 8.6 ± 0.1 Hz, while fit yielded 7.8 ± 0.1 Hz. Predicted
polar critical field value was 8.2 ± 0.1 Hz, while fit yielded 7.8 ± 0.1 Hz. Discrepancies
in the measurement are likely due to the coherent oscillations not being exactly at the true
ground state, but some small excitation away from it. Data near the critical point q/|c| = 2
also is particularly sensitive, leading to further potential sources of error for fast quenches
[79, 69].
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Figure 3.41: This example shows the effects of the RF pulse on the measurement of the
coherent oscillations; example here shows oscillation at the same nominal q/|c| = 0.25
but with an RF pulse differing by 20 ns. Oscillation on the left has the wrong phase and a
larger amplitude and period, while the oscillation right (used in Figure 3.40) is smaller in
amplitude and period.

Figure 3.42: Spin mixing in the crossed trap for different crossed trap powers. Both runs
here are quenched well below the critical field and points are averaged over three runs.
Top plot is taken with a slightly lower crossed trap power (∼ 2 mW), so the dynamics are
slightly slower than that of the bottom plot (with 850 nm at ∼ 2.5 mW).
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second trap (850 nm) powers. As can be seen, the dynamics are slightly faster for the

higher trap power, given the increased density of the cloud of atoms. Similar dynamics can

be seen in the single (10.6 µm) trap, however the density is much lower so the dynamics are

slower. Likewise, the decreased density means the gradient zeroing is even more important,

and the auxiliary gradient field must be sufficiently close for the spin mixing dynamics to

be observed in the single trap (see Figure 3.17).

3.9.6 Number Squeezing

As described above, the atoms, when quenched below the critical point, exhibit pair-wise

creation of mF = ±1 from the mF = 0 state. This was shown to lead to squeezing in

the magnetization noise (∆M2) [99, 101]. This means that fluctuations in this parameter

are lower than that of what would be expected in a coherent state, say as in an RF rotation

from |1, 0⟩ → |1,±1⟩, which as a noise of
√
N+ +N−. The noise can be measured in the

magnetization and compared with that of a coherent state to produce a ratio of the noise

suppression. This in terms of decibels is written as: ξ2Sz
= (∆M)2/(N+ +N−).

This data is obtained by allowing the evolution of spin mixing to occur for a fixed

amount of interaction time and then measuring the amount of pairs created in |1,±1⟩ (see

Figure 3.43). From there the data can be binned by the numbers of pairs of atom and

the measured magnetization converted into decibels. After subtracting off the measured

detection noise of our imaging system, the limit in squeezing we observe is close to -8 dB.

When the RF calibration is well behaved, this is the level of detection we should expect

from our other squeezing measurements.
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Figure 3.43: Number squeezing data in the cross trap taken for 300 shots. Magnetic field
is quenched to well below the critical field and spin mixing is allowed to occur for a few
hundred milliseconds.
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Figure 3.44: Number squeezing data analysis shows good amount of detectable squeezing
and confirms predicted detection limit. RF calibration data also taken on this day and
show good agreement with CPA estimate, making this a reliable value. Red points are raw
amounts of detected squeezing, meaning they do not have the estimated detection noise
subtracted off (see green points). Points are binned and then data is averaged to compute
squeezing amount; Data here represents 300 shots divided into four bins.
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CHAPTER 4

DENSITY-INDUCED SQUEEZING

As mentioned previously chapter 1, the concept of pressure-tuning of a quantum phase

transition is quite prolific in condensed matter systems, but has yet to be fully realized in a

cold atom context. Here we take this idea of pressure-tuning and translate it to our system

by modifying the cloud density. In doing this we effectively move the quantum critical

point (QCP) to cross our quantum phase transition (QPT). We do this by modifying the

trap power of our system, dynamically changing the trap density. In doing so, we are able

to push our system into an interacting phase, allowing the system to undergo spin mixing

and even spin-nematic squeezing. We characterize the shift in the energy gap, and are able

to observe squeezing of up to -8.4 ± 0.8 dB. The hope is that this technique can be used

further in our studies and used to generate other forms of quantum phenomenon such as

parametric squeezing and the engineering of a Dicke state.

4.1 Quantum Phase Transitions

Quantum phase transitions (QPT’s) are distinguished from traditional phase transitions in

that they occur at or near zero temperature. Thus, the crossing of the transition is ac-

complished by quantum fluctuations, as opposed to thermal fluctuations. In our case, the

zero dimensionality of our system (see subsection 2.1.2), leaves the spin interactions as the

relevant part of the dynamics. Many phase transitions are characterized as first-order or

continuous phase transitions. In the latter case, typically and order parameter is defined for

the system and denotes the change from one phase to another. For our system, the relevant

order parameter is that of the transverse spin, S⊥. The values of S⊥ on either side of the
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phase transition are [69]:

S⊥ = 0, for q > 2|c| the polar phase

S⊥ =

√
1− q2

4|c|2
, for q < 2|c| the BA phase.

(4.1)

Here we recall that the quantum critical point for our system occurs at q = 2|c|, and BA

denotes the broken-axis symmetry phase. The polar phase is where we initialize our system

to be entirely in the ground state |F = 1,mF = 0⟩, see Equation 3.27.

Furthermore, the expressions shown in Equation 3.26, are a result of using Bogoliubov

theory to approximate the excitations created when crossing the phase transition. The spin-

1, ferromagnetic ground state can be shown to contain three such excitation modes; one

of which, has an non-trivial eigenvalue [57, 102]. We define this as the energy gap, or the

excitation energy, ∆E , between the ground and first excited state. These are the expressions

shown for our coherent oscillations shown in Equation 3.26. With this in mind, we can

begin to explore how one might cross the quantum phase transition from the polar phase to

the broken-axis phase.

4.2 Ways to Cross our Quantum Phase Transition

Here, we explore the crossing of a quantum phase transition in a spin-1, ferromagnetic

BEC. By changing the relationship between the quadratic Zeeman energy and the density

of the BEC, we can control the spin dynamics across the critical point between a polar

phase to a broken-axis phase. Typical experimental procedures traverse the two quantum

phases through a magnetic field quench. This has its drawbacks however experimentally,

as it can lead to changes in field stability while the field is quenching in a finite amount of

time. Our technique instead performs the “quench” by changing the density of the cloud

itself, inducing the interaction phase for the spinor atoms.

If we recall, the relevant dynamics of our spin-1 system can be reduced to a two-term
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Hamiltonian represented by a competition between the spin interaction energy of the atoms

and the effect of the magnetic field. Taking h to be 1, and a magnetic field to be aligned

along the ẑ-axis, we reference the Hamiltonian described earlier in Equation 2.12 with:

Ĥ =
c

2
Ŝ2 − q

2
Q̂z. (4.2)

Here again, c is known as the spinor dynamical rate and describes the spin interactions. For

rubidium the value of c is negative, making the condensates ferromagnetic in nature. More-

over, the exact value of |c| for the condensates is also density-dependent subsection 4.2.2,

with |c| ∝ N1/3, where N is the number of atoms in the condensate. The combination of

this value with the total spin vector operator
(
Ŝ2 = Ŝ2

x + Ŝ2
y + Ŝ2

z

)
, make up the full spin

interactions for the system. The value of q corresponds to the quadratic Zeeman energy for

a given magnetic field magnitude, B, expressed by q = qzB
2, where qz ≈ 71.6 Hz/G2.

Q̂z again takes the form of Q̂z = 2ρ0 − 1, where ρ0 is defined as the fractional population

in the mF = 0 hyperfine sublevel, normalized to the total number of atoms. Using the

relation 1 = Q2
z + Q2

⊥ + S2
⊥, with Q2

⊥ = Q2
xz + Q2

yz and S2
⊥ = S2

x + S2
y defined earlier

in Equation 2.26, the combination of these mean-field terms yield an expression for the

energy of the system, and dictate which mean-field phase we are in.

4.2.1 Conventional Magnetic Field Quenching

As can be seen from Equation 4.2, crossing the QPT from the polar phase into the BA phase

can be achieved by either decreasing q, or increasing c. Our typical experimental procedure

uses many magnetic fields to prepare and initiate the state. The condensate is initialized at

a high bias field along the ẑ axis, where the polar phase dominates, until we are ready to

allow atomic interactions to take place.

For the reasons noted above, decreasing q is fairly straightforward by simply lowering

the magnetic field (B), as q ∝ B2; but this when implemented experimentally tends to add
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restrictions to the rate at which the bias magnetic field can be changed, due to the hysteretic

nature of the coils. Additionally, because we in general use linear ramps for our magnetic

fields, the ratio of q(t)/|c| changes quadratically as the field changes, making the dynamics

even more sensitive to changes in the field. Nonetheless, we have found this to be workable

for many experiments, even for those that require sensitive and stable dynamics, such as

spin-nematic squeezing and spin mixing.

Conventional Spin-Nematic Squeezing and Spin Mixing

As seen in a previous section (subsection 3.9.5), this leads to an oscillating population in

ρ0. These dynamics can be modeled for the given quench field and measured |c| value. The

damped oscillation of the atoms is faster for higher densities in the cloud and are shown

below (Figure 4.1) for a normal magnetic quench at high densities. The quench from high

Figure 4.1: Normal high density spin mixing from a magnetic quench

field to low field takes around 7 ms to change, with 4 ms being used to change the field

itself, and 3 ms used to wait for the field to stabilize. The time in the spin mixing axis shows

the evolution time for the atoms held in the trap after the magnetic quench. The crossing of

the QCP leads to pairwise creation out of mF = 0 to mF = ±1 as discussed earlier.

This pairwise creation leads to squeezing, as the created pairs are correlated, due to the

conservation of the initial angular momentum of M = 0, where M = N+ − N− and rep-

resents the magnetization for the system. The noise fluctuations of this parameter change
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exponentially and vary as a function of spinor phase, θs. The spinor phase is defined as the

relative phase between the spin-1 components: θs = θ+ + θ− − 2θ0. In our discussions of

the spin-1 space (section 2.4), the “spin-nematic sphere" was discussed. This is comprised

of the sphere with axes (Ŝ⊥, Q̂⊥, Q̂z). The initial state is centered at the pole of Q̂z, and

the total noise of the state has a noise of 1/
√
N in both the Ŝ⊥ and Q̂⊥. Once the QCP

Figure 4.2: Normal SN squeezing in the crossed dipole trap

is crossed with a magnetic field quench, the noise grows exponentially in the variance of

Ŝ⊥ and Q̂⊥ variables. The quadratic variance relative to the initial unsqueezed state can be

expressed as the squeezing parameter [75]:

ξ2θ = 10 log10(∆
2Mmeas/Ñmeas), decibels (4.3)

where Ñ is the average number of detected atoms in the condensate. This expression is the
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one plotted in Figure 4.2 for various spinor phases. The figure shows a simulation using a

mean-field representation of the variables. Despite this being a quantum process, the large

number of atoms make the simulation a good fit to the dynamics. More will be said about

this type of simulations in the next sections.

Interestingly, we see an atom number effect on the squeezing data. In runs where the

atom number is temporarily lower by 25%, the dynamics change in an appreciable way.

This is a prelude to the effect atom number can have on the density, and shows an alternative

way in which we can cross the QCP. We hope to replicate the experiments shown here using

a traditional magnetic field quench, with that of a new form of quenching technique.

4.2.2 Optical Trapping Modulation

While magnetic field quenches affect the quadratic Zeeman term in the Hamiltonian, the

spin interactions, governed by the cS2 term, typically are taken to be unchanging or slowly

decaying, due to the finite lifetime of the trap. However, we can intentionally change c

independently by noting that c itself is dependent on the atom number, and more precisely

the integrated density over the cloud [92]. Thus in order to change c, there are two main

options: changing the number atoms in the condensate, or decreasing the volume of the

existing cloud to increase its density. The former was attempted in several ways and is

described in section 5.1. The latter was explored in various ways, but eventually found

success in a two-trap laser configuration.

Recall from subsection 3.2.1 that the single focus trap potential of our 10.6 µm laser is

given by:

UQUEST (0) =
1

4πϵ0

4α

cω2
0

P, (4.4)

and the potential for the cross trap laser is given by:

UFORT (0) =
3πc2

2ω2
0

Γ

∆
I(0). (4.5)
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Here, ω0 is the D2 resonance line for rubidium, Γ = ω2
0e

2/6πϵ0c
3m2

e, and ∆ is the dif-

ference in the laser’s frequency from resonance; I(0) = 2P/πw2
0 for power (P ) and waist

(w0) of the intensity of a focused Gaussian beam [98]. Combining these potentials gives,

Utot = UQUEST + UFORT .

Additionally, we note that the spin collisional term, c, in the trap can be written as being

proportional to [92]:

c = c2N

∫
|ϕ (r⃗) |4d3r, (4.6)

where |ϕ(r⃗)|2 is the normalized Thomas-Fermi density profile and c2 is spin interaction

coefficient presented previously in subsection 2.1.1 and is the spin interaction energy given

by: c2 = 4πℏ2∆a/3m [92] for the difference in the s-wave scattering lengths for rubidium,

∆a = aF=2 − aF=0. From this it is easy to see how c relates to density n(r) when we note

that:

N

∫
|ϕ (r⃗) |4d3r = 4

7
n0, (4.7)

as n0 is defined as the peak density of the condensate. This is important as the equation

for the peak density is ∝ µ (the chemical potential for the condensate). We can calculate

µ by calculating the average trap frequencies from our combined potential, Utot. Noting

that the trap potential can be approximated like a harmonic potential in each direction for

sufficiently low temperatures such that, ωi ∝
√
Utot for the high and low frequencies of

the trap [92]. Since Utot ∝ P , this gives ωi ∝
√
P as well. The average trap frequency

is equivalent ¯ωavg = (ωLω
2
H)

1/3 for the geometry of our trap. Using this, we can use the

relation for the peak density of the condensate, defined as:

n0 =
15N

8πRLRHRH

, (4.8)

where N is the number of atoms in the condensate; RL and RH are the radii associated

with the low and high trap frequencies defined as Ri = (15Nc0/4πmω
2
i )

1/5, with c0 =

4πℏ2ā/mRb being the two-body, spin-dependent interaction term for rubidium with average
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scattering length ā = (aF=0 + 2aF=2)/3 [92]. Combining these relations we find that

Ri ∝ ω
−2/5
i and thus Ri ∝ P−1/5. Furthermore, with n0 ∝ 1/R3

i , we find the peak density

in the trap is related to changes in power by: n0 ∝ P 3/5.

These relations are important as we care about the effect that the trap properties, such

as the power, has on the value of c. The relationship between the peak density and c is

straightforward, using Equation 4.7:

c =
4n0c2
7

→ c ∝ n0

→ c ∝ P 3/5.

(4.9)

Thus, we can find a way to modify c by changing the trap potential Utot via the trap

power(s). The easiest way to do this is by directly changing the trap power. The experi-

mental implementation of this will be demonstrated below.

Experimental Implementation of Density Modulation

Our condensate is created in a single optical dipole trap (ODT), with a 10.6 µm wave-

length, and is tightly confined enough to abide by the single mode approximation. We can

however add a second laser to intersect with the primary ODT and overlap with the trapped

condensate to create a crossed dipole trap. We typically do this in our normal interact-

ing experiments to create a cloud with higher density, which increases the rate at which

dynamics occur after a typical magnetic quench to a lower field.

If instead, we modify the crossed laser’s power, we can change the waist of the laser,

and thus the trap volume. The initial state of our condensate is prepared by performing

an evaporative ramp with the 10.6 µm, while applying a strong magnetic field gradient

to purify the condensate’s ground state to be in the magnetically-insensitive sublevel of

|F = 1,mF = 0⟩. This can also be written as ρ0 = 1, where ρ0 ≡ N0/Ntotal, representing

the number of atoms in the |F = 1,m = 0⟩ ground state, normalized to the total number of
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atoms. Near the end of the evaporative ramp, we add an 850 nm diode laser as a second trap

and overlap it with our 10.6 µm trap. From there, the 850 nm trap power is ramped up to

increase the density of the cloud. This is ordinarily where the condensate state preparation

would end, and where typical magnetic field quench experiments would begin.

Instead, we hold the crossed trap at high density for several 100 ms until the atom

number decays to a certain value. This is done to allow the cloud to have approximately

the same atom numbers when we perform a second ramp up of the 850 nm laser to different

final powers to create different densities for the final cloud. Figure 4.3 depicts a schematic

of the relevant experimental timings. The initial crossed laser is first ramped up to high

power while the bias magnetic field is still high. The intensity of the second trap beam is

then dropped, followed by a magnetic field quench to finite field 100 ms after and before

the second trap is lowered and raised respectively to its lowest and final powers. The

reasons for doing this are two-fold, and are primarily chosen to illustrate the technique

of ramping the density. Firstly, the lowest final power of the 850 nm laser is chosen to

give an appreciable increase in the density and appearance from our traditional single trap

condensate. Secondly, we would like to demonstrate the effect of our technique by showing

that the final state of the condensate does not evolve greatly from the initial state after we

perform the field quench to a finite level. (This is demonstrated further in our spin mixing

experiments shown in Figure 4.7).

4.2.3 Simulation of Density-Quench

We can measure the effect of our density ramp protocol by looking at the state evolution of

the cloud. This can be done by holding the cloud in the dual laser trap for a various amount

of time ranging from 150 ms to 400 ms at a chosen magnetic bias field. Given our system,

the state will evolve once a ratio of |q|/c < 2 is reached, or when we have crossed the

phase transition. The state of the condensate is projectively measured at each field value to

see if there is any evolution away from the ground state. In our case, this will result in a
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departure of the state from ρ0 = 1 (the ground state of the polar phase), to ρ0 < 1 when the

field is below the critical field. This point where evolution takes place allows us to calculate

the value of |c| for the system. Since we know the critical field occurs at q/|c| = 2, we

can measure the impact the second laser’s power has on the condensate’s density. For our

procedure, the sequence in Figure 4.3 is followed, and the final bias field is quenched to a

finite value. If we use the 850 nm at its lowest trapped setting, and measure the state for

different fields, we find evolution away from the ground state starts at around 390 mG (±5

mG) with a calculated |c| value of around 2π ∗ 5.4± 0.1 Hz. When we increase the second

laser power to a higher power, the evolution from the ground state for this setting occurs

around 535 mG, giving a |c| value of 2π ∗ 10.2± 0.1 Hz. This demonstrates the effect our

technique can have on the density of the cloud. As we will show next (subsection 4.3.1), it

also affects the long term behavior of the dynamics.

Mean-Field Simulations of Density-Induced Quench

To simulate the dynamics of the density-induced quench, we need to first generate an en-

semble of atoms which mimics the quantum distribution. For the number of atoms we have

in the condensate (around 20,000-25,000 for these studies), we may use semi-classical,

mean-field estimations to perform the simulations with good accuracy. We first define a

distribution with coherent or Poissonian noise distribution proportional to 1/
√
N . This can

be done by noting the uncertainty relationship between the spin-nematic variables that we

introduced in section 2.3.

A further important test of the system’s ability to cross the quantum phase transition is

the generation of a spin-nematic squeezed state. Squeezing involves the measurement of

the noise in a conjugate pair of variables. Looking at an example of a coherent, spin-1/2

system with Pauli spin matrices, Ŝi, the commutation relation from such a pair of variables

is:
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Figure 4.3: Experimental timings used to generate mean-field spin mixing dynamics for
both the simulations and the spin mixing data shown below. Shows the experimental proce-
dure used to generate higher densities for the condensate. A magnetic field quench occurs
100ms before a 40 ms final ramp of the second trap’s power, which is used to increase
the density of the condensate past the critical point. An extended hold time is shown here
to depict how long the evolution time is for the critical field measurements shown below
Figure 4.6.
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[
Ŝi, Ŝj

]
≥ iϵijkŜk. (4.10)

This equates to an uncertainty relation of:

⟨∆Ŝ2
i ⟩⟨∆Ŝ2

j ⟩ ≥ |⟨Ŝk⟩|/4. (4.11)

This works in the case where non-commuting variables have a non-zero expectation

value. To compare this to a spin-1, we look at the two non-commuting variables of our

system: Ŝy and Q̂xz (or equivalently up to a minus sign, Ŝx and Q̂yz). The commutation

relationship between these two operators is [86]:

[
Ŝy(x), Q̂xz(yz)

]
≥ (−)2iN. (4.12)

This then gives us an uncertainty relation of:

⟨∆Ŝ2
y(x)⟩⟨∆Q̂2

xz(yz)⟩ ≥ N. (4.13)

This is the uncertainty in the number basis (|N−1, N0, N+1⟩). It should be noted that the

previous presentation of these variables Equation 2.26 used in the construction of the spin-

nematic sphere were of the form: Q2
⊥ + S2

⊥ + Q2
z = 1. These are for the normalized

variables, Si and Qjk. They have a noise spread of ∆Sy and ∆Qxz ∼ 1/
√
N and in the

mean-field, {ρ0, θs} space.

Additionally, we used expressions for the transverse as represented by Ŝ2
⊥ = Ŝ2

x + Ŝ2
y

and Q̂2
⊥ = Q̂2

xz + Q̂2
yz. These relations are useful and help us simplify the representations

for the expected squeezing of the state. As was noted in the work of Chris Hamley [86], the

spin-nematic spaces of
{
Ŝy, Q̂xz, Q̂z

}
and

{
Ŝx, Q̂yz, Q̂z

}
are degenerate and the dynamics

in each space are equivalent and related by an oscillating phase. As such, we can reduce

the dynamics to one scalar value for both the S⊥ and Q⊥. These are the variables used in
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the simulations, using the normalized and mean-field variables, ρ0 and θs.

The initial state of our condensate can be modeled as a coherent state, created in the

polar ground state, ρ0 = 1 (as described above), leaving no atoms in the mf = ±1 states.

Due to this experimental approach, we note that the magnetization of the system is equal to

zero, as it is defined as m =M/Ntotal = (N+−N−)/Ntotal. This means the magnetization

will be conserved throughout our experiment, and simplifies some of the simulations. We

can use the mean-field expressions described in section 2.4. Looking at the energy func-

tional for the mean-field representation in Equation 2.19, the setting of m = 0 simplifies

the expression to:

E(m = 0) = cρ0 (1− ρ0) [1 + cosθs] + q (1− ρ0) . (4.14)

Taking the canonical derivatives of this expression, ρ̇0 = 2
ℏ

∂E
∂θs

and θ̇s = 2
ℏ

∂E
∂ρ0

, we can find

the dynamics around the ρ0, θs space for ℏ = 1 to be:

ρ̇0 = 2cρ0(1− ρ0) sin θs (4.15)

and,

θ̇s = −2q + 2c(1− 2ρ0)(1 + cos θs). (4.16)

We generate our initial state by specifying a coherent distribution, as described earlier

for S⊥ andQ⊥ with a standard deviation of
√
1/N . A random value is generated within this

normalized distribution for each. This is then substituted in to the mean-field expressions,

shown in Equation 2.24 and section 2.4, to give the initial ρ0 and θs states:

1 = Q2
⊥,ini + S2

⊥,ini +Q2
z,ini

1 = Q2
⊥,ini + S2

⊥,ini + (2ρ0,ini − 1)2

⇒ ρ0,ini = (1 +
√

1− S2
⊥,ini −Q2

⊥,ini)/2.

(4.17)
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Likewise,

θs,ini = arctanQ⊥,ini/S⊥,ini. (4.18)

The initial random values are then inserted into Equation 4.15 and Equation 4.16 and

numerically integrated at each time step (for a total time of 500 ms with a time step of 50

µs). This is done 1000 times to obtain statistics and standard deviations for the dynamics.

The value of c in Equation 4.15 and Equation 4.16 is written to start after the quench

from highest field to a finite field (which is still well above q > 2|c|, as q/|c| ∼ 10).

The ramp of the density follows what is depicted in Figure 4.3, except for the squeezing

protocol which has a faster final ramp of the density (10 ms ramp as opposed to 40 ms for

the spin mixing experiments). During the times at finite field, when the density is being

ramped to higher value or being held at its lowest value, a lifetime of creal = ce−2t/5τ is

used to reflect the realistic atomic decays from the trap. The lifetime τ is measured for

each experimental crossed trap power used and is put into the simulation for each stage.

As can be seen inFigure 4.4, the dynamics show good agreement with the measured spin

mixing data depicted in Figure 4.8. Likewise, the simulation curves depicted in Figure 4.9,

also show excellent agreement with the measured experimental data. This shows that our

simulation of the mean-field dynamics is well-captured using the density ramp procedure

described here.

4.3 Checking for Effects of the Density-Increasing Ramp

Now that we can model and describe the changing effects of our experimental sequence on

the atoms, we can try observing the dynamics and behaviors of the atoms in a number of

typical experiments we perform in our typical experimental protocol involving a magnetic

field quench. The quench will instead be performed by the increase in atomic density to

move the system between two quantum phases.
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Figure 4.4: Mean-field spin mixing simulations for over 1000 samples and 27,000 atoms.
Experimental values of the magnetic field, cloud density (|c|), and evolution time for low
and high densities used to compute ρ0 population for longer evolution times. Optical trap
power ramp for 850 nm follows procedure depicted in Figure 4.3. Good agreement is found
between these simulations and the spin mixing data in Figure 4.8.
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4.3.1 Coherent Oscillations of Energy Gap

As introduced in subsection 3.9.4, we can use the Bogoliubov approximation and mean

field theory to write an expression for the energy gap between the ground and first en-

ergy level of the condensate [43, 57]. The equations for this can be written (as noted in

Equation 3.26) as:

∆P ≡ fP = 2
√
q(q + 2c),

∆BA ≡ fBA = 2
√
c2 − q2/4.

(4.19)

This energy gap for both the polar and broken-axis phase is defined for a given quadratic

Zeeman energy (q) and spinor interaction energy (c). Thus by changing |c|, we can shift the

location of the quantum critical point, and change the atomic interaction to be interacting

or non-interacting, depending on whether the chosen bias field is below or above q =

qcritical = 2|c|, respectively.

To measure our ability to reliably shift the quantum critical point and energy gap of our

system, we take a series of coherent oscillation measurements with the same procedure as

relayed in subsection 3.9.4. The results of this are shown in Figure 4.5. By initializing the

state in the polar ground state, we can perturb it slightly away from this state and measure

the population oscillations in the mean-field observable ρ0 (see subsection 4.3.1). The fit to

the rate of this oscillation gives us a prediction for the value of c, given a known value of q.

We average over three runs for three different values of q/|c| all residing in the polar phase.

This is done for two different power ramps of the crossed dipole trap (850 nm) laser, which

produce a lower and higher density trap, increasing |c| for higher powers of the laser. The

ramp is the same as shown in Figure 4.3. In doing this, we can see that the energy gap of

our system can be definitively shifted to produce a noticeable shift in the quantum critical

point, meaning we can shift the system between the polar and broken-axis symmetry phases

by increasing the crossed dipole trap power for a given, fixed bias field. The increase in
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Figure 4.5: Shows stability of phase-space dynamics after the optical trap ramp of the 850
nm laser. The |c| values from the coherent oscillation fits are good predictions that are in
agreement with the critical field scans shown in Figure 4.6. Ability to change density of
cloud, allows us to tune and shift the quantum critical point (dashed lines) of the conden-
sate. Green and red curves depict the broken-asix and polar energy gap predictions from
the critical field measurements.
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|c| is measured to be nearly double (|chigh|/2π = 10.2 Hz) that of the lowest 850 nm laser

potential (|clow|/2π = 5.4 Hz).

A second test of the density is done, involving a critical field scan (see subsection 3.9.3).

This procedure is another standard technique typically performed by holding the atoms in

the trap for a set amount of time and watching their evolution in ρ0, while the bias magnetic

field is quenched to different values. For fields that are below q = 2|c| for a respective |c|

value, pairwise creation of atoms in |F = 1,mF = 0⟩ (or ρ0) into |F = 1,mF = ±1⟩ is

seen and the fractional population of ρ0 = N0/Ntotal ≈ 1 starts to decrease. This allows

us to extract the value of |c| by observing the field at which this occurs. Of course, we

are interested in what value will be found for a density quench, instead of a magnetic field

quench. This is achieved by following the same crossed dipole trap ramp as shown in

Figure 4.3, and used in the coherent oscillations discussed above. We quench the magnetic

field to a set value above the critical point, and then perform a ramp up of the crossed dipole

trap power to increase |c| to a point where pairwise creation can begin to occur.

If we prepare a condensate that is held for 390 ms at low power and 290 ms at high

power (times which are sufficiently long to observe the evolution away from the ground

state of ρ0 = 1), we observe a critical field at 390 mG for the crossed dipole trap’s lowest

density. For the highest trap density, we find a critical field of 535 mG (see Figure 4.6). This

corresponds to a calculated density of |clow|/2π = 5.4 Hz ±0.1 Hz and |chigh|/2π = 10.2

Hz ±0.1 Hz. Comparing this to the fits given by the coherent oscillations, we find good

agreement. In fact, if we use the |c| values obtained in the critical field measurements,

we can plot the energy gap shift (as seen in subsection 4.3.1), and find that the measured

coherent oscillation points and their error bars confirm the reliability of the shifting of the

energy gap for various quenches to differing cross trap powers.

As an aside, if we numerically estimate the density of the trap by using the formulas

specified in Equation 4.4 and Equation 4.5, we also predict a similar, significant increase in

the trap density for the given experimental parameters. However, there is a bit of an over-
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Figure 4.6: Depiction of the relevant experimental parameters for the density quench per-
formed using a second laser trap to confine the spin-1 condensate, and eventually cross the
critical point. Above depicts critical field measurements for the lowest and highest density
of the condensate. Here a 40 ms ramp to the highest second trap laser power is shown to
increase the measured condensate density (or |c|) value by nearly a factor of two, with the
lowest density in the second trap having |c| = 2π · 5.4 ± 0.1 Hz and the highest density
having |c| = 2π · 10.2 ± 0.1 Hz. This value is atom number-dependent and obtained after
200ms of evolution time (for highest density second trap power), averaged over three runs.

119



Figure 4.7: The energy difference (∆, red solid line) delineates the polar phase and the
broken-axis symmetry phase of the system. The critical point occurs at the value q/|c| =
2 (dashed line). In general, the phase transition can be crossed by either lowering the
magnetic field, q, or increasing the density of the system, |c|. Spheres depicted here show
the energy contours for the spin-1 system above and below the critical point.

estimation in the predicted density for the highest cross trap laser power ranging anywhere

from 15-30% over the estimate given from the critical field measurement. This discrepancy

is largely attributed to an inaccuracy in the estimation of the waist and the exact atom num-

ber, due to the finite lifetime of the high density trap. Overall however, the dynamics and

stability of |c| are consistent from run to run and moreover, show good agreement with the

mean-field simulations described above. This will be shown in greater detail in the section

below.

4.3.2 Density-Induced Spin Mixing

To show that the effects of the increased trap density can extend to the effects in the spin

dynamics, we perform a series of canonical spin interactions. The first of these is the

process of spin mixing. Spin mixing occurs in a spin-1 BEC once the critical point has

been crossed. When looking at equation Equation 4.2, this occurs as the spin-collisional
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energy dominates, giving rise to spin-changing collisions. Because we start in the initial

state of |F = 1,mF = 0⟩, angular momentum-preserving collisions between two mF = 0

atoms produces a pair of atoms with new spin states of mF = ±1. This process is also

reversible, leading to an oscillating process of spin-exchange. This can be seen occurring in

Figure 4.8. Normally, the move to spin interactions would be accomplished by lowering the

magnetic field and letting the trapped cloud interact. But as described above, interactions

can be engineered instead by increasing the trap power, and keeping the field constant.

To study the effect our density ramp has on the spin mixing interactions, we follow the

procedure outlined in the previous section. A field is chosen to be just above the critical

point, here around 400 mG, at q/|c| = 2.2 for the lowest 850 nm power and density used

in this study (|c| ≈ 5.4 Hz). We then allow the cloud to evolve for various amounts of

time before projectively measuring the state. We expect no evolution of the state away

from the ground state (ρ0 = 1 for all time), when the field is above the critical field for

a given |c| (see Figure 4.8). However if, as shown above, we increase the second trap’s

power, resulting in an increased cloud density and |c| value, we can cross the critical point,

and we begin to see evolution of the state from ρ0 = 1. For the spin mixing experiments

performed for the given field (Figure 4.7), the value of q/|c| for the low density is around

2.2, whereas the high density value is around 1.2 – well below the critical point for the

phase transition. The evolution times shown in Figure 4.8 are offset by 100 ms, since this

is the time between the magnetic quench to a finite field and the final power ramp up for

the second dipole trap, used to increase the density past the critical point (see Figure 4.3).

An additional 40 ms of time is added to the start of the evolution time for both of the plots

in Figure 4.8, as this is the power ramp up time for the second trap laser. As can be seen in

the figure, the state clearly evolves away from the ground state and oscillates. Spin mixing

in general is a noise-driven process, so we average the points over fifty runs. The change

in the density can also be noted by the decreased lifetime for the higher density cloud due

to the increased collisions between the atoms. The higher final density cloud has a lifetime
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Figure 4.8: Spin mixing evolution for two clouds confined to two different final densities.
Dynamics occur only when the density is increased enough to cross the quantum critical
point, allowing state to evolve away from ρ0 = 1. Top shows the evolution for the lowest
density cloud averaged over 50 runs, with the evolution time starting from the start of the
magnetic field quench. Bias magnetic field is chosen to be above the critical point for the
lowest density cloud, so evolution away from ρ0 = 1 does not occur. Bottom shows what
occurs when the cloud density is instead ramped to give a ratio of q/|c| < 2, crossing the
critical point. Here evolution time starts when the second trap laser has started to ramp up
to its final, higher value (ramp ends at 40ms). This is also averaged for 50 runs. Lifetimes
are measured for the decaying atom numbers while the clouds are allowed to evolve. Lower
density cloud has a longer lifetime of around 3.7 seconds, while the higher density cloud
has a lifetime of around 0.81 seconds.
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of 0.8 s, while the lower final density cloud has a lifetime of ∼ 3.7 s.

4.4 Density-Induced Spin-Nematic Squeezing

In previous studies in our lab, this was again, produced using a magnetic field quench, fol-

lowed by a time held in the trap, and a measurement protocol [75]. The evolution time in the

trap is typically a shorter length scale than is needed to observe relative population changes

(as seen in the spin mixing measurements above). To accommodate this, we changed the

procedure to ramp up to the final density in 10 ms, as opposed to the 40 ms used in the

previous spin mixing studies shown above. Other than this change, the remainder of the

procedure remains the same as outlined in Figure 4.3.

The mean field simulation used was adjusted to use this shorter ramp of the crossed laser

trap. Times scales of longer than ∼ 50ms tended to evolve past the maximum squeezing.

An evolution time of 35 ms was chosen for the amount of predicted squeezing it gives

from the simulation for the highest density. Time starts when the power of the crossed

trap is ramped up, leaving 25 ms at a steady-state high cross trap power. After this time

has passed, a microwave pulse detuned from the clock state (|F = 1,mF = 0⟩ → |F =

2,mF = 0⟩) is applied for a desired amount of time, in order to perform tomography on

the state by changing the spinor phase of the system [86]. To finish the measurement of

the state, we need to projectively measure the populations in the F = 1 ground state of

the system. This is performed in our system by rotating any transverse spin populations

(i.e. any atoms present in S⊥) into our measurement basis of Sz, or the axis in which our

Stern-Gerlach gradient is applied to separate the magnetic sublevels. We rotate the spin

populations by applying a resonant π/2 RF pulse at the chosen bias field. The trap is then

nearly simultaneously released, and the atomic clouds are allowed to fall for 22 ms, while

the gradient is applied for 20 ms of the fall time. This sequence constitutes one “shot"

of the experimental run. A run is performed for each of the points in Figure 4.9. Each

of these runs is composed of 50 shots and the resulting numbers for the measured atomic
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Figure 4.9: Spin-nematic squeezing performed for condensates ramped up to different final
densities, allowing the system to cross the quantum critical point. Simulations performed
to account for the experimental parameters such as evolution time (35 ms), magnetic field,
and cloud density (|c| value). These simulations show good agreement with data. Each
point represents statistics from 50 runs. Circle points depict “raw" measured data, while
the “corrected" data is depicted by the square points in the plot, and have the detection
noise subtracted from the raw, measured points. Lowest level of raw squeezing measured
was around -8.4 ±0.8 dB for the highest density ramp (red circles).

populations are averaged over these shots.

We endeavor to test the squeezing stability and control of the density ramp to different

final powers. Taken over the course of two days, we perform the shorter, 10 ms density

ramp (final cross trap laser power increase) to different final powers and take the spin-

nematic squeezing data for the two different final powers, as described above. This leads

to the data shown in Figure 4.9. The red circles and blue squares show the data extracted

for the highest density ramp runs (|c| ≈ 10.6 Hz), and correspond to the noise from the raw

data and noise-corrected data points respectively (more on this below). The second set of

runs are shown with the yellow circle and green square points. This set of runs is performed

at a slightly less dense cloud (|c| ≈ 9.3 Hz) than the red and blue points. The solid blue and
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green lines reflect the mean-field simulation results described in subsection 4.2.3 using the

measured |c| values mentioned above, as determined by critical field measurements similar

to Figure 4.6. These simulations also include the shorter, 10ms ramp. Using these values,

we find the data points for both density ramps are in great agreement with the mean-field

predictions.

The amount of squeezing (or “anti-squeezing") measured in the system comes from

the measured noise in the magnetization, as noted in Equation 4.3, relative to that of the

shot noise limit (∼
√
N for a total number of atoms N ). The now conventional unit of

reported squeezing is in decibels. In our measurements, we were able to measure a raw,

uncorrected squeezing of around -8.4 +/- 0.8 dB, which is at the range of our detection

limit. The corrected levels of squeezing correspond to squeezing points which have the

noise from the detection subtracted off of the measurement (i.e. the photon shot noise and

the background camera noise; see discussion below in subsection 4.4.1). These points did

not show large amounts of correction near the anti-squeezed regions, but did in the regions

exhibiting squeezing, where the system is more sensitive to noise (see Figure 4.9). Error

bars for the data points are determined by the number of shots taken for each run. The finite

sample size (Ns) leads to an error bar given by [86]: ξ2 = 10 log10(1 +
√

2/(Ns − 1)).

For 50 shots, this equates to an error bar of ±0.8 dB for the raw and corrected squeezing

points.

Additionally, the corrected noise data all seemed to be in good agreement with the

simulation curves. The only major discrepancy lie for the maximally squeezed point where

squeezing is most sensitive to noise. The corrected point, when the detection noise is

subtracted off, shows larger than predicted squeezing (nearly ∼ -20 dB of squeezing!) This

points to there being a large amount of noise in the background regions of this run, which

lead to a relatively large correction when subtracted off, and may not be actually present

in the actual data regions (regions where the raw data is taken from). All in all, the system

shows remarkable and reliable amounts of spin-nematic squeezing using our density ramp
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protocol indicating that we are in fact able to push the system into the spin interacting

phase of our quantum phase regions, independent of the bias magnetic field environment.

Moreover, we are able to do so in a way that doesn’t modify the delicate nature of the

squeezing process, which will be important for future work in this direction.

4.4.1 Imaging Calibration

As noted earlier in the RF calibration section in subsection 3.6.5, the CPA for experiment

was found to be around 157.91 for 200 µs of exposure time. We measured the RF cali-

bration during days where the squeezing data was being taken to ensure the system was

behaving and consistent with previous calibration measurements. This is important as was

mentioned above, because it is how we establish the standard quantum limit of the noise to

be measured and the correction for the photon shot noise from the system.

In general, there are several key noise sources we consider when calculating the amount

of squeezing measured by the system. Many of these noise sources were discussed in

depth in [99]. We reference them previously in this thesis in subsection 3.6.5. The key

noise sources for our measurement are in descending order: the scatter from the imaging

light, the photon shot noise, and the readout noise from the imaging system. The back-

ground scatter of our system, taken by shining the imaging light in the chamber without

atoms, and measuring the noise in each of the regions typically used when measuring the

N+ and N− populations. Measuring the difference between these regions gives us the

measured background scatter we would typically detect when taking the squeezing or cal-

ibration data. The standard deviation (∆Mscatter) measured for 50 shots, taken at 200

µs exposure time, between the detection regions of interest equates to 49 “atoms" for a

CPA of 157.911, which was previously calibrated for our system [89]. Thus, the vari-

ance (∆2Mscatter) amounts to around 2400 atoms. For a cloud of 25,000 atoms evenly

distributed in the |1,±1⟩ states with a CPA of 157.91, this leads to a baseline level of

squeezing of ξ2 = 10 log10 2400 atoms/25, 000 atoms = 10.2 decibels.

126



The next largest noise source in our imagining is the photon shot noise (PSN). The

noise from this source can be represented as: σ2
PSN = σ2

PSN,electronsNe/CPA2 = q(N+ +

N−)/CPA, where q is the number of pixels binned together to create a one-super pixel,

σ2
PSN(Ne) is the photon shot noise for the detected number of electrons, and the num-

ber of photons detected is equal to the number of electrons divided by the binning num-

ber (here, 4). The conversion of camera counts to atoms is still given by the CPA. Us-

ing the experimental CPA of 157.91 for a 200 µs exposure time on 25,000 atoms, we

can estimate the photon shot noise to be around σ2
PSN = 4 ∗ 25, 000/157.91 = 630

atoms. Finally, the read out noise (RO) is the smallest contribution of noise in the sys-

tem. It pertains to the noise associated with the camera’s collection and conversion of

photons to electrons and counts. The per-pixel (pp) noise can be represented as [99]:

σ2
RO,pp,atoms = σRO,pp,electrons/CPA2. The single pixel electron standard deviation noise

is given by the specification sheet for the camera and equates to 8.1 for the iKon cam-

era. To calculate the total readout noise, we need to sum over the entire region where

the clouds are imaged (Apix,total). Using the same experimental CPA as before for a

200 µs exposure time, we can estimate the total readout noise from the camera to be:∑
pp σ

2
RO,pp,atoms = σ2

RO,pp,electron/CPA2×Apix,total/nbin = (8.1/157.91)2× (2∗102)/4 =

13 atoms. This of course estimates the two regions (or regions of interests (ROIs)) used

for imaging the ground state populations for the |F = 1,±1⟩ clouds, and includes a 4x4

binning with nbin = 4.

If we combine all these noise sources, we can estimate the overall limit of our detection

system, given our experimental settings. The readout noise can be combined to include

the scattered light noise, as we measure the scattering indirectly by looking at background

regions of interest (ROI). We can empirically measure the noise from the regions selected

near the |1,±1⟩ clouds and get an estimate for the total noise that the scatter and camera

read out noise contribute to the measured, overall signal. We refer to this combined noise

as σ2
bkg. If we were to calculate the minimum level of squeezing detectable from the es-
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timated noise sources above, given the scatter level above and the experimental values of

25,000 atoms, a CPA of 157.91, and a binning of 4x4, the minimum detectable limit for

our measurement becomes:

ξ2detection = 10 log10(∆
2Mscatter + σ2

PSN + σ2
RO)/(N+ +N−)

= 10 log10(σ
2
PSN + σ2

bkg)/(N+ +N−)

≈ −9.16 decibels.

(4.20)

Conversely, we can also subtract this noise to extract what we believe the noise from

just the atoms is. Combining all this with our estimates for the photon shot noise, we can

calculate a “corrected" noise level for the dynamics themselves. In the case of squeezing

this correction takes the form of:

ξ2corrected = 10 log10(∆M
2
meas − σ2

PSN − σ2
bkg)/(N+ +N−). (4.21)

The corrected forms of this data are plotted in Figure 4.9. This data can be useful in

attempting to reveal the extent of the atomic dynamics on the measured noise levels. Ideally

the noise floor could be further decreased by limiting the primary sources of noise in the

system, such as the residual scatter to lower the noise floor and allow for higher levels of

squeezing to be directly observed without correction.

4.5 Outlook and Conclusion

The ability to utilize a changing laser potential to modify the density of the cloud has

shown clear results in being able to reliably and consistently change the quantum phase

of our system. By increasing the density of our system, we are able to shift the quantum

critical point independent of the magnetic bias field to create and modify spin interactions.

This shift has been shown to occur in both our critical field measurements and our coherent

oscillations of the energy gap itself.
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The shift into the spin-interacting regime is demonstrated further by examining the spin

mixing and spin-nematic squeezing behavior of the atoms. In both cases, the dynamics are

reliably captured by the mean-field simulations describing the density ramp performed in

the trap. Furthermore, we find a high degree of both spin mixing and spin squeezing using

our density ramp method. Using our technique, we are able to measure an uncorrected

noise at a level of -8.4 dB ±0.8 dB. This demonstrates the ability to reliably create and

control interactions to a low noise level using our modulated potential.

The future applications could include further quantum interactions using multiple or

faster ramps. One interesting aspect to this would be the ability to perform parametric

excitation of the quantum cloud. This was done previously in our group by modulating the

bias magnetic field by two times the coherent oscillation frequency [103]. If we instead

performed this modulation and applied it to the trap potential, perhaps via the acoustic

optical modulator for the laser, we can perform the same parametric excitation of the system

and observe parametric squeezing.
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CHAPTER 5

OTHER EXPERIMENTAL PURSUITS

This chapter details some ongoing and potential future experiments that are useful to the

future direction of the lab. The main thrusts of these topics involves various techniques

to improve the experimental performance, as well as explore more ways to traverse the

quantum phase transition within our experiment. In terms of longer term projects, we first

explore the effects of small numbers of atoms on the nature of the quantum phase transition.

We will describe the basic theoretical concept behind the finite atom number effects, as

well as their applications. These types of experiments have less room for technical error

however. This leads to the proposal and suggestion for future upgrades to the experiment,

including a new atomic loading system and a dedicated imaging beam setup. This will

touched on in the latter sections of this chapter and illuminate a path forward for the future

of our spinor BEC experiments.

5.1 Finite Energy Gap for Small Numbered Condensates

As discussed in Chapter 2, large numbered condensates are easily described by mean-field

or semi-classical methods. However, quantum effects owing to a finite number of atoms

is an interesting path forward for its deviation away from the mean-field description of the

phase transition. It has also been shown in similar types of experiments to allow for higher

fidelity of the quantum state (due to the preservation of the cloud away from experimental

noise) [104, 69]. Recent work has used these smaller systems to their advantage. Examples

of some of these avenues of research include the pursuit of exotic quantum states such as

squeezed states, twin-Fock states, and Dicke states [105, 106] to name a few. Much like

the current research being done in other spin-1 systems, the broken-axis symmetry phase

of our QPT can be crossed in such a way as to be adiabatic. This has been shown to create

130



a highly entangled quantum ground state called a Dicke state [107, 104, 108, 109].

As mentioned in our previous work [69], crossing the QPT adiabatically to create a

highly entangled state is very difficult to do. However, more recent work has been done

which has demonstrated the effect that small numbers of atoms can have in generating ex-

otic quantum states in condensates of around 10,000 atoms [110, 111]. There they were

able to create both a twin-Fock state [110] and a balanced spin-1 Dicke state [111] in rubid-

ium, relatively close to the ideal ground states. If creating smaller numbered condensates

can achieve these highly sensitive and entangled states, this would open up many more

possibilities for fundamental studies of the adiabatic transition, as well as applications such

as adiabatic quantum computation [112, 113].

Other recent work being done with antiferromagnetic condensates in spin-1 sodium

atoms, condensates on the order of 100-1000 atoms have been shown to create a “frag-

mented condensate" [114]. This has been a long-predicted and sought-after state since

the early days of BEC creation [115]. It relies on the degeneracy of several spin energy

levels within the BEC, which can be accomplished at very low magnetic fields, making it

technically very challenging. The Gerbier group was able to experimentally achieve this,

however, through a further opening of the energy gap between the BEC and fragmented

phases, allowed by the small number of atoms. In the same group, a similar study was

conducted by passing through their QPT with a faster quench or drive across the QCP.

This led to the observation of increased correlations in the overall spin observable for the

atoms [116]. The latter study informs future tests of the connection between statistical and

quantum mechanics.

5.1.1 QPT for Finite Numbers of Atoms

As discussed in the last chapter, mean-field theory accurately describes many of our exper-

iments. The key to this lies in the fact that the theory is semi-classical, and thus is more

accurate as the number of atoms approaches the thermodynamic limit of N → ∞. How-
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ever, as the number of atoms decreases in the cloud, the finite number of atoms begins to

have a noticeable deviation from the mean-field prediction. We can simulate this by using

the quantum solution. While more computationally intensive, it is achievable. To do this

we use the quantum form of our Hamiltonian presented in Equation 2.14:

Hk,k′ = (2c̃2k (2 (N − 2k)− 1) + 2qk) δk,k′

+ 2c̃2[(k
′ + 1)

√
(N − 2k′) (N − 2k′ − 1)δk,k′+1

+ k′
√
(N − 2k′ + 1) (N − 2k′ + 2)δk,k′−1].

(5.1)

From the above equation, we note again that our experimental sequence gives ∆M = 0

and the initial state for the atomic cloud is |F = 1,mF = 0⟩. These elements form a

symmetric, tridiagonal matrix. The energy gap between the first excited and ground state

of the system comes from diagonalizing Equation 5.1. Doing this for various numbers of

atoms and starting with our initial ground state, we can see the effect that the finite atom

number has on the energy gap. As can be readily seen in Figure 5.1, the increasing atom

number creates a vanishingly small energy gap at the critical point. For our experiments of

tens of thousands of atoms, this gap is near zero at the QCP and nearly identical with the

mean-field limit.

We can observe the dynamics of this Hamiltonian as well by numerically integrating

the Schrödinger equation of the form iℏ ∂
∂t
ψ = Hψ. This is also done in the |N,m = 0, k⟩

basis, where N is the number of atoms, k is the number of pairs of atoms in the |F =

1,mF = ±1⟩ state, and m is the magnetization. This process is greatly simplified if we

take the number of atoms and magnetization as conserved quantities to first order. This

leaves k as the determining parameter ranging from zero to N/2 + 1 values.

5.1.2 Adiabatic Crossing of the QPT

The investigation on the finite number effects in the purely quantum system is of interest

as the finite energy gap has direct implications on our ability to adiabatically cross the
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Figure 5.1: Quantum calculated energy gap for finite numbers of atoms shows gap appear-
ing for finite atom numbers.
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quantum critical point of the system.

We previously touched on the work done in our lab involving the rapid crossing of the

critical point in our quantum Kibble-Zurek experiment [79], as well as our exploration of

our ability to adiabatically cross the QCP [69]. These experiments were concerned with the

speed with which the QCP was crossed. Faster quenches led to a higher probability of the

atoms in the ground state being excited to a higher energy level. The ability of the system

to remain in the ground state can be represented by as the probability for the system to be

in the ground state, shown as:

PE = 1− |⟨Ψf |ΨGS⟩|2. (5.2)

For an adiabatic transition, this probability should be close to zero. Assuming a low level of

excitation, the energy gap shown in Figure 5.1 is a good representation between the ground

and first excited state for the system [69]. Equation 5.2 is the equivalent lower bound of the

Landau-Zener transition probability for a simple linear-quench across the QCP [78, 117,

118].

An alternative description of the adiabatic limit, that doesn’t rely on a simple linear

quench through the QCP, involves the spinor phase space variables ρ0 and θs. We can

consider an adiabatic invariant in the form of the action using these canonical variables

[119]. This can be represented as:

I =
1

2π

∮
ρ0dθs. (5.3)

A Taylor expansion of the orbits around the ground state from our mean field energy

written in Equation 2.19, give elliptical orbits from which we can derive a measure of the

action to find [69]:

∆ρ20 ≈
√

1− q2/ (4|c|2)
4N

. (5.4)
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Figure 5.2: Noise estimates for crossing the quantum critical point with different ramp
speeds of the magnetic field ramping from around 1 G to zero field. Finite numbered
condensates opens up the energy gap allowing easier crossing of the QCP adiabatically.
For 100 atoms, it can be shown that even a normal linear quench in ten seconds time would
be sufficient to cross the QCP adiabatically. This is important because this is shorter than
the lifetime of the single focused trap, allowing for less atoms to be lost in the process.

This value defines the maximum rate of a given quench across the QCP to maintain an

adiabatic following. This was an important metric in picking the optimal ramp speed near

the critical point in our previous energy gap measurement experiment [69].

Conversely, instead of asking how fast a quench can be performed to maintain adiabatic-

ity for a certain number of atoms, one can ask how the fluctuations might scale for a given

ramp speed with different, smaller atom numbers. If we use a standard, non-adiabatic, lin-

ear ramp, and plot out the fluctuations or variance in ρ0, we can see that lower numbers of

atoms correspond to higher values of the variance in them = 0 population (see Figure 5.2).

This means that the gap, which goes as ∆H = 4∆ρ20|c| for q < 2|c| [69], will also be larger,

leading to an easier adiabatic condition to fulfill for the ramp speed.

A simulation of this type of non-adiabatic, linear quenches (here using the magnetic

field) is performed for a condensate of one hundred atoms, and assuming no decay from

the trap. We can see that even for short ramps on the order of ten seconds we are in within

the adiabatic limit. This is an important result, as our longest lifetimes in the experiment
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tend to be on the order of tens of seconds (see Figure 3.36). Losing atoms out of the trap

affects the overall degree of entanglement we can create as we lose correlated pairs of

atoms. The degree of entanglement is given by the formula [72]:

ξ =
(〈
Ŝx

2
+ Ŝy

2
〉)

N/
(
1 + 4

〈(
∆Ŝz

2
)〉

N2
)
. (5.5)

This is pertinent for the measurement of the generation of macroscopic entanglement. If

we are able to cross the QCP adiabatically, then the end result at zero magnetic field is a

massively entangled Dicke state [120, 107]. These states are interesting for their exotic

nature, but also their possible applications to quantum computation.

5.1.3 Preliminary Data for Making Small Condensates

Given this incentive to create small condensates, the challenge becomes two-fold: how do

you create small atom clouds, and how do you maintain dynamics in the trap. We would

like to change the atom number to take advantage of the finite atom effects, but would like

to maintain the spin interactions, c. The rate of the spin dynamics is dependent on the atom

density, so maintaining a high enough spin-interaction term, c, is essential. One way to do

this is to turn up the trap power to increase the potential, and thus the mean trap frequency

and density, at a rate that would maintain a stable and sufficient c value. As mentioned in

chapter 4, we can modify |c| by either decreasing the number of atoms, or changing the

trap potential. There the value in Equation 4.9 for c as a function of the power of the laser

was shown to be: c ∝ P 3/5.

We attempted to create this effect by trying a number of different procedures to 1) lower

the atom number and 2) maintain a sufficiently high |c| value. From our studies we found

that if we raised the final power of our primary, 10.6 µm trapping laser, we could change

the trap potential enough to observe trap dynamics. By performing the normal condensate

creation procedure, we create a normal-sized condensate in the single focus trap of around
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Figure 5.3: Measured c values for different final 10.6 µm powers and final atom numbers
over several days. Data shows a clear and consistent pattern to the change in measured
critical field values or |c| values for given final 10.6 µm power. As expected, increases
in the final 10.6 µm power lead to increased density in the trap, however this seemed to
plateau for certain values. Ramp times up to these high power was not looked at much, so
this could also have something to do with the measured dynamics of |c|.

60,000 atoms. From there, we can raise the trap power quickly to increase the trap depth

and peak density. This allowed us to ramp up the final 10.6 µm trap laser quickly enough

to avoid too much thermalization, but sufficiently high enough to appreciable increase the

c (see Figure 5.3).

For sufficiently high densities, this leads to collisional losses within the trap, allowing

us to go to smaller numbers of atoms. While performing these tests we were able to de-

crease the atom number to several thousand. These clouds were very stable and showed

clear coherence via coherent oscillations. Additionally, when looked at in absorption, these

clouds were still very cold, and didn’t show much evidence of being thermal. However,

there did appear to be some domain formation for very short ramp times (see Figure 5.5).

This appeared to plateau for sufficiently slow ramp times (usually in the in hundreds of

milliseconds, see Figure 5.4).

However, to get to the hundreds of atoms level, we had to lower the trap power enough

that atoms began to be lost from the trap. This had a dual effect of allowing only very cold

atoms to remain in the trap, and also allowed us to lose enough atoms before increasing the

final power to increase the density of the trap. Several tests were done to test the coherence
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Figure 5.4: a)-c) shows absorptive images for the 10.6 µm final power ramps up to 150 mW
at different rates. Measured critical field values for these different ramp times is shown in
d) for several final high power of the 10.6 µm laser. This seems to suggest that the speed of
ramp plays a role in the effective dynamics in the trap. Moreover, ramping too fast to high
power will not allow the full dynamics to be observed (see ramp times of 5 ms in d)). This
is shown in the absorptive images as well, as a) shows a cloud ramped to 150 mW in 5 ms,
that has multiple domains to it, whereas slower-ramped clouds such as b), done in 50ms,
and c), done in 500ms, don’t seem to show as much spatial or dynamical deviation.
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Figure 5.5: Absorptive images small condensates (2-5 thousand atoms) created with the
single-focused, 10.6 µm laser. Difference between a) and b) is the minimum power the
10.6 µm laser is lowered to: 28 mW and 27 mW respectively. Ramping the condensate
back up allows the condensate to become tightly confined (note the aspect ratio). The
difference in atom number is a few thousand, with b) being the smaller of the two.

and stability of the final system. Images were also taken with absorptive imaging to look at

the structure of the cloud. This revealed that the cloud was very cold and highly compressed

at high powers (see Figure 5.5).

The ultimate goal of these type of experiments would be to create a small and stable

cloud of atoms that could exhibit coherent oscillations and other signs of spin interaction.

We found that using the atom ramp to generate small clouds with the single-focused, 10.6

µm on its own led to final condensates in the hundreds of atoms, but they were largely

unstable due to lowest power needed for the 10.6 µm laser to allow atoms to spill out of

the trap. The final atom clouds would not be stable throughout the day, and settings that

were found to generate clouds with a set number of atoms would drift away and no longer

be ideal.

We attempted to mitigate this by adding a second trapping laser to the protocol by using

the 850 nm, cross-trapping laser to aid in atom losses due to increase density collisions.

This did help add some stability to the process. Through this technique we were able to

create some more stable atom numbered-clouds that were less amenable to experimental

drifts. One of the successful runs we had is shown in Figure 5.6. This run, which was
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Figure 5.6: Spin mixing in the SF trap with crossed trap-assisted atom losses and a final
high power single-focused 10.6 µm ramp; spin mixing dynamics observed for 100’s of
atoms in the final high power single focus trap. Image a) shows the initial cloud at zero
evolution time, while b) shows the clouds at 150 ms of evolution time. Spin mixing is
measured and plotted in c) for three runs averaged.

averaged three times shows about 100-200 atoms interacting in the single focus, 10.6 µm

trap at 3 Watts. The dynamics are surprisingly quick, due to the very high power potential,

despite the low number of atoms.

At this level, detection becomes very difficult, and even small amounts of drifts in

the imaging light leads to drifts in the detected scattered light; this makes the final atom

hard to accurately measure. Many of the imaging tests we performed indicate that we

are near the edge of our detection limit with the current imaging system. More potential

improvements will be discussed in section 5.3. If these improvements are made, this series

of investigations can be revisited and hopefully improved upon to fully realize and measure

the change in the energy gap that finite numbered condensates can bring.
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Figure 5.7: Coherent oscillations in the SF trap with crossed trap-assisted atom losses
and a final high power single-focused 10.6 µm ramp; coherent oscillations observed for
100’s of atoms in the final high power single focus trap. Image a) shows the coherent
oscillations averaged over three runs, while b) shows the atom numbers during the run.
Large instabilities seen for very small atom numbers.

5.2 2D-MOT

Two-dimensional magneto-optical traps (2D-MOT’s) are an atom loading technique that

have been around for a couple of decades. Developed in the late 1990’s and early 2000’s

[121, 122, 123, 124, 125, 126], 2D-MOTs are a way to provide slow, pre-cooled atoms to

an experimental apparatus, at a rapid (few seconds) rate. Other techniques exist for this

including low-velocity intense source (LVIS, [124]) and Zeeman slowers [127], though

they are not as ubiquitous as the 2D-MOT, as it is the generally excepted best way to

compactly construct a sufficiently fast and cold source of atoms. In addition to their loading

abilities, they also allow one to have two different vacuum regimes, as the cold atom beam

of the 2D-MOT is readily aimed through a differential pumping tube. This allows the 2D-

MOT to be loaded with relatively high vapor pressure, while the downstream, target area

for the atom beam can be at a much higher vacuum, affording this side a longer lifetime for

the atoms once they are trapped again.

Below we will discuss the results obtained from our lab’s own studies of the 2D-MOT

(termed the “Double MOT" experiment in our lab), loading into a 3D-MOT. These studies

were meant to inform our own future experimental upgrades, and potentially a second

experiment involving an all-glass, science chamber for studies at low magnetic field. We’ll
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discuss the main observations and outlook for a future prospect for using the 2D-MOT on

a future version of the BEC experiment.

5.2.1 Preliminary 2D-MOT Experiments

2D-MOTs work in nearly identical ways as a conventional magneto-optical trap (3D-MOT).

They use detuned light from the cycling transition to cool the atoms transversely with four

beams (hence the “2D" monikur). They also utilize a quadrupole magnetic field to create

a confining force on the atoms; this is done in our experiment using two pairs of anti-

Helmholtz coils. The third axis, or longitudinal axis, is free for the atoms to propagate along

in both directions. This is known as a traditional “2D-MOT". One can stop the propagation

along one of these directions however by adding a “push" beam which is aligned along

the desired direction for the atom beam to travel. This effect can be further enhanced by

creating a “2D+-MOT" in which cooling along the longitudinal axis does take place as

two beams are added: one stronger in the desired direction for the cooled atoms to travel

and another weaker, counter-propagating beam to slow and cool the atoms traveling in that

direction. This is accomplished in the existing setup discussed here with a laser beam

shown on a polished copper mirror with a hole, through which the cooled atoms from the

2D+-MOT travel.

Another key feature and advantage of the 2D-MOT, is that it is able to be loaded at a

higher pressure, which is typically better for faster loading, up to a certain point. This is

due to the fact that most 2D-MOTs are separated from the final capture region by differ-

ential pumping. This mechanism is usually accomplished by a very small aperture or a

moderately small tube (a few millimeters). This creates two different pressure regions on

either side of the differential pumping. If a UHV or non-evaporable getter (NEG) pump

is pump on one side of the differential pumping, the second region will have a decreased

pumping effect on its side. The factor with which this side will be pumped to is the factor

dictated by the geometry of the differential pump. Likewise, if one side, say the 2D-MOT
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Figure 5.8: Existing double-MOT experimental setup

side is at a higher pressure due to high rubidium vapor pressure, the capture side’s pressure

will be less affected by the differential pumping factor. In our case, this is achieved by a

flange and adaptor, to which the polished copper mirror is attached (see Figure 5.8). The

hole is visible through the copper mirror and continues for a specific length which gives a

differential pumping factor of about 1000x. This isn’t an issue in general, but can add some

complications when try to steer the atomic beam through the differential pumping region.

This was particularly challenging in our case, as the MOT region was so far downstream

from the 2D-MOT formation. The radial divergence of our beam was therefore set by the

geometric configuration of our differential pumping region, so atoms that were not cold

enough did not make it through this region.

The full apparatus used in these tests is shown in Figure 5.8. This was an apparatus built
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by a former graduate student, Chris Hamley, circa 2013. It was built using spare vacuum

parts. This was built to test the efficiency of the 2D-MOT as a future experimental cold

atom source. It however had not really full operation when the revival of the 2D-MOT

began in Spring 2016. After several semesters of work, the 2D-MOT was fully operational

in the winter of 2017, and being captured efficiently in a 3D-MOT downstream in the

“science" side of the apparatus (see Figure 5.8). From January 2016 to May 2016, we

achieved at 2D-MOT but were unable to see a 3D-MOT capture. This lead to many tests

including lifting the 2D-MOT side of the vacuum chamber, optimizing the push beam to

create a 2D-MOT+, optimizing the laser powers to the 2D- or 3D-MOT sides, and changing

the rubidium pressure on the 2D-side – just to name a few parameters.

For awhile, the expected atom number collected in the 3D-MOT from the 2D-MOT

was several orders of magnitude smaller than expected. We thought this could be from the

atoms lost between the 2D-MOT and the science chamber due to the small width of the

differential pumping tube, as it may exclude atoms that were lost due to the distance fallen

from gravity, or the radial divergence of the atom beam out of the 2D-MOT. After much

consternation, it was found that the ANDOR iXon camera was focused on the reflection of

the MOT from the chamber window, as opposed to the MOT itself. Adjusting this gave us

around the atom numbers we expected.

One thing that we found that greatly optimized the loading from the 2D+-MOT to

the 3D-MOT was the optimization of the push beam, likely due to the increase in the

the amount of atoms from the 2D+-MOT that were slowed enough to have a longitudinal

velocity that was within the capture velocity of the MOT, or were cooled long enough to

have a radial velocity which was slow enough to allow the beam to not diverge so much that

it didn’t make it out of the differential pumping tube. The atom beam divergence, which

for us is given by the length of the differential pumping tube and the distance from the end

of the 2D-region to the beginning of the 3D beams, is slightly smaller than most 2D-MOT

experiments (see Table 5.2), due to the length of the chamber and the long distance between

144



Figure 5.9: 2D-MOT beam looking down the longitudinal axis of the 2D-MOT to 3D-MOT
experiment.

the 2D and 3D regions. This makes steering the beam and sufficient cooling of the beam

very important, and would be something we would like to design better in the future. An

additionally important parameter was just high enough loading pressures on the 2D-MOT

side. Pressures on the low to mid 10E-7 Torr tended to not yield as good of loading as

the high 10E-7 Torr to low 10E-6 Torr. Higher or lower than that led to poor loading (and

lifetime in the case of the too high of loading pressure). The pumping differential was about

a factor of 1000x, so having high 10E-6 Torr would mean a pressure of 10E-9 Torr in the

science chamber, which is consistent with the ideal pressures needed to make a MOT [96].

The max loading observed at this time was close to 400 million atoms/s, but due to the

finite resources in laser power, this sometimes led to smaller max numbers of atoms in the

MOT. Best set of settings we found for the experiment led to around 300 million atoms

per second loaded in the MOT for a loading time of 1.7 seconds. This had a lifetime of 20

seconds, and a total MOT number of around 900 million atoms in the MOT. An example

table of measurements taken during a near optimal 2D-MOT vapor pressure. Two sets of
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measurements, shown in Table 5.1, are taken around thirty minutes apart, while optimizing

different parameters. When every parameter is near optimal for the given experimental

resources (i.e. for the total available laser power), the loading rate is within a few seconds

and on the order of 100’s of millions of atoms per second. In order for our system to load

at an efficient rate, we need the push beam power and counter propagating beam to be

optimized in power. This leads to change in loading time from tens of seconds to seconds

(see Table 5.1 Settings 1 and 2).

Table 5.1: Loading, lifetime, and total number of atoms from the 2D-MOT+ into the 3D-
MOT.

Settings Loading (s) Lifetime (s) Load. Rate (N/s) Max Number (N)
1) no opt. 19 ± 1.0 33 ± 2.8 12× 106 200× 106

2) push opt. 1.8 ± 0.42 20 ± 2.9 280× 106 280× 106

3) wait 30 min. 1.8 ± 0.99 29 ± 0.99 280× 106 930× 106

4) wait and 3D opt. 29 ± 1.7 11 ± 0.45 140× 106 2, 400× 106

Similarly, if we optimize the power in the 3D-MOT, we sacrifice the power available

for the 2D-MOT to efficiently cool atoms. Therefore, while we can capture more atoms in

the MOT, the loading rate from the 2D-MOT is slower and the density of the MOT itself

starts to play a role (as reflected in the lifetime of the MOT itself). The third run shown

in Table 5.1 shows an example of Goldilocks-type of settings, where the loading into the

3D-MOT is very quick, and we are still able to achieve a fairly high final atom number

of nearly one billion atoms in the MOT. These factors are important considerations for a

future 2D-MOT setup, but it is unclear how sensitive the system will be to these particular

settings. Ideally, the 2D-MOT source to be used in the future builds will be much more

compact in terms of the distance between the source (2D-MOT) and the capture (3D-MOT)

regions. Additionally, we used a vapor cell source on the 2D-MOT side, which was hard

to control, and seemed to play a significant role in the efficient loading of the 2D- and 3D-

MOTs. In the future we would hope to use a getter much closer to the 2D-MOT to ease this

requirement and more reliably control the rubidium vapor pressure.

A comparison of many of the initial 2D-MOT studies and their reported settings are

146



Figure 5.10: Loading and lifetime curves taken at a 1 Hz sampling rate, illustrating the
number of atoms captured in or leaving a 3D-MOT downstream from a 2D+-MOT. “No
opt." refers to no optimizations performed, whereas “3D opt" or “push opt" refers to the
atom number being optimized using the 3D-MOT parameters (e.g. powers, etc), or the push
beam optimized (e.g. power or polarization, etc.). What can be seen is that the atom number
can be brought up to be very high with 3D-MOT optimizations (>1 billion atoms), but that
the loading and lifetime are best optimized using the push beam to get a few seconds of
loading time, and tens of seconds of lifetime. As an aside, the “4Hr" and “45Hr" refer to the
amount of time (four hours and four and a half hours respectively) since the rubidium vapor
source was left open to the 2D-MOT cell. Pressure also has a big effect in the extremes,
namely when there are too many or not enough atoms around.
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summarized in Table 5.2. Our experiment is comparable to those reported in the earlier

works referenced earlier, while still being on the lower end of the atom flux rate. This is

likely due to the small geometric divergence allowed by the experimental apparatus itself.

Despite these limitations, the loading rate and maximum number of atoms loaded into our

3D-MOT in the end was still very good, and definitely an order of magnitude faster than

what is currently used on the main BEC experiment (15 million atoms in 15 seconds).

The double-MOT setup described here was later tested on by Lin Xin [89] to see if we

could use a 1064 nm laser to make a condensate in the science side of the chamber using

the 3D-MOT to load into an optical dipole trap. It was found that this was very challenging

using the fiber laser we had on that table at that time. While atoms were observed in the

trap, there was determined to be not enough of a trap depth and density to evaporate or

create a condensate. The future use of the 2D-MOT seems to lie in a future rebuild of the

BEC experiment. Several ideas and possible designs have been floated for the experiment. I

describe some of them in the section below, incorporating the 2D-MOT in their schematics.
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Table 5.2: Table of 2D-MOT varieties compiled from References [121, 122, 128, 124, 125, 126]. This table summarizes the key
experimental quantities noted in these papers and theses. The “transverse" column denotes the amount of power in the transverse beams
used to cool the 2D-MOT. Similarly, the “push beam" column denotes the amount of power in the push beam for the 2D-MOT. “Beam
size" denotes the size of the light beams used to cool the 2D-MOT. Some of the key values we are concerned with are the longitudinal
velocity (vlong.), as it relates to the MOT capture velocity, and the atom flux, as it relates to the loading rate of the MOT. The asterisk
under the “divergence" column denotes the value that is the geometrically allowed tolerance from the vacuum chamber of the 2D-MOT
to the capture region. Some experiments measure the atom flux directly out of the 2D-MOT, and not by using the MOT loading rate
(which is denoted in the table with “#"). P2D refers to the pressure on the 2D-MOT side. The values obtained in our experiment are
listed on the bottom row of the table.

Type Transverse Push Detuning Beam vlong. Diver- P2D Gradient Flux
(mW) (mW) (Γ) Size (mm) (m/s) gence (mrad) (mbar) (G/cm) (atoms/s)

2D+, Rb [121] 44 11 2 96x9 17 26 3E-7 15 2E10
2D, Rb [122] 320 N/A 1.9 96x15 50 – 1.8E-6 17 6E10

2D w/push, Rb [122] 50/beam 3-30 1.9 96x15, 5 push 25 32; 59* 1.8E-6 17 –
2D, Rb [128] 34 NA 1.7 24 x 7 12 46* 2E-7 17.7 5E9

2D+, Rb [128] 30 2.1, 0.6 retro 3 24x7, 7 push 8 43* 1.5E-7 12.6 9E9
2D, Rb [124] 48 N/A 3 25 – – 3E-7 6 2E8

2D+, Rb [124] 48 10 3 25 9 – 3E-7 6 8E9
2D w/push, K [126] 175 0.75 2.6; 0 push 80x40 – 50* 1.5E-7 8.7 6E9#

2D, Ca [125] 220 N/A 1.5 30 27 40 4E-8 1-1.5 1E10
2D+, Ca [125] 220 2 1.5 30, 20 push 20 – 4E-8 1-1.5 1.3E10
2D+, Rb Us 90-100 0-10 2 95x16 – 33* 4E-6 11 4E8#
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5.2.2 New Vacuum Designs with 2D-MOT Source

As mentioned above, we would like to use a 2D-MOT on the experiment as a new source of

cold atoms. This would provide us with a fast and reliable atomic source, which would not

affect the vacuum in the region where we form the condensate. We believe this is one of the

main limiting figures in the lifetime of our condensate. This therefore could greatly add to

the length of time we would be able to perform our experiments, as well allow us to retain

more atoms in the trap for a given time frame, thereby preserving more of the coherence of

the quantum states of our atoms.

In addition to the increased coherence and longer trap lifetimes, the speed at which the

2D-MOT would load our (3D-)MOT would greatly experimental run time. The current run

time on the experiment is around 22 seconds, with 15 seconds of that having to do with

waiting for our traditional vapor cell MOT to load to a high enough number for us to begin

the transfer to the optical dipole trap and begin the evaporation sequence. If this could be

instead shortened to one to two seconds of loading time, this would cut our run time in

half and allow us to take twice as many shots in a day. This is useful in an experiment

where we rely on repeated measurements of a set of experimental parameters to acquire

statistical averages and measurements. This would also help the experiment perform better,

as day-long drifts in the experiment would have less affect on optimized settings for a given

measurement over the course of a day.

There are many ways in which we could easily incorporate a 2D-MOT into our existing

setup with very minimial perturbation. One of these plans entails simply replacing one of

our imaging viewports with a compact 2D-MOT (readily purchased from companies like

ColdQuanta). Using the current absorption probe location as the location of the new 2D-

MOT source, see Figure 5.11, the cold atom source already has direct line of sight to the

locations of the current MOT and optical dipole trapping location. The 2D-MOT is also

far enough away that if permanent magnets are used to create the quadrupole fields for the

2D-MOT, it would be far enough away from the dipole trap location to not greatly impede
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Figure 5.11: Possible new double MOT design featuring the smallest change to the current
system: the addition of the 2D-MOT to the existing absorption probe port.
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Figure 5.12: Possible new double MOT design with a slight modification to the current
chamber which involves moving the getter to another port, bringing the 2D-MOT and ion
pump closer to the chamber center. This will hopefully improve vacuum performance, as
well as speed of loading.
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the magnetically sensitive operations performed on the atoms. The only larger drawback of

this system is having to find a new home for the absorption probe path, which requires line

of sight to one of our ANDOR cameras. Luckily, we have a camera over the large viewport

of the spherical octagon (the “Top" camera, or iXon camera), to which an absorption probe

could be added, perhaps even at or near the current location of the current 850 nm cross trap.

Doing this, would require some work on the Top camera to increase the magnification to be

able to more closely examine the structure of the condensate. Additional adjustments can

be made, such as using the push beam from the 2D-MOT setup or another imaging beam

in its place as the probe beam, which would shine through the differential pumping tube to

illuminate the condensate on the existing ANDOR iKon camera. A more radical approach

might involve moving the existing, main imaging access (x̂) from its current location to

that of the vertical (ŷ) axis, as it has the most optical axis and doing our absorption imaging

in that way. More will be said about such schemes in the section 5.3.

Another adjustment to the aforementioned design involves moving the getter and asso-

ciated feedthroughs out of the path of the 2D-MOT proposed location (see Figure 5.12).

This decreases the distance the atom beam needs to travel to reach the current MOT and

dipole trap location, while still maintaining a far enough distance to allow the magnetic

fields from the 2D-MOT to have a minimal effect. Furthermore, it still offers the ability

to use our experiment in its existing capacity by utilizing auxiliary getters that could be

used to create a vapor-loaded MOT, in the event that we needed to. All in all, there are

many other ways we could devise adding a 2D-MOT to our system, such as loading from

above the chamber and having the atoms from the 2D-MOT fall down into the existing

spherical octagon and dipole trap location. Additionally, rotating the experiment vertically

and mounting the spherical octagon on its side could allow more optical access and less

detection-limiting scatter in the experiment. In which case, there are even more ways we

could envision utilizing this previously explored technology to our advantage.
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5.3 Imaging Improvements

In our earlier discussions on the detection of our system (subsection 3.6.5 and subsec-

tion 4.4.1), we noted that the limiting factor to our detection limit was the scatter from the

imaging beams currently used to image the atoms. We’ll touch on the current experimental

restrictions and work that’s been done to improve our imaging. We’ll also propose some

simple changes that we believe could improve the scattering limit as well.

5.3.1 Current Imaging Limitations

Our current fluorescence imaging involves two of the MOT beams that are retro-reflected

back into the chamber. These are apertured with imaging masks that are approximately

two by three millimeters. This is a hard aperture as the size of the beams is nearly the

same width as the end-to-end cloud separation of the magnetic sublevels in our normal

experimental procedure. We do this to minimize the scattered light which dominates our

noise floor. The means that a slight misalignment can affect our detection accuracy by not

imaging both clouds evenly. One way we could mitigate this is by adding a third beam

oriented vertically, which would pass through the largest viewport on the vacuum chamber.

This would ideally eliminate most of the background scatter, as we believe most of it arises

from the scatter off of the lens mount, located near the horizontal beam’s entry and exit.

Using the larger, unobstructed viewport could also mean we can use a larger beam, as

opposed to the few millimeter apertures used on the horizontal beams, which might be

more robust against any misalignment or cloud movements.

An additional beam could also increase the CPA of the imaging system as it intro-

duces more beams to the system, thus increasing the counts per atoms emitted by the

atoms, assuming the overall intensity is below the saturation limit (see discussion in sub-

section 3.6.4). Moreover, the addition of a third pair of beams also creates the potential

for the cloud to be trapped, as opposed only in the transverse direction with the horizontal
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imaging beams. This leads to the possibility of increasing the experimental exposure time

to much longer. While both the photon shot noise and the scattering noise scale as 1/τ [99],

and thus the noise from the scatter can’t be reduced to lower the noise floor independently,

the long exposure time does allow for longer interrogation time, which may be useful for

collecting more fluorescence from smaller numbered condensates.

As expressed in subsection 4.4.1, we can write the combined noise measured from the

magnetization as:

ξ2detection = 10 log10(σ
2
PSN + σ2

bkg)/(N+ +N−), (5.6)

where σbkg is the empirically measured background noise detected which includes the scat-

ter noise plus the noise associated with the read out from the camera. When we measure this

noise, σbkg or ∆Mbkg, we measure the standard deviation in the measured magnetization.

Using ROIs used on the experiment for the ±1 regions from our projective measurement,

we can extract what the measured noise would be for a combination of imaging beams.

Measurements for the top MOT beam (MOT 1) and the horizontal MOT beams (MOT 2

and MOT 3), are performed in this manner and shown in Table 5.3. These measurements

clearly denote the advantage using MOT 1 has as an imaging beam, as it produces much

less detected scattering noise than the MOT 2 and MOT 3 beams. Even the MOT 1 beam

on its own is still shown to produce the same order of magnitude noise as the masked

horizontal MOT beams.

We attempt to test and use the vertical, MOT 1 beam to image the condensate with

various masks ranging from 2 mm to 10 mm, but settle on a 5 mm mask for the tests shown

here. Aligning it with the condensate (see Figure 5.13), we see that it alone is not saturating

the cloud. Combining it with the other imaging beams (MOT 2 and MOT 3), we performed

various long exposure tests and large-detuning tests using these clouds. While we were

able to accurately predict the counts per atom (CPA) using the formula for non-resonant
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Figure 5.13: Vertical, MOT 1 mask adjustment showing the need to adjust masks even for
the larger, vertical imaging beam. Image a) shows the balanced cloud after the magnetiza-
tion has been balanced. Image b) shows the initial and final magnetization between the ±
1 clouds after mask adjustment.

and non-saturating imaging light (see subsection 5.3.2 below), the imaging became more

difficult when attempting to image sizeable amounts of atoms in all three hyperfine levels.

As can be seen in Figure 5.15, the clouds begin to bleed into each other when all three pairs

of imaging beams are used, and it becomes difficult to accurately count each of the cloud

populations. This was the case for even smaller exposures, such as our typical imaging time

of 200 µs. Moreover, the RF calibration points taken, even for separable clouds, seemed

noisier than predicted and non-linear. For these reasons, after repeated attempts to improve

this, we put the three MOT beam imaging on pause until we could revisit it with possibly

smaller condensates.

In theory this or other imaging schemes should be investigated further, including incor-

porating the vertical MOT 1 beam again, and perhaps trying to modify its power. Likewise,

other related schemes involving imaging through the large viewport on the chamber could

be investigated, especially if large rebuilds of either the vacuum chamber or the imaging

system is being undertaken. In the next section, we will motivate the use of a dedicated

imaging system incorporating smaller, but more intense teams. This could further be done

for all directions, as investigated and described here, allowing for longer exposure times

and possibly more detuning, in order to interrogate the condensates for longer periods of

time.
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Table 5.3: Noise analysis by measuring the scattering noise with no atoms for the imaging
beams to be tested. ∆M computed from the noise between the ±1 clouds using ROIs
used in the experiment. Counts (and atoms) detected are displayed here without additional
background subtraction, only that used in the ANDOR acquisition process is used here.
Noise analysis performed under typical experimental imaging conditions: 200 µs and 4x4
binning. CPA used to convert the counts to atoms is the empirical value of 157.91.

Beams Tested ∆Mbkg (Counts) ∆Mbkg (Atoms)
MOT 1, no mask 4148.4 26.3
MOT 2, no mask 72177 457
MOT 3, no mask 24245 154

MOT 1, 5 mm mask 876.09 5.54
MOT 2, 2 mm mask 1807.2 11.4
MOT 3, 2 mm mask 1227.2 7.77

Figure 5.14: Imaging with all six beams, using short and long exposure times, we can see
that the clouds are already broadened and indistinguishable at our normal imaging times.
Images a) and b) are the same images, but on different scales, taken at our normal imaging
parameters of 200 µs and -7 MHz detuned. Likewise, clouds in c) and d) are also the same
image, but on different scales. They are imaged at a much larger exposure time of 1.5 ms
and -18 MHz, showing that these types of images can be taken, but that more work needs
to be done to distinguish the different cloud regions, either with longer times of flight or
smaller cloud sizes.
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Figure 5.15: Imaging with all six beams, using long exposure times and large detunings,
we can see that it is possible to us all image beams for a very long time (2 ms); we also find
detuning the light helps confine the beam for longer exposure times, as one might expect.
Images a)-b) are the same image but on different scales, and are imaged for 2 ms at around
-29 MHz detuning. Images c)-d) are the same image but on different scales as well, and are
imaged for 2ms at around -18 MHz.
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5.3.2 Realistic CPA Estimates and Improvements

As discussed previously in section 3.6, we primarily use fluorescence imaging in our ex-

periments as it seems to be the best calibrated at present. We presented in subsection 3.6.4

that the theoretical maximum value for the conversion of counts to atoms given a particular

optical setup, is dependent on full saturation of the cycling transition (or Itot/Isat → ∞)

on resonance (ω0), such that Rsc(ω0) = Γ/2. In reality however, for our experiment and

a detuning ∆exp/2π = −0.831 Hz, Itot/Isat ≈ 9 and Rsc(∆) = (0.89)Γ/2. This leads

to a decrease in the actual expected amount of scattered photons per atom. The general

expression for this realistic CPA calculation can be written as:

CPA = Rsc(∆)Ωητ. (5.7)

where,

Rsc(∆) =

(
Γ

2

)
(Itot/Isat)

1 + 4(∆/Γ)2 + (Itot/Isat)
. (5.8)

If we look at our current imaging system, we can calculate the deviation from the ideal

conversion of counts to atoms. We can also use this to calculate what parameters could ac-

tually get us closer to the ideal case with very few experimental changes. One idea involves

having dedicated imaging beams that are locked to the desired imaging transition and sent

directly to the chamber. Currently our imaging beams consists of large, 1” diameter MOT

beams with around 42 mW in each, that are apertured down for imaging to around 2 mm x

3 mm squares. This is done to limit the experimental scatter, which as discussed above, is

the largest noise source in our system.

By having dedicated, small diameter imaging beams we can both mitigate the scatter

limitations associated with using the alignment of the MOT beams being non-optimized

for the condensate imaging, as MOT formation and final condensate locations occur at

slightly different locations in the chamber. Additionally, the lasers locked to a singular set

frequency have the potential to be more stable, as they are not associated with the other
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Table 5.4: Table of possible CPA’s for our current imaging system with 200 µs exposure
time and a detuning of ∆/2π = −0.831 Hz. The estimates for the expected counts per
atom (CPA) is given in Equation 5.7. Itot ≡ Σi=NIi for a given intensity per beam of Ii
and summed over the number of beams, N . Isat = 3.2 mW/cm2 and Γ/2 = 19.05 MHz.

Imaging Beam Settings CPA Itot/Isat Rsc/Γ/2
Theoretical maximum 172 ∞ 1

Current (42 mW/beam, 4 beams, 25 mm) 154 9.3 0.90
+2 Beams (42 mW/beam, 6 beams, 25 mm) 159 14 0.93
2x Power (84 mW/beam, 4 beams, 25 mm) 162 19 0.95

Small Beams (10 mW/beam, 4 beams, 5 mm) 169 57 0.98
Small Beams +2 (10 mW/beam, 6 beams, 5 mm) 170 85 0.99

cooling stages (i.e. MOT and dark MOT), and would no longer need to change frequency

throughout the course of the experimental run. Finally, the smaller diameter imaging beams

for a rather moderate power can achieve equal or greater light intensities, increasing the

Itot/Isat ratio.

The values shown in Table 5.4 illustrate the experimental options available to us to

impact the CPA for the experiment, and potentially even provide lower imaging scatter, as

well as more stable imaging frequencies, if we choose to go to smaller beams. The biggest

lever arm on improving the CPA is by increasing the intensity of the beams. For a set of

smaller dedicated beams, with even moderate power, like 10 mW and only using horizontal

pair of beams, we can increase the CPA nearly 10%. This could be a very powerful tool

going forward, especially if the scatter can be reduced, as it would allow us to image for

longer with higher signal, which will be an essential tool in improving our imaging for

more sensitive measurements involving small condensates and higher squeezed states.
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CHAPTER 6

CONCLUSION AND OUTLOOK

Since its inception, spinor BECs have been a very useful tool in exploring rich and more

complex systems, both from the aspect of their controllability, as well as their ease of

theoretical description. This ability is furthered by our lab’s development of an all-optical

creation of a BEC, whereby the spin degrees of freedom of the atom are free to interact.

The ability to isolate the spin dynamics has led to rich descriptions in both the mean-

field and quantum formalisms, as we have touched on in chapter 2, but most relevantly

in our theoretical understanding of the mean-field phase space [72, 75] and experimental

observation of coherent dynamics therein [71, 73, 70, 69].

Our previous works used our lab’s understanding of the spin-1 formalism to generate

highly entangled spin-nematic squeezing [75], parametric excitation [103], and number

squeezing [129]. Moreover, we have been able to study these mean-field descriptions to

make meaningful connections to quantum phase transitions in a spin-1 system, and ex-

plored crossing the quantum critical point in our system with our quantum Kibble-Zurek

mechanism studies [79], as well as our studies of crossing it adiabatically [69]. Each of

these techniques have comprised what has now been established as our understanding of

the spin-1, rubidium BECs, and has become the metric with which we gauge the current

experiment discussed in this thesis, as well as future endeavors.

In this thesis, we sought to explore a new way to cross the QCP. Analogous to condensed

matter systems that utilize pressure and doping to change the QPT of the material, we

use the modulation of the cloud’s density to push the cloud through the QCP and into

the interacting phase. We are able to do this without changing the bias magnetic field

to perform the quench, as is traditionally done in similar spinor BEC experiments. We

demonstrate not only that the QPT can be shifted, but that it can also be done reliably, as
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the cloud exhibits coherent measurements of the phase space. Additionally, we are able

to push the QCP such that we can engineer the emergence of spin mixing for a given

magnetic field. Moreover, we can perform the shifting of the QPT in such a way that we

can observe spin-nematic squeezing. We do so to a high degree, measuring -8.4 ± 0.8 dB

of raw squeezing, not adjusted for the detection noise.

This is a useful technique that we hope we can build on more in the future by possibly

modulating the cloud potential further, and thus the density, in such a way as to create para-

metric excitation, and eventually squeezing. Other further experiments we could perform

our outlined below. The techniques devised and described in this thesis are further tools we

have added to our spinor BEC toolkit, in the hopes that it can possibly be employed as an

alternative quench method for future experiments.

6.1 Future Directions

We further highlight future experimental paths to explore, as well technical improvements

that could create a more navigable terrain for these studies including a new vacuum system,

an independent imaging system, and a means for studying small-atom number condensates.

6.1.1 New Atom Source and Vacuum Upgrades

We discussed in chapter 5 the experiments performed involving the development of a po-

tentially new atom source in the form of a 2D-MOT to load a 3D-MOT, and eventually

an optical dipole trap. Currently, we use a vapor cell MOT to load our experiment before

transferring it to a 10.6 µm dipole trap laser. This at present takes our experiment 15 sec-

onds to load around 15 million atoms. The 2D+-MOT tests presented in this thesis showed

that we could load nearly a billion atoms in ∼ 1.8 seconds. This was achieved even in

non-ideal conditions, as the 2D-MOT source was loaded using an ampule (as opposed to

a more controllable getter source) and was located very far away from the target location.

The loading and total number of atoms is a drastic improvement over the current setup and
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could nearly half our experimental run time. Using a 2D-MOT as our source would not

only allow us to be able to take data faster, but potentially with more stability, as experi-

mental drifts (e.g. magnetic field drifts, temperature changes, etc.) could become less of an

issue as a given experiment would take less time to complete. An additional benefit would

be the improved vacuum in the main experimental chamber as well, as we wouldn’t need as

high of a partial pressure of rubidium to make a decent MOT. The vacuum pressure could

be maintained at a lower level conceivably, as the differential pumping in the 2D-MOT

would allow for the loading to occur at a higher pressure and not impact the area where

the condensate is formed. This would lead to longer lifetimes, and more time to study our

condensates without major loses in coherence due to atoms leaving the trap.

Finally, a couple of low-impact designs have been proposed in Table 5.2, which could

readily be implemented on the experiment with minimal change to the other parts of the

experiment. Adding a compact pre-fabricated 2D+-MOT, or even using the cell used in

the previous iterations of our tests could be used. If major rebuilds are being considered

however, it would also be ideal to possibly incorporate upgrades to a new imaging system

in tandem. These improvements are touched on in the next section.

6.1.2 Reducing Scatter and Improving Squeezing Detection

The imaging in our system is vital to our data-taking process, as we acquire many images to

count and gather statistics on our atomic populations. As presented in subsection 3.6.5 and

subsection 4.4.1, there are several key noise sources in our experiment that must be taken

into consideration when we image, especially when taking low-noise data. This type of data

is typical of the squeezing data we take, where the ratio between the detected atom noise

and the noise from the total number of atoms is used to determine the amount of squeezing

we measure. Thus any noise in the detection, either from scatter or camera-related sources,

minimize the lowest level of atoms that we can detect. As we’ve stated, the current detec-

tion limit is set by the scatter noise associated with the imaging beams themselves. This
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level was measured to be around ∆Mbkg = 49 atoms for our typical imaging system (see

subsection 4.4.1). While this is not prohibitive for our current measurements, as we have

large enough condensates that a noise of 49 atoms still allows us to measure a decent degree

of squeezing, it would become a problem should we go to smaller and smaller cloud sizes.

In addition to this possible limitation, there is the fact that we are imaging with a lower

intensity than the ideal (Itot/Isat → ∞). This was discussed in section 5.3. There we saw

that imaging with a third beam oriented through our largest viewport afforded us lower

scatter noise, but also had the potential to increase the overall intensity delivered to the

atoms by hitting it with more beams. In our experiments with the additional imaging beams,

we found it very challenging to count the other atomic regions independently. While in

theory the extra pair of beams is helpful, especially in the prospects of possibly imaging

for longer exposure times and increasing the signal to noise, it is in general not nearly as

helpful as imaging with smaller beams with higher intensity. For even just a replacement of

the horizontal imaging beams with 5 mm diameter width with 10mW of power in each, we

can accomplish a ratio of Itot/Isat to be 10x higher than what we currently have. This could

be achieved with a single diode laser dedicated to providing imaging beams. Additionally,

these could be added to the experiment with greater precision of alignment to the cloud

and with minimal additional optics, with perhaps pneumatic mirrors placed in the path

of the current MOT beams. Likewise, the locking of a single diode laser to the imaging

transition for the duration of the experimental cycle should help with the frequency noise

and stability, which will aid in the accuracy of the imaging as well.

As stated, while not imperative for our tests described here, improving the fluorescence

imaging in our system is important to all aspects of our work. In the case of future, more

sensitive experiments such as small atom number condensates or higher levels of squeezing,

an improved imaging system becomes imperative. The noise reduction and possibly higher

CPA would afford us a smaller detection limit and better signal to noise, respectively.
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6.1.3 Studying the Finite Energy Gap

Finally, we touched on means of creating a variety of small atom number condensates

ranging from 100s to 1000s of atoms. We demonstrated these could be shown to exhibit

coherence and interaction, however the experiments were limited by both the detection

and the stability of the final atom number which seemed to drift throughout the day. Ex-

periments using small numbers of condensates are interesting because of the finite-atom

number effects. In our case, we would like to measure the magnitude of these effects for a

variety of small numbered clouds. Doing so would allow us to continue the work began in

[69] in attempting an adiabatic crossing of the QCP.

If achieved, this could lead to very interesting physics including creating a massively-

entangled, macroscopic quantum state known as a Dicke state [104]. To our knowledge,

this would be the first of its kind, and interesting in its own right. Opening up the energy

gap via finite atom effects is also useful in that crossing the QCP adiabatically is much more

achievable and can be done at a faster rate. This is important due to the finite lifetime of

our condensates, as well, as the time needed to cross the transition adiabatically is inversely

proportional to the energy gap. Faster quench times means more atoms that are left in the

trap at the end of the quench, leading to the retention of correlated pairs. Previous adiabatic

experiments tried to count the number of entangled atoms using the spin variables, but

found the loss in atoms was so great that we were unable to accurately estimate this quantity

[69]. Performing experiments with finite numbers of atoms could help us perform these

and other types of metrologically interesting experiments, pushing us into new territory to

explore.
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