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SUMMARY

Ultracold neutral atoms confined in optical dipole traps have important appli-

cations in quantum computation and information processing, quantum simulators of

interacting-many-body systems and atomic frequency metrology. While optical dipole

traps are powerful tools for cold atom experiments, the energy level structures of the

trapped atoms are shifted by the trapping field, and it is important to characterize

these shifts in order to accurately manipulate and control the quantum state of the

system.

In order to measure the light shifts, we have designed a system that allows us to re-

liably trap individual 87Rb atoms. A non-destructive detection technique is employed

so that the trapped atoms can be continuously observed for over 100 seconds. Sin-

gle atom spectroscopy, trap frequency measurements, and temperature measurements

are performed on single atoms in a single focus trap and small number of atoms in

a 1D optical lattice in order to characterize the trapping environment, the perturbed

energy level structures, and the probe-induced heating.

In the second part of the thesis, we demonstrate deterministic delivery of an ar-

ray of individual atoms to an optical cavity and selective addressability of individual

atoms in a 1D optical conveyor, which serves as a potential candidate for scalable

quantum information processing. The experiment is extended to a dual lattice sys-

tem coupled to a single cavity with the capability of independent lattice control and

addressability. The mutual interactions of atoms in different lattices mediated by

a common cavity field are demonstrated. A semi-classical model in the many-atom

regime based on the Jaynes-Cummings model is developed to describe the system that

xvii



is in good qualitative agreement with the data. This work provides a foundation for

developing multi-qubit quantum information experiments with a dual lattice cavity

system.
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CHAPTER I

INTRODUCTION

The foundation of modern atomic physics was established by the dramatic develop-

ment of quantum physics in the first three decades of the twentieth century. Land-

marks in this development include the quantum nature of radiation introduced by

Planck [1], Einstein’s hypothesis of quantized radiation energy to explain the pho-

toelectric effect [2], the model introduced by Bohr explaining the quantized nature

of the hydrogen atom energy level [3, 4], the Stern-Gerlach experiment suggesting

the quantization of space [5], and the demonstration by Compton that the X-rays

scattered by the electrons have a wavelength shift that can only be explained by

the particle nature of electromagnetic wave [6]. In the 1920s and early 1930s, the

work by Heisenberg, Schrödinger, Dirac [7], Hilbert [8], and von Neumann [9] set the

foundation of the mathematical formulation of quantum mechanics that we still use

today.

Over the following decades, significant progress was made in experiments with

atomic and molecular beams [10]. In 1939, Rabi demonstrated that the nuclear

magnetic moment could be measured by the resonance absorption of an oscillating

magnetic field, and the nuclear magnetic moments of fluoride and several lithium

isotopes are measured with molecular beams [11]. In the 1950s, Ramsey’s work on

developing the separated oscillatory field method [12] led to accurate measurements

of the hyperfine splitting of the cesium ground states, which was later adopted as the

primary frequency standard and the first cesium atomic clock was made in 1955 [13].

The work by Townes, Schawlow [14], Gould, Basov, and Prokhorov in the late

1950s had led to the demonstration of the first laser by Maiman in 1960 [15]. The
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invention of laser revolutionized many fields of science and technology, not the least

of which is atomic physics. Significant progress in the field of spectroscopy was made

after the invention of tunable dye laser in 1967. One of the essential application of

laser is the cooling of atoms, which was proposed in 1975 by Hänsch, Schawlow [16],

Wineland, and Dehmelt [17]. The developments of laser cooling and trapping led to

the realization of the Bose-Einstein condensation with alkali atoms [18]. In 1997, the

Nobel prize was awarded to Chu, Phillips, and Cohen-Tannoudji for developments of

cooling and trapping atoms with laser [19–21]. In 2001, the Nobel prize was awarded

to Cornell, Ketterle, and Wieman for the achievement of Bose-Einstein condensation.

In less than two decades, laser cooling and atom trapping have become standard

techniques for atomic physicists.

1.1 Neutral Atom Trapping And Its Application To Quan-
tum Information Science

Since the first demonstration of laser cooling and trapping neutral atoms, most of the

experiments have focused on trapping large number of atoms (103 ∼ 109). However, in

parallel, there has been increasing interest and progress in trapping individual neutral

atoms. The motivation is to develop registers of neutral atom qubits for the field of

quantum information science. Cooling and trapping single atoms in a magneto-optical

trap (MOT) was first accomplished by Kimble’s group in 1994 [22]. Loading of single

atoms into a optical dipole trap was demonstrated by Meschede’s group in 2000 [23].

In 2001, Grangier’s group demonstrated the sub-Poissonian loading of single atoms in

tightly focused optical dipole traps [24]. In 2004, Meschede’s group utilized neutral

atom as quantum registers [25]. Recently, near-deterministic preparation of single

atoms in microtraps [26], and ground state cooling of single atoms in a single focus

trap [27, 28] have also been demonstrated. Large scale quantum registers can be

achieved by building arrays of single-atom traps, with independent control of the

atoms in the trap. Alternatively, registers can also be realized by trapping large
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number of distinguishable atoms with single atom addressability in optical lattices,

which were demonstrated in a 3D optical lattice with 4.9 µm lattice spacing [29], in a

quantum gas microscope with 640 nm lattice spacing [30], and in a 1D optical lattice

with a periodicity of 433 nm [31].

Entanglement between neutral atoms was demonstrated with individually trapped

neutral atoms. In 2006, Weinfurter’s group successfully created entanglement between

a single photon and a neutral single atom in free space [32]. A Rydberg blockade

between two individual atoms was observed in 2009 [33, 34], leading to the creation

of entanglement between two neutral atoms using Rydberg blockade in the following

year [35]. The recent progress in utilizing optically trapped neutral atoms as quantum

registers is promising, and it is important to improve the storage and coherence time

of the registers by characterizing the trapping environment.

Optical trapping of neutral atoms is a powerful technique for atomic physicists,

however, there is one important issue that complicates its use for precise spectroscopy

and quantum information processing: optical dipole traps induce state dependent

light shifts on the trapped atoms, typically, on the order of tens of MHz for the

excited states [36–39]. For quantum information applications that utilize hyperfine

ground states as qubits, the differential light shifts of the hyperfine clock transition is

the major source of decoherence. On the other hand, coherent manipulation and laser

cooling rely on precise control of the laser detuning from the light shifted transition

resonances. Therefore, it is important to measure the light shifts of the optically

trapped atoms. Various techniques have been used to measure the AC-Stark shift

for optically trapped neutral atoms. For instance, a destructive imaging technique

was performed with cesium atoms to measure the differential light shift of the D2

transition [37], where a strong, unidirectional, and near resonant beam is applied to

kick the atom out of the trap for different frequency detunings. In other work, the
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transmission spectra of singly trapped 87Rb atoms were obtained and showed a polar-

ization dependent light shift difference of 20 MHz between the |F = 2,mF = ±2〉 →

|F ′ = 3,mF ′ = ±3〉 transitions in a circularly polarized far-off-resonant trap (FORT)

at 980 nm [39]. Shifts of higher level states were measured using Rydberg excitation

spectrum of the 85Rb 5P → 50S transition in a FORT at 1064 nm [36]. Finally, mea-

surements of the AC-Stark shift for the 87Rb 14D5/2 Rydberg state was determined

by a photoionization spectrum [38].

One of the goals of this thesis is to characterize the trapping environments of

the optical dipole traps for single atoms by measuring the atom lifetime in the trap,

the forced oscillation of the atom in the trap (to measure the trap frequency), the

temperature of the atom, and the AC-Stark shifts of the D2 transition manifold.

Along the way, a new detection technique is developed, which enables us to observe

one and the same atom for up to hundreds of seconds. In the following chapters, the

theoretical background of optical dipole trapping and the results of the experiments

will be presented.

The single atom experiment in our group was established by my predecessor,

Dr. Michael Gibbons, with the initial purpose of studying atom heating mechanisms

and achieving long atom lifetimes in a 1D optical lattice [40]. The study was later

focused on demonstrating non-destructive measurements of the hyperfine states of

single atoms, with the individual atoms being initialized and detected over 100 times

before getting lost from the trap. Hyperfine state measurements of single atoms was

demonstrated with 95% accuracy and 1% loss rate [41]. Although these experiments

demonstrated the ability to measure the hyperfine state of the single atoms and reuse

them many times to increase the repetition rate, much work remains before it can be

implemented for large-scale quantum information architecture.
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1.2 Cavity Quantum Electrodynamics

The interaction between a single atom and a single mode of electromagnetic field

represents a fundamental form of matter-light interaction in nature, and has long been

a major research topic in the fields of atomic physics and quantum optics [42–44].

The rate of interaction between an atom and a photon can be enhanced by making

an optical resonator with highly reflective mirrors, creating a strongly interacting

atom-field system. In 1946, Edward Purcell proposed that the spontaneous emission

rate of the atoms can be enhanced in a cavity resonant with the respective transition

[45]. The presence of the atoms in the cavity changes the energy spectrum of the

system such that the atoms and the cavity light field can not be considered separately

[46]. Spontaneous emission of photons can be understood as the stimulated emission

induced by the vacuum fluctuation of the electromagnetic field. In the case where

the coupling between the atom and the cavity light field is stronger than the coupling

between the atom and the environment, a photon emitted into the cavity can re-excite

the atom many times before escaping from the system, and the system is considered

to be in the strong coupling regime.

The early work in cavity QED were performed using microwave cavities with

Rydberg atoms [47–50]. It was later extended to the optical domain where the vacuum

Rabi splitting was observed in a cavity system with twenty atoms by Raizen et al. in

1989 [51]. In 1992, this phenomenon was also observed in a microwave cavity with

as few as three atoms by Haroche’s group [52]. In the same year, the observation

of vacuum Rabi splitting for a single cesium atom was reported by Thompson et al.

[53].

A single-atom cavity system in the strong coupling regime serves as a promising

candidate for quantum information science due to higher entanglement probability

compared to atoms trapped in free space. Deterministic delivery of single atoms

to the cavity has been demonstrated [54–56], and deterministic generation of single
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photons by single atoms in the cavity was demonstrated by Kuhn et al. [57]. In

2007, Wilk et al. [58] showed that the entanglement between a single photon and a

single atom in the cavity could be created and that the state of the atom could be

mapped onto another photon thus creating a entangled photon pair. In 2011, remote

entanglement between a single atom in the cavity and a Bose-Einstein condensate was

created by Lettner et al. in a similar fashion [59]. Cavity systems have also enabled

new studies in nonlinear physics such as the dynamical fluctuations and bifurcations

[60], nonlinear optics [61], and detection of atomic motion [62, 63].

Cavity QED can also be realized in solid-state systems such as superconducting

circuits, semiconductors, and photonic crystals. In 2004, strong coupling cavity QED

with a superconducting qubit and a single photon was observed in a superconduct-

ing circuit (so-called “circuit-QED”) [64]. Vacuum Rabi splitting was also shown

with a single quantum dot coupled to a cavity in the photonic crystal [65] and to a

semiconductor microcavity [66].

The cavity QED experiments in this lab were first established by Dr. Jacob Sauer

in 2002. The interaction of the cavity with the optically transported atoms was

demonstrated in 2003 [67]. Over the following few years, several major improvements

have been made to the cavity and laser systems. In 2007, the deterministic delivery

of single atoms to the cavity was reported by Dr. Kevin Fortier and Dr. Soo Kim

[55]. I joined this project in January 2008, and the experiment was expanded to dual

optical lattices coupled to a single cavity.

In this thesis, we demonstrate deterministic delivery of an array of individual

87Rb atoms to an optical cavity and selective addressability of individual atoms in a

1D optical conveyor; which is followed by coupling neutral atoms in dual quantum

registers to a high-finesse optical cavity. In the latter case, an initial attempt is made

to identify individual atoms in two independently controlled optical lattices and bring

a pair of atoms back for coherent interaction through the cavity mode. The motivation
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for developing a dual lattice cavity system with single atom selective addressability is

to provide an alternative route for scalable quantum information processing designs.

As an intermediate step to achieve this goal, the dynamical interaction between atoms

in these two independently controlled conveyor belts was observed and compared to

a semi-classical Hamiltonian in the multi-atom regime.

1.3 Thesis Organization

This thesis covers two major topics. Chapter 2 focuses on the theory background of

optical dipole trapping and its induced light shifts on 87Rb atoms. Chapter 3 begins

with the fundamentals of the cavity system, followed by introducing the Jaynes-

Cummings Hamiltonian of a single-atom cavity QED system. Later in the same

chapter, different methods of numerically simulating the multi-atom cavity system

are compared for their respective efficiencies and accuracies. In Chapter 4, the con-

struction of experiment chamber, detection system, laser setup, and laser detuning

schemes are discussed. In Chapter 5, the technique of gated probing/cooling of indi-

vidual atoms is introduced which enables long storage time and high repetition rate.

Chapter 6 details the experimental results of the deterministic delivery, selective ad-

dressability, and the cavity field dynamics of the dual lattice cavity system. This

thesis concludes providing future outlook for both experiments in Chapter 7. Finally,

Appendix A includes a possible way to improve the atom transfer technique for the

cavity QED experiment.
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CHAPTER II

OPTICAL DIPOLE TRAP AND AC-STARK SHIFTS

Neutral atom cooling and trapping have become important techniques in modern

atomic physics and quantum optics laboratories since the landmark demonstrations

of optical dipole traps [68] and magneto-optical traps (MOTs) [69] almost 3 decades

ago. The particular focus of this work is laser-cooled individual neutral atoms confined

in optical dipole traps [23], which have important applications in quantum computa-

tion and information processing [35, 70–72], and in quantum simulators of many-body

systems [73]. Optical dipole traps can be used to hold cold atoms with lifetimes ex-

ceeding 100 seconds [40], limited only by the background pressure and thus provide a

promising alternative to trapped ion based scalable quantum information processing

designs. However, one important issue with optically trapped atoms is that the opti-

cal trapping fields intrinsically shift the energy levels of the atoms, thereby altering

the very energy levels in which the information is stored. Different light shifts are im-

portant for different applications. The average light shift of the ground states defines

the trapping potential. Together with the average light shift of the excited states,

they shift the optical transition energies which are important for laser cooling and

coherent state manipulation of the atoms. On the other hand, the differential light

shifts of the hyperfine clock transition is a major source of decoherence for qubits that

utilize these states [74]. The differential light shifts within the excited state hyperfine

manifold are several orders of magnitude larger than the those of the ground state

and are essential for coherent state control within the hyperfine manifold. Spatial

varying trapping field intensity causes differential light shifts for thermal atoms and

are important for frequency metrology with optically trapped atoms.
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For typical far-off resonant traps with the ∼1 mK depths, the state dependent

excited state differential light shifts induced by the trap laser beam can easily exceed

tens of MHz [36–39], which is larger than the typical excited state transition width.

For certain transitions, it is possible to find trap laser wavelengths (so-called “magic

wavelengths”) that shift the ground and the excited states by the same amount so that

the transition experiences no light shift [75, 76]. On the other hand, the differential

light shifts within the ground state manifold are much smaller compared to those of

the excited states, typically on the order of 100 kHz in a 1 mK trap [39]. For photon

polarization and spin-wave qubits that employ themF = 0↔mF ′ = 0 clock transition

between the hyperfine ground states, the differential light shifts cause dephasing and

hence shorten the storage time. Cancellation of the differential light shifts of the

clock transition with the quadratic Zeeman shifts has been proposed for circularly

and elliptically polarized optical traps [74, 77, 78]. These techniques are employed

in the experiments where extreme precision and coherence between states are needed

such as frequency metrology [79–82] and quantum information processing [83, 84].

In this chapter, we present the relevant theoretical background of neutral atom

dipole traps and the determination of induced AC-Stark shifts for the relevant energy

states. We will later discuss temperature measurements of the individually trapped

atoms. The temperature measurements are used to quantify the thermal motion

of the atoms in the optical dipole traps, which in turn alter the light shifts and

other properties of the atomic spectrum. In the last section, discussion on linewidth

broadening due to the thermal motion of the atoms will be introduced.

2.1 Optical Dipole Trap

In this section, we present a classical model of an optical dipole trap for a polarizable

object [85]. The model is applicable to any neutral, polarizable object placed in the

light field, including atoms [68], molecules and mesoscopic objects such as viruses,
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bacteria [86] and dielectric glass beads.

The optical dipole force acting on a polarizable object derives from the interaction

between the light field gradient and the induced electric dipole moment. The time

averaged potential energy of the polarizable object in the external field is given by

U = −1

2
〈~p · ~E〉 = −Re(α)

∣∣∣ ~E∣∣∣2 = − 1

2ε0c
Re(α)I, (2.1)

where ~p = α~E is the dipole moment of the polarized object, α is the frequency

dependent complex polarizability, I is the intensity of the light, and the angular

brackets denote the time average over the oscillating light field. The dipole force

acting on the object is,

F (~r) = −∇U =
1

2ε0c
Re(α)∇I(~r). (2.2)

For a neutral atom, it is possible to use the Lorentz’s model of a classical oscillator

to estimate the polarizability of the neutral atom. This model considers the electron

bound to the atom with a spring with spring constant kspring such that the natural

oscillation frequency ω0 of the system is,

ω0 =

√
kspring
me

, (2.3)

where me is the mass of the electron. For an atom in the external electric field

oscillating at a frequency ω0, the equation of motion of the electron can be written

as,

ẍ+ Γωẋ+ ω0
2x = −eE

me

e−iωt. (2.4)

The damping force in Eq. 2.4 is given by Larmor’s formula for an accelerating charged

particle [87, 88],

Γω =
e2ω2

6πε0mec3
(2.5)
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By solving the equation of motion and using ~p = α~E, the frequency dependent

polarizability can be obtained,

α(ω) =
e2

me

1

ω2
0 − ω2 − iωΓω

, (2.6)

Defining the classical on-resonant damping rate Γ ≡ (ω0

ω
)2Γω, Eq. 2.6 can be expressed

as,

α(ω) = 6πε0c
3

Γ
ω2
0

ω2
0 − ω2 − iω3

ω2
0
Γ
. (2.7)

Substituting into Eq. 2.1, the dipole potential takes the following form

U(~r) = −3πc2

2ω0
3

( Γ

ω0 − ω
− Γ

ω0 + ω

)
I(~r). (2.8)

For laser frequencies red-detuned with respect to the atomic transition (ω < ω0),

the dipole potential is less than zero; hence, the atoms will be attracted towards the

intensity maximum of the beam. For laser frequencies blue-detuned to the atomic

transition (ω > ω0), the dipole potential is greater than zero; thus, the atoms are

pushed away from the beam. Although it is possible to trap atoms with either de-

tuning, blue-detuned traps generally require more complicated experimental setups

[89].

2.2 Single Focus Trap

The simplest way to construct an optical dipole trap using a red-detuned laser is to

focus a collimated Gaussian beam. The spatial intensity profile of a Gaussian beam

with a minimum waist w0 located at z=0 is

I(r, z) =
2P

πw(z)2
exp
(
− 2r2

w(z)2

)
, (2.9)

w(z) = w0

√
1 +

( λ

πw2
0

)2

z2, (2.10)
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where P is the power of the trap laser and w(z) is the beam waist as a function of

the propagation direction. Substituting into Eq. 2.8, we obtain the trap depth of a

single focus trap,

U(r, z) = U0
w2

0

w(z)2
exp
(
− 2r2

w(z)2

)
, (2.11)

U0 = −3Pc2

w2
0ω

3
0

( Γ

ω0 − ω
− Γ

ω0 + ω

)
. (2.12)

2.3 1D Optical Lattice

A 1D optical lattice can be constructed by overlapping two counter-propagating

beams with the same polarization. Consider the total electric field of two plane waves

with angular frequency ω1 = ω and ω2 = ω + δ traveling in the opposite direction,

E(z, t) = E1(z, t) + E2(z, t)

= E0ε̂e
i(kz−ωt) + E0ε̂e

i(−kz−ωt−δt)

= 2E0ε̂e
−iωtcos

(
kz − δt

2

)
, (2.13)

where k = 2π/λ is the wave number, ε̂ is the unit polarization vector, and E0 is the

electric field amplitude. The intensity of these two overlapping plane waves carries a

time-dependent factor, cos2(kz − δt
2

). For δ = 0, the result is a standing wave with

a cos2(kz) spatial intensity variation. For δ 6= 0, a walking wave is created with

translational velocity v = δλ/4π. Note that the factor of 2 in the above equation

corresponds to a factor of 4 in the intensity and hence the 1D lattice trap made with

a retro-reflected beam is 4× deeper than the corresponding single focus trap.

In the experiments described in this thesis, a 1D optical lattice is created by

overlapping two counter-propagating and focused Gaussian beams with the foci at

the same position as shown in Figure 1. Similar to Eq. 2.9, the intensity profile of

this 1D optical lattice can be expressed as,

I(r, z) =
8P

πw(z)2
cos2

(
kz − δt

2

)
exp
(
− 2r2

w(z)2

)
. (2.14)
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Figure 1: Illustrative diagram of a 1D optical lattice created by two counter-
propagating and focused Gaussian beams.

The trapping potential is given by,

U(r, z) = 4U0
w2

0

w(z)2
cos2

(
kz − δt

2

)
exp
(
− 2r2

w(z)2

)
, (2.15)

where U0 is defined in Eq. 2.12.

2.4 Time Dependent Perturbation Theory Approach

The semi-classical theory discussed in Section 2.1 works well for determining the

trapping potential (i.e., the ground state light shift) in an optical dipole trap, within

the two-level atom approximation. This simple model neglects the dipole interactions

between trapping field and the multi-level structures of the atom. Therefore, it fails

to describe the differential light shifts of the excited states and ground states. In

order to calculate the energy shifts for individual sublevels within the hyperfine state

manifold, the multi-level structure of the atom and the dipole moments of various

transitions have to be considered. Since the energy shifts are small compared to the

energy differences between levels, we can use perturbation theory.

Conventional spectroscopic notation labeling scheme for the atomic eigenstates

will be used throughout the thesis:

n2S+1LJ , (2.16)

where n is the principal quantum number, S is the electron spin, L is the orbital

angular momentum, and J is the total angular momentum not including nuclear
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spin. Including nuclear spin, the total angular momentum of the atom is given by

F = J + In, (2.17)

where In is the nuclear spin operator.

Dirac notation, |F,mF 〉, is used to label the hyperfine states and the hyperfine

sublevels of the atom, where F is the total angular momentum of the atom and mF

is the projection of F on the quantization axis.

2.4.1 System Formulation

The Hamiltonian H for an atom interacting with an oscillating electromagnetic field

can be written as,

H = H0 + V (t), (2.18)

V (t) = V+(~r)eiωt + V−(~r)e−iωt. (2.19)

where H0 is the time independent Hamiltonian of the atom and V (t) represents the

interaction between the atom and the oscillating electromagnetic wave in the dipole

approximation. The unperturbed Hamiltonian has energy eigenvalues En and energy

eigenstates |n〉 defined as,

H0 |n〉 = En |n〉 . (2.20)

An arbitrary state |α〉 can be expressed as,

|α〉 =
∑
n

cn |n〉 . (2.21)

In the interaction picture, the state ket |α(t)〉I and the operator for the observable

VI are defined as

|α(t)〉I = exp
(iH0t

~

)
|α(t)〉S , (2.22)
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VI = exp
(iH0t

~

)
V exp

(−iH0t

~

)
. (2.23)

The time evolution of state |α(t)〉I is characterized by the following equation,

i~
∂

∂t
|α(t)〉I = VI |α(t)〉I , (2.24)

which can be derived by taking the time derivative of Eq. 2.22.

In order to obtain the differential equation for cn(t), we multiply both sides of Eq.

2.24 by 〈n|,

i~
∂

∂t
〈n|α(t)〉I =

∑
m

〈n|VI |m〉 〈m|α(t)〉I . (2.25)

Substituting

〈n| exp
(iH0t

~

)
V (t)exp

(−iH0t

~

)
|m〉 = 〈n|V (t) |m〉 exp

(i(En − Em)t

~

)
and

cn(t) = 〈n|α(t)〉I

into Eq. 2.25, we get

i~
dcn(t)

dt
=

∑
m

〈n|V (t) |m〉 exp
(i(En − Em)t

~

)
cm(t),

=
∑
m

〈n|V (t) |m〉 eiωnmtcm(t), (2.26)

with

ωnm ≡
En − Em

~
= −ωmn (2.27)

By putting Eq. 2.26 into integral form, we obtain the iterative solution in the

following form,

cn(t) = c(0)
n + c(1

n + c(2)
n + · · · . (2.28)

Therefore, the state of the atom in the external perturbation can be evaluated to

designated accuracy by obtaining the corresponding iterative solution for cn(t).
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2.4.2 Floquet Formalism

To derive the light shifted energies for different atomic states, we apply the Floquet

formalism [90–93] and calculate the first non-zero correction term to the energy. The

resulting second order light shift takes the following form,

∆n =
∑
l

{ |〈n|V+(~r) |l〉|2

~(ωn − ωl + ω)
+
|〈n|V−(~r) |l〉|2

~(ωn − ωl − ω)

}
. (2.29)

The form of V±(~r) depends on the unit vector of the field polarization and the electric

dipole moment operator µ,

V+(~r) = −E0

2
(ε̂∗·µ), V−(~r) = −E0

2
(ε̂·µ), (2.30)

where µ is a Hermitian operator and the transition dipole moment for |n〉 → |l〉 is

given by 〈n|µ |l〉. E0 is the amplitude of the electric field, which is related to the

time averaged Poynting vector 〈S〉 by

〈S〉 =
1

2µ0c
E2

0 k̂, (2.31)

and ε̂ is the complex unit polarization vector which satisfies

ε̂∗ · ε̂ = 1,

ε̂ · k̂ = 1,

ε̂∗ × ε̂ = iPk̂. (2.32)

k̂ is the unit wave vector and P is the degree of circular polarization. P = 0, 1, and

−1 correspond to linearly, right circularly, and left circularly polarized light, respec-

tively. The discussion of the above light shift calculation can therefore be applied to

electromagnetic wave with arbitrary polarization and propagation direction. In the

following section, we will begin with the special case where the trap beam is linearly

polarized, one of most common optical trap configurations used in the lab.
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Figure 2: Grotrian diagram of the major dipole-allowed transitions to the 5S1/2,
|F = 2,mF 〉 and 5P3/2, |F ′ = 3,mF ′〉 states. The excited states lifetimes are labeled
on top of the states and are in the unit of nanoseconds. The wavelengths for each tran-
sition are in the unit of nanometers. The vertical axis is the energy of the electronic
state and is not drawn to scale.
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2.5 Linearly Polarized Optical Dipole Trap

In this section, we focus on the case of a linearly polarized dipole trap laser, polarized

along the direction of the quantization axis. We will calculate the trapping potential

as well as the energy shifts of the 5P3/2, |F ′ = 3,mF ′〉 excited states. The interaction

potential V±(~r) in this case can be written,

V+(~r) = V−(~r) = −E0

2
er0, (2.33)

and Eq. 2.29 can be expressed in terms of the relevant quantum number and the

specified geometry as follows

∆F,mF
=
E2

0

4~
∑
F ′,mF ′

{ |〈F,mF | er0 |F ′,mF ′〉|2

ωF − ωF ′ + ω
+
|〈F,mF | er0 |F ′,mF ′〉|2

ωF − ωF ′ − ω

}
. (2.34)

Note that the quantum numbers n, J , and L are omitted in the above equation for

simplicity. The summation is carried over all the dipole allowed transitions from

the unprimed state. The quantization axis of the system is chosen to be the z-axis,

and r0,±1 are the components of the irreducible rank-one tensor in the spherical basis:

r0 = z, r±1 = ∓(x±iy)/
√

2. The matrix elements 〈F,mF | erq |F ′,mF ′〉 can be written

as the product of the reduced matrix element, the Clebsch-Gordan coefficient, and

the Wigner 6-j symbol by using the Wigner-Eckart theorem [94, 95]

〈F,mF | erq |F ′,mF ′〉 =〈F‖e~r‖F ′〉〈F,mF |F ′, 1,mF ′ , q〉

=〈F‖e~r‖F ′〉(−1)F
′−1+mF

√
2F + 1

 F ′ 1 F

mF ′ q −mF


3j

=〈n, L, J‖e~r‖n′, L′, J ′〉(−1)2F ′+J+In+mF√
(2F + 1)(2F ′ + 1)(2J + 1) F ′ 1 F

mF ′ q −mF


3j

 J J ′ 1

F ′ F In


6j

. (2.35)
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The reduced matrix element 〈n, L, J‖e~r‖n′, L′, J ′〉 is the transition dipole moment

(for simplicity, 〈J‖e~r‖J ′〉 will be used instead), which can be calculated given the

lifetime of the particular transition τJ ′J [96]

1

τJ ′J
= AJ ′J =

ω3
FF ′

3πε0~c3

2J + 1

2J ′ + 1
|〈J‖e~r‖J ′〉|2 . (2.36)

AJ ′J is the transition rate, also known as the Einstein A coefficient. The total lifetime

of the excited state τJ ′ is given by

τJ ′ = (
∑
J

1/τJ ′J)−1 = (
∑
J ′

AJ ′J)−1. (2.37)

The summation is carried over all decay channels to the lower lying states. Eq. 2.36

has another form which is commonly used in literature, [97]

AJ ′J(s−1) =
2.02613× 1018

λ3

2J + 1

2J ′ + 1
|〈J‖e~r‖J ′〉|2 . (2.38)

Eq. 2.36 is in SI units whereas in Eq. 2.38 λ is in Å and 〈J‖e~r‖J ′〉 is in atomic units.

The reduced matrix elements have the following normalization convention [95],

∑
mJ′

|〈J,mJ | e~r |J ′,mJ ′〉|2 =
∑
mJ′ ,q

|〈J,mJ | erq |J ′,mJ ′〉|2 = |〈J‖e~r‖J ′〉|2 (2.39)

Note that (2J + 1) |〈J‖e~r‖J ′〉|2 = (2J ′ + 1) |〈J ′‖e~r‖J〉|2, but the equalities in Eq.

2.36 and Eq. 2.38 do not hold if we switch J and J ′ for the case that J 6= J ′. The

only way to get around this is to enforce that J ′ be the orbital angular momentum

of the excited state.

Together with Eq. 2.35 and 2.36, Eq. 2.34 can be rewritten in the following form,

∆F,mF
=

3πIc2

2

∑
F ′,MF ′

AJ ′J

ω3
FF ′

(
1

ωFF ′ + ω
− 1

ωFF ′ − ω
)

(2F + 1)(2F ′ + 1)(2J ′ + 1) F ′ 1 F

mF ′ 0 −mF


2

3j

 J J ′ 1

F ′ F In


2

6j

, (2.40)
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Figure 3: AC-Stark shifts of the 5S1/2, |F = 2,mF = 0〉 (blue) and the 5P3/2,
|F ′ = 3,mF ′ = 0〉 (purple) states. The dashed line represents the trap laser wave-
length used in the experiment.

where I is the intensity of the dipole trap laser. The (−1)2(2F ′+J+In+mF ) drops out

due to the fact that 2 × (2F ′ + J + In + mF ) is always an even number. Again, the

summation is carried over all dipole allowed transitions from the |F,mF 〉 state.

Figure 2 is the Grotrian diagram showing the major dipole-allowed transitions

for calculating the light shifts of the 5S1/2, |F = 2,mF 〉 and the 5P3/2, |F ′ = 3,mF ′〉

states [97–105]. Table 1 is a list of transitions with respective wavelength and the

electric dipole moments used for our calculation.

The 5S1/2, |F = 2,mF = 0〉 and the 5P3/2, |F ′ = 3,mF ′ = 0〉 states shifts in mK

units as a function of trap laser wavelength are plotted in Figure 3. The dipole

trap laser used in the experiment has a wavelength at 1064 nm, which is labeled with

dashed line in the figure. At this wavelength, the 5S1/2, |F = 2,mF = 0〉 ground state

is lowered and defines the trapping potential whereas the 5P3/2, |F ′ = 3,mF ′ = 0〉

excited state is shifted upward. For a trapping potential on the order of mK, the

5S1/2, |F = 2,mF 〉 → 5P3/2, |F ′ = 3,mF ′〉 transition is blue-detuned with respect to
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Table 1: Transitions used for light shifts calculation, the corresponding wavelength
in vacuum λ and the electric dipole moment d=〈n, L, J‖e~r‖n′, L′, J ′〉.

Transition λ (Å)a d (ea0)

5S1/2 − 5P1/2 7949.8 2.99a

5S1/2 − 5P3/2 7802.4 4.23a

5S1/2 − 6P1/2 4216.7 0.24a

5S1/2 − 6P3/2 4203.0 0.36a

5S1/2 − 7P1/2 3592.6 0.08a

5S1/2 − 7P3/2 7588.1 0.13a

5P3/2 − 6S1/2 13668.8 3.02b

5P3/2 − 7S1/2 7410.2 0.67b

5P3/2 − 8S1/2 6161.3 0.35b

5P3/2 − 4D3/2 15292.6 1.81b

5P3/2 − 4D5/2 15293.7 5.44b

5P3/2 − 5D3/2 7761.6 0.33b

5P3/2 − 5D5/2 7759.8 0.99b

5P3/2 − 6D3/2 6301.0 0.28a

5P3/2 − 6D5/2 6300.1 0.83a

a Ref. [76]
b Ref. [98]

the bare atomic resonance by tens of MHz. Note that 1 mK is equivalent to 20.8 MHz

(2.837×1010Hz/K).

Figure 4 shows the AC-Stark shifts for each Zeeman levels of the 5S1/2, |F = 2,mF 〉

and the 5P3/2, |F ′ = 3,mF ′〉 states for typical trapping conditions in our experiment.

The ground states are lowered nearly homogeneously (differences within 100 kHz),

indicating that atoms in different mF ground states experience the same trapping

potential. On the other hand, the excited states shifts are state dependent to first

order, which breaks the degeneracy of the levels. In this case, the excited states energy

levels are symmetric with respect to the mF ′ = 0 state and the energy difference is

quadratic in mF ′ . A more detailed and generalized discussion on the mF ′ dependence

light shifts in terms of scalar, vector, and tensor polarizabilities will be introduced in

the later section.
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Figure 4: AC-Stark shifts for the 5S1/2, |F = 2,mF 〉 and the 5P3/2, |F ′ = 3,mF ′〉
states in optical dipole trap linearly polarized along the quantization axis. The in-
tensity of the dipole trap laser is 5.7× 109 W/m2. The resulting ground states shifts
are −18 MHz which correspond to a trapping potential of 0.88 mK.

2.6 Generalized Polarizability Approach

In this section, a generalized theory of the second order light shift with arbitrary

trap laser propagation direction and polarization will be introduced. This approach

is particularly useful in identifying the “magic wavelength” and other trap beam

conditions that create identical light shifts for the ground and excited state [75, 76],

which has great importance for the atomic clocks based on optical transitions with

optically trapped atoms [79].

To begin with, let us rewrite the second order light shift in Eq. 2.29 with the

explicit form of V±(~r) as shown in Eq. 2.30,

∆n =
E2

0

4

∑
l

{ |〈n| ε̂∗·µ |l〉|2
En − El + ~ω

+
|〈n| ε̂·µ |l〉|2

En − El − ~ω
}

=
E2

0

4

∑
l

〈n|
{(ε̂·µ)† |l〉 〈l| (ε̂·µ)

En − El + ~ω
+

(ε̂·µ) |l〉 〈l| (ε̂·µ)†

En − El − ~ω
}
|n〉 (2.41)
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By defining the resolvent operator R̂En with Ĥ0 being the Hamiltonian of the unper-

turbed atom [92, 106]

R̂En(ω) ≡
∑
l

|l〉 〈l|
En − El + ~ω

=
∑
l

1

En − Ĥ0 + ~ω
, (2.42)

the second order light shift can be written as,

∆n =
E2

0

4
〈n|
{

(ε̂·µ)†R̂En(ω)(ε̂·µ) + (ε̂·µ)R̂En(−ω)(ε̂·µ)†
}
|n〉

≡ E2
0

4
〈n| Ô(ω) |n〉 . (2.43)

Note that ε̂ and µ are irreducible rank-one spherical tensors, and they commute

with each other as well as with the scalar operator R̂En . Hence the operator Ô

can be reordered and written as the sum of irreducible tensor products of rank-κ

[92, 107, 108],

Ô =
2∑

κ=0

{
(−1)κ(ε̂∗ ⊗ ε̂)(κ) · (µ⊗REn(ω)µ)(κ)

+ (ε̂∗ ⊗ ε̂)(κ) · (µ⊗REn(−ω)µ)(κ)
}

=
2∑

κ=0

∑
q

(−1)q(ε̂∗ ⊗ ε̂)κ−q

{
(−1)κ(µ⊗REn(ω)µ)κq + (µ⊗REn(−ω)µ)κq

}
, (2.44)

where (· · · )(κ) denotes spherical tensor of rank-κ and κ =0, 1, 2. Therefore, the light

shift ∆n can also be decomposed into the scalar (κ = 0), vector (κ = 1), and tensor

(κ = 2) light shifts. The second equality holds by utilizing the following generalized

tensor scalar product identity,

T (κ) · U (κ) =
∑
q

(−1)qT κq U
κ
−q. (2.45)

By explicitly writing down the relevant quantum numbers of the atomic state |n〉
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Eq. 2.43 can be expressed as,

∆F,mF
=
E2

0

4
〈F,mF | Ô(ω) |F,mF 〉

=
E2

0

4

2∑
κ=0

∑
q

(−1)q(ε̂∗ ⊗ ε̂)κ−q

〈F,mF |
{

(−1)κ(µ⊗REn(ω)µ)κq + (µ⊗REn(−ω)µ)κq
}
|F,mF 〉 . (2.46)

The second equality holds because (ε̂∗ ⊗ ε̂)κq is the spherical tensor operator of the

trap laser and it does not act on the atomic states. By applying the Wigner-Eckart

theorem to the matrix element 〈F,mF | Ô(ω) |F,mF 〉 in Eq. 2.46, we get

〈F,mF | Ô(ω) |F,mF 〉

=
2∑

κ=0

∑
q

(−1)κ+q(ε̂∗ ⊗ ε̂)κ−q(−1)F−mF
√

2F + 1

 F κ F

−mF q mF


3j

〈F‖
{

(µ⊗REn(ω)µ)(κ) + (−1)κ(µ⊗REn(−ω)µ)(κ)
}
‖F 〉. (2.47)

Note that the Wigner 3-j symbols in Eq. 2.47 are nonzero only if q = 0 by the selection

rule −mF + q +mF = 0. The reduced polarizability is defined in the following way,

α
(κ)
F (ω) ≡

√
2F + 1〈F‖

{
(µ⊗REn(ω)µ)(κ)

+ (−1)κ(µ⊗REn(−ω)µ)(κ)
}
‖F 〉

=
√

2κ+ 1
√

2F + 1(−1)(2F+κ)

∑
F ′

F κ F

1 F ′ 1


6j

〈F‖µ‖F ′〉〈F ′‖µ‖F 〉

{ 1

EF − EF ′ + ~ω
+ (−1)κ

1

EF − EF ′ − ~ω
}
. (2.48)

The summation is carried over all dipole allowed transition from the |F,mF 〉 state.

The light shift can now be expressed in terms of the reduced polarizability,

∆F,mF
=
E2

0

4

2∑
κ=0

(−1)κ(ε̂∗ ⊗ ε̂)κ0(−1)F−mF

 F κ F

−mF 0 mF


3j

α
(κ)
F (ω). (2.49)
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The rank-κ tensor products of the unit polarization vector can also be expressed

explicitly [92, 107, 108],

(ε̂∗ ⊗ ε̂)0
0 = − 1√

3
(ε̂∗ · ε̂) = − 1√

3
,

(ε̂∗ ⊗ ε̂)1
0 =

i√
2

(ε̂∗ × ε̂)0 =
i√
2

(ε̂∗ × ε̂) · r̂0 = − 1√
2
Pk̂ · r̂0,

(ε̂∗ ⊗ ε̂)2
0 =

1√
6
{3(ε̂∗ · r̂0)(ε̂ · r̂0)− (ε̂∗ · ε̂)} =

1√
6
{3|ε̂ · r̂0|2 − 1}. (2.50)

We have used the identities of the unit polarization vector as shown in Eq. 2.32.

In the literature, the scalar αsF (ω), vector αvF (ω), and tensor αtF (ω) polarizabilities

are used instead of the reduced polarizabilities [76, 106, 109]. They are related to the

reduced polarizabilites by

αsF (ω) =
1√

3(2F + 1)
α

(0)
F (ω),

αvF (ω) = − 2F√
(F + 1)(2F + 1)

α
(1)
F (ω),

αtF (ω) = − 2F (2F − 1)√
3(2F + 3)(F + 1)(2F + 1)

α
(2)
F (ω) (2.51)

By evaluating and using the explicit form of the Wigner-3j symbols in Eq. 2.49

[110, 111], the second order light shift can be expressed in terms of αsF (ω), αvF (ω),

and αtF (ω)

∆F,mF
=− E2

0

4

{
αsF (ω) + αvF (ω)

mF

2F
Pk̂ · r̂0

+ αtF (ω)
3|ε̂ · r̂0|2 − 1

2

3m2
F − F (F + 1)

F (2F − 1)

}
. (2.52)

In the laboratory, the quantization axis is typically defined by a bias magnetic

field along r̂0. For the case considered in Section 2.5, the linearly polarized trap

laser beam propagates perpendicular to the quantization axis, making the mF linear

dependent term (the term proportional to αvF (ω)) vanishes. The resulting light shifts

for the 5P3/2 states are quadratic in mF . Note that this remaining dependence on the
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Figure 5: The quantization axis, trap laser polarization, and its propagation direction
used in Section 2.5. In order to eliminate the state dependent excited states light
shifts, rotate the trap laser polarization by 54.7◦ as shown by the gray arrows.

mF state can be eliminated by satisfying :

3|ε̂ · r̂0|2 − 1 = 0.

Therefore, we can eliminate the quadratic light shifts of the excited states by rotating

the trap laser polarization 54.7◦ as shown in Figure 5 in either direction.

2.7 Temperature Measurements of Single Atoms in The
Dipole Traps

Fluorescent detection of optically trapped individual atoms usually heats up the atoms

and is responsible for loss of atoms from the trap. Therefore, it is important to mea-

sure the temperature of the atoms and quantify the heating induced by the detection

process. The standard technique for measuring the temperature of ultracold neu-

tral atoms is to measure the expansion rate of a cloud of atoms released from the

trap. This so-called time-of-flight technique compares the spatial density profile of

the atomic cloud to that obtained from a classical Maxwell-Boltzmann distribution

of the atom velocity (at least for thermal atoms well above quantum degeneracy).

This method works well on samples with large numbers of atoms, where it is easy to

obtain the velocity distribution of the cloud from a single image. For small clouds
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and single atoms, the same technique can work in principle, but in practice it is often

impractical to achieve enough signal-to-noise in the images to obtain the distribution.

In 2008, Tuchendler et al. demonstrated that the energy distribution of single

atoms in optical dipole traps could be successfully measured using the drop and re-

capture technique [112] originally used in the first optical molasses experiments [68].

In this technique, the trap is quickly pulsed off for a short amount of time, and the

fraction of atoms that are recaptured is measured as a function of the time that the

trap was off. Upon turning the trap back on, the atom will be recaptured if the sum

of the kinetic energy and the potential energy at the final position due to the optical

dipole trap is less than zero. For a given trap off time, atoms at higher temperature

will be less likely to be recaptured. On the other hand, the recapture probability

will fall monotonically with increasing trap off time for atoms at a given temper-

ature. In order to extract a temperature of the atoms, it is necessary to compare

the measurements to numerical simulations. Below, we discuss the simulations we

performed.

In the simulations, the initial kinetic energy of the atom at the bottom of the

trap is randomly generated according to the Maxwell-Boltzmann distribution of a

certain temperature T . A random unit vector is assigned to each atom to determine

the direction of motion after the trap is switched off for an amount of time t. The

motion of the atom is determined by numerical integration of the classical equations

using the initial velocity v = (vx, vy, vz) and the small effects of gravity. When the

trap is turned back on, the atom will be recaptured if the total energy is less than

zero and the counter of recapture events will be increased by one. The above process

is repeated 105 times at each trap off time and the accumulated recapture rate is

plotted with 1 µs increments of the trap off time. Finally, the experimental data are

fitted to the simulation curves with 5 µK increments.

Figure 6 shows the results of the Monte-Carlo simulation for single atoms in a
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Figure 6: (a) A plot for atom recapture rate vs trap off time in a 1 mK single focus
trap with various temperature. (b) Atom recapture rate vs trap off time with 40 µK
temperature in various trapping potential.
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1064 nm single focus trap with 2.5 µm minimum waist. The simulation is done with

Mathematica, and the time it takes is linearly dependent to the number of total

trials. For the results presented in this figure, there are 105 trials at each of the

101 trap off times and it takes 500 seconds to complete each curve. The fluctuation

of the recapture rates can be reduced by increasing the number of trials at each

point, which also increases the total simulation time. It is seen from the figure that

the temperature of the atom has a greater effect on recapture probability than the

trapping potential. In the experiment, we can determine the trap depth to within

10% by the trap frequency measurements; therefore, the atom temperature obtained

by this method should be accurate within ±5 µK.

Although the above discussion is based on single atoms in single focus traps, this

method works for any number of atoms in any type of trap. The particular advantage

for our application is that it is easier to measure one atom in a trap than to measure

the location of one free-falling atom. The disadvantage is that this method is indirect

and relies on comparison to the results of simulations. We will also apply this method

to low numbers of atoms in 1D optical lattice. Instead of counting the single atom

successful recapture events, fluorescent images of the atoms have to be taken before

and after switching off the trap to determine the atom recapture rate. Figure 7 shows

the results of the simulation for atoms in a 1064 nm 1D optical lattice with a 13 µm

minimum waist. The insets show the recapture rates with trap off time less than 20

µs, showing fast decays in the first 5 µs. This is caused by the high asymmetry of the

trap geometry, quantified by the trap frequencies in the radial and axial direction. A

qualitative approach is to compare the spatial confinements in each axis. In the radial

direction, the confinement is characterized by the minimum trap beam diameter (26

µm). On the other hand, the confinement in the longitudinal direction of a 1D optical

lattice is defined by the half wavelength of the trap laser, which is 0.532 µm. The

dramatic difference between the confinements in these two directions makes it much
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Figure 7: (a) A plot for atom recapture rate vs trap off time in a 1 mK 1D optical
lattice with various temperature. (b) Atom recapture rate vs trap off time with 40
µK temperature in various trapping potential.

30



easier for the atom to escape from the longitudinal direction. For comparison, the

spatial confinements of the single focus trap is the minimum beam diameter (5.0 µm)

in the radial direction and the Rayleigh length (πw0
2/λ = 13 µm) in the longitudinal

direction.

2.8 Linewidth Broadening Induced by Spatial Varying Light
Shifts

The large AC-Stark shifts in optical dipole traps, together with the thermal motion of

the atoms in the confining potential can lead to significant broadening of the optical

transitions. These need to be considered in addition to the usual transition linewidth

broadening mechanisms including power broadening and Doppler broadening. De-

tailed discussions on these latter topics can be found in [113–115]. Power broadening

becomes noticeable when the probe laser intensity is comparable to the saturation

intensity of the transition. Doppler broadening stems from the Doppler effect of the

thermal motion of the atoms, which is given by [115]

νFWHM =

√
8kBT ln2

mc2
ν0, (2.53)

For laser cooled atoms at ∼100 µK, the Doppler broadening of the 87Rb D2 transition

is on the order of 300 kHz, which is much smaller than the natural linewidth γ = 6.07

MHz and can be ignored in our experiment. In the remainder of this section, we will

discuss transition linewidth broadening originating from the thermal motion of the

trapped atoms with spatial dependent light shift and estimate the order of magnitude

of this broadening.

Figure 8 shows the spatial profile of the light shifts for the ground and excited

states in general. The horizontal red line represents the average energy of the atoms

interacting with a thermal reservoir at temperature T , which characterizes the motion

of the trapped atoms as well as the distance an atom can travel from the center of the

trap. It is readily seen that the induced light shift of the 87Rb D2 transition depends
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Figure 8: Dipole trap induced light shifts of the ground and excited states as a
function of radial distance from the center of the trap. The red dots represent atoms
in the optical dipole trap and the blue dotted line shows the light shifts of the 87Rb
D2 transition at the position of the atoms.

on the position of the atom. As the atom moves away from the center of the trap, the

light shift becomes smaller. The thermal motion of the atom in the trap will explore

different light shifts of the transition, which will lead to a broadening of the transition

determined by the motional energy distribution of the trapped atom.

To quantify this broadening, consider the Maxwell-Boltzmann distribution func-

tion of the energy,

f(E) = 2

√
E

π
(kBT )−3/2exp

( −E
kBT

)
. (2.54)

The full width half max (FWHM) of this distribution function can be obtained nu-

merically [116],

f(E)FWHM ' 2.02× kBT. (2.55)

The linewidth of the thermal atoms in the dipole optical trap becomes linearly depen-

dent to the temperature of the atoms. Figure 4 shows that for the |F = 2,mF = 0〉
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to |F ′ = 3,mF ′ = 0〉 transition, the conversion between light shift and trapping po-

tential is ∼71 MHz/880 µK. Therefore, for typical laser-cooled atoms at 100 µK, the

FWHM of the energy distribution is kB×202 µK, which corresponds to a linewidth

broadening of 16 MHz.
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CHAPTER III

CAVITY QED WITH 87RB

The interaction between light and matter is responsible for all large-scale phenomena

that we see every day. While the interaction between large number of photons and

atoms is easy to observe, the interaction between an isolated single photon and single

atom cannot be detected easily. This is due to the small interaction probability

between an atom and a single photon combined with the low detection efficiency of a

single photon emitted by an atom in free space. Placing an atom in an optical cavity

enhances the interaction compared to the bare atom and provides a directed output

signal for increased detection efficiency [45].

In this chapter, we will provide an theory overview of cavity quantum electrody-

namics and introduce the relevant parameters of a atom-cavity system, as they have

been extensively discussed in [117–119]. The Jaynes-Cummings model will also be

introduced to illustrate the atom-cavity system. Finally, numerical calculations of the

quantum mechanical and the semi-classical model with more than one atom are com-

pared for the purpose of using the semi-classical model in systems with twenty atoms

or so. The results will be applied to simulate the cavity field dynamics presented in

Chapter 6.

3.1 Cavity QED Parameters

For most purposes, an atom-cavity system can be characterized by three parameters:

the atom-cavity coupling rate g, the cavity loss rate κ, and the atom decay rate

γ⊥. They are responsible for three distinctive processes as shown in Figure 9. The

cavity loss rate represents the rate that a cavity photon is removed from the system,

either through transmission or absorption. The atom-cavity coupling rate represents
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Figure 9: The three process characterized by the cavity loss rate κ, the atom-cavity
coupling rate g, and the atom decay rate γ⊥. The black dots represent the atoms and
the red ellipses represent the wave envelopes of the cavity field standing wave.

the rate at which an atom in the excited state emits a photon into the cavity mode

through stimulated emission or an atom in the ground state absorbs a photon in the

cavity mode. Finally, the atom decay rate γ⊥ represents the rate that the atom emits

a photon into the mode other that the cavity mode. In the following sections, we will

discuss these processes in more details.

3.1.1 Cavity Loss Rate

An optical cavity is constructed with two mirrors with high reflectivity. The finesse

of the cavity F is defined as,

F =
2π

losses
, (3.1)

where losses is the total transmission and absorption losses from both cavity mirrors.

For example, if each mirror has transmission of 10 ppm and absorption of 20 ppm,

the total losses is 60 ppm.

The free spectral range νFSR, the frequency spacing between adjacent longitudinal

modes, is given by

νFSR =
c

2L
, (3.2)

where c is the speed of light and L is the length of the cavity.
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The cavity loss rate κ is related to the finesse and the free spectral range by,

κ =
νFSR
2F

. (3.3)

The cavity mirrors that we use in the experiment have the same radius of curvature

(R = 2.5 cm), a total transmission loss of 108 parts per million (ppm), and the cavity

length is 0.5 mm. Considering only the transmission loss, the finesse of our cavity

and the cavity loss rate is

F = 58000

κ

2π
= 5.2 MHz.

3.1.2 Atom-Cavity Coupling Rate

For an atom in the cavity mode, g is the cavity enhanced stimulated photon emission

rate into the cavity mode. It is proportional to the electric field E(~r) at the position

of the atom, which is defined as [44]

g(~r) ≡ g0ψ(~r) =
µ · E(~r)

~
, (3.4)

where g0 is the maximum atom-cavity coupling rate, µ is the transition dipole moment

and ψ(~r) is the spatially dependent part of the TEM00 mode of the electric field (ψ(~r)

≤ 1).

ψ(~r) = cos(kx)exp
(
− x2 + y2

w0
2

)
, (3.5)

w0 is the minimum waist of the cavity mode.

The magnitude of the electric field can be obtained by considering the energy of

a single photon in the cavity as the integral of energy of electro-magnetic field over

the cavity,

~ω =

∫ (ε0
2
|E(~r)|2 +

1

2µ0

|B(~r)|2
)
d3~r =

∫
ε0 |E(~r)|2 d3~r = 2ε0E0VM , (3.6)
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The mode volume VM of the electric field can be expressed as,

VM =

∫
|ψ(~r)|2 d3~r =

π

4
w0

2L, (3.7)

The atom-cavity coupling rate g0 can be expressed as,

g0 = |µ|
√

ω

2ε0~VM
. (3.8)

For our experiment, |µ| = 2.53×10−29 C·m [95] and g0
2π

= 9.3 MHz.

3.1.3 Atom Decay Rate

The natural decay rate γ of the 87Rb from the 5P3/2 state to the 5S1/2 state in free

space is (2π) 6.07 MHz [95]. The excited state life time of the atom τ is related to

the decay rate by τ = γ−1 = 26 ns.

For an atom in the cavity system, the relevant quantity is γ⊥, the atomic dipole

decay rate into modes other than the cavity mode [120]. When the atomic decay

is solely radiative, γ‖ = 2γ⊥ = γ. γ‖ is the decay rate of atomic inversion and the

last equality holds because the solid angle subtended by the cavity mode is small

(∼ 10−5).

3.1.4 Other Derived Quantities

There are three quantities derived from κ, g0, and γ⊥ that can be used to characterize

a atom-cavity system. The saturation photon number n0, the critical atom number

N0, and the single atom cooperativity C1 [44, 121],

n0 ≡
γ⊥γ‖
4g0

2
=
γ⊥

2

8g0
2

(3.9)

N0 ≡
2γ⊥κ

g0
2
≡ C1

−1. (3.10)

The single atom cooperativity is used to quantify the coupling strength between the

atom and the cavity photons. When C1 � 1, the system is in strong coupling regime,

C1 ∼ 1 corresponds to intermediate coupling regime, and C1 � 1 is weak coupling

regime. For our experiment, n0 = 0.013, N0 = 0.36, and C1 = 2.8.
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3.2 Single Atom Cavity QED

The interaction between a two-level atom (excited state: |e〉, ground state: |g〉) and

a single mode of electromagnetic field containing n photons |n〉 can be described by

Jaynes-Cummings model. The Hamiltonian of this system can be written as

H =
1

2
~ω0σ̂z + ~ωcâ†â+ ~g0(σ̂+â+ σ̂−â

†), (3.11)

where ω0 is the resonant frequency of the atomic transition, ωc is the frequency of

the cavity, σ̂z = |e〉 〈e| − |g〉 〈g| is the atomic inversion operator for this two level

atom, σ̂+ and σ̂− are the raising and lowering operator for the atom, â† and â are the

creation and annihilation operator for the cavity photons. An atom-cavity system

with n cavity photons can be solved exactly [46]. With the cavity frequency tuned to

the atom resonant frequency, the eigenvalues are

En+ = ~nω +
√
n~g0

En− = ~nω −
√
n~g0, (3.12)

and the corresponding eigenstates are

|φn+〉 =
1√
2

(|n− 1, e〉+ |n, g〉)

|φn−〉 =
1√
2

(|n− 1, e〉 − |n, g〉). (3.13)

Figure 10 shows the energy diagram of a bare atom, cavity photon Fock state, and a

atom-cavity system, respectively.

The above discussion has neglected the natural decay of the atoms from the excited

state as well as the dissipation of cavity photons from the system. To incorporate

these effects, we can use a Master equation to solve for the time evolution of the

system, and the observables can be obtained by taking the expectation values of the

collapse operators. To understand how it works, we’ll go through the single-atom-

cavity problem again, now with atomic relaxation and cavity dissipation.
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Figure 10: Energy diagram of a bare atom, cavity photon Fock state, and a atom-
cavity system. The atomic transition frequency is ω0, the cavity frequency ωc is tuned
resonant to the atomic transition. In the atom-cavity system, the splitting between
the new eigenstates is 2

√
ng0.

In the interaction picture, the Hamiltonian of the system with an atom driven by

an external laser from the side can be expressed as

H = (ω0 − ωL)σ̂+σ̂− + (ωc − ωL)â†â+ ig0(σ̂−â
† − σ̂+â) + Ω(σ̂+ + σ̂−), (3.14)

where ωL is the frequency of the external probing laser, Ω is the Rabi frequency of

the probe laser. For simplicity, ~ is omitted in this expression. From Eq. 3.14 it can

be seen that the frequency difference is important, not the absolute frequency. To

make it easier for comparing these parameters as those used in the experiment, we

will use the resonant frequency of the bare atom ωr as reference. ∆0 ≡ ω0 − ωr will

be the atom frequency shift (due to AC-Stark shift), ∆L ≡ ωL − ωr will be the laser

frequency detuning, and ∆c ≡ ωc−ωr will be the cavity frequency detuning from the

bare atomic resonant frequency, respectively. The Liouville equation of the density
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Figure 11: Cavity photon output rate of a single-atom-cavity system driven by an ex-
ternal laser from the side. The cavity QED parameters of the system are 1

2π
(g0, κ, γ⊥)

= (9.3, 7.0, 3.0) MHz. The Rabi frequency of the external probe laser is 2.1 MHz
and the cavity frequency detuning is 0. The red curve represents an atom experience
no AC-Stark shift, the blue curve represents an atom in the optical dipole trap that
shifts the atomic resonance 30 MHz to the blue.

matrix ρ takes the following form [42, 43],

ρ̇ = L̂ρ = −i[Ĥ, ρ] +
2∑

k=1

(ĈkρĈ
†
k −

1

2
Ĉ†kĈkρ−

1

2
ρĈ†kĈk), (3.15)

Ĉ1 =
√

2κâ and Ĉ2 =
√
γ⊥σ̂− are the collapse operators for the cavity photons and

the atom, respectively.

When the system reaches steady state ρs, the above equation becomes,

L̂ρ
∣∣∣
ρ=ρs

= 0. (3.16)

For weak excitation, the steady state density matrix ρs can be solved by truncating

the Hilbert space assuming a maximum cavity occupation number of 5 ∼ 10 photons

and diagonalizing the matrix numerically [122, 123]. The cavity output spectrum can

be obtained by taking the expectation value of the of Ĉ1 of the steady state density

matrix.

Figure 11 shows the spectrum of a single atom in the cavity driven by an external
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laser from the side. For a bare atom that experiences no light shift, the spectrum is

represented by the red curve, which is symmetric and the vacuum Rabi splitting has

a magnitude of 2g0. The blue curve shows an atom in the optical dipole trap with

+30 MHz of AC-Stark shift of the ground to excited state transition. The spectrum

becomes asymmetric and has a much lower output signal level.

3.3 Many-Atom Cavity QED

In principle, it is straightforward to go from a single-atom-cavity system to a multi-

atom-cavity system. For every additional atom added to the system, the correspond-

ing terms of σ̂+ and σ̂− are put into the Hamiltonian,

H = (∆0 −∆L)
∑
j

σ̂j+σ̂j− + (∆c −∆L)â†â

+ ig0

∑
j

(σ̂j−â
† − σ̂j+â) +

∑
j

Ωj(σ̂+ + σ̂−). (3.17)

With a multi-atom-cavity system, it is possible to use the cavity-assisted inter-

action between these atoms for quantum information processing. For this purpose,

coherent state control for the individual atoms in the cavity is desired and can be

achieved by applying independent laser beams on the each atom from the side of the

cavity.

In the experiment, we constructed a system with two independently controllable

1D optical lattices, each of them has its dedicated external probe laser. Hence the

following discussion will be focused on a multi-atom-cavity system with two indepen-

dently controlled ensembles.

To calculate the cavity output spectrum of a multi-atom-cavity system, we started

with the same Matlab program “Computational Toolbox for Quantum Optics” [123]

used in Section 3.2. Unfortunately, this program is not optimized to efficiently calcu-

late a cavity system with many atoms. The calculation time and the required memory

grow exponentially as the number of atoms in the system, which makes its impractical
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to go beyond 5 atoms with current desktop PCs. In order to increase the maximum

number of atoms we can simulate, a Monte-Carlo method is employed, as discussed

in the next section.

3.3.1 Monte-Carlo Method for Multi-Atom Cavity QED System

For the Monte-Carlo method, we let the system evolve for a specific time instead of

solving the steady state density matrix. Dissipation of the cavity photons comes from

the randomly occurred quantum jumps during the system evolution. The result of the

calculation is obtained by taking the expectation value of the corresponding operator

and averaging over many randomly generated systems. The advantage of using the

Monte-Carlo method over using the master equation to solve the steady state solution

is that, the former stores the state of the system in the computer memory and the

latter stores the entire density matrix. For an atom-cavity system with N atoms and

Nphoton cavity photons, the state vector of the system has a dimension of 2N×Nphoton

and the density matrix has a dimension of 22N×N2
photon. Therefore, the Monte-Carlo

method allows us to simulate a system with more atoms.

We use the “Quantum Toolbox in Python” (QuTiP) [124] to calculate the evo-

lution of the system using the Monte-Carlo method. The documentation and the

example scripts can be found in [125]. Using this method, there are two parameters

to be considered independently, the number of systems to be averaged over nsample,

and the evolution time for each system tevo. The bigger these two quantities are, the

more precise the results of the simulation are for estimating the steady state solution.

The time for calculation scales linearly as the product of nsample and tevo, hence it

is important to empirically optimize these two quantities for low number of atoms

before simulating systems with large number of atoms.

In Figure 12, we compare the spectrum of a single-atom-cavity system using
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Figure 12: In the top figure, the evolution time is set to 2.5. In the bottom figure,
the number of samples is set to 200. The cavity QED parameters in the Hamiltonian
are expressed in the unit of MHz, hence the evolution time is in the unit of µs. The
cavity QED parameters of the system are 1

2π
(g0, κ, γ⊥) = (9.3, 7.0, 3.0) MHz. The Rabi

frequency of the external probe laser is 3.4 MHz and the cavity frequency detuning
is 0.
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Monte-Carlo method with different nsample and tevo. For simplicity, we ignored AC-

Stark shift, so the resulting spectrum is symmetric with respect to the probe laser

detuning similar to the red curve shown in Figure 11. In Figure 12, we calculate

the solution for positive probe detuning and generate the other half by symmetry

argument.

In the top of Figure 12, we can see that averaging over 200 samples provides a

reasonably smooth spectrum for tevo = 2.5 µs. In the bottom of Figure 12, it is seen

that the system at tevo = 0.5 µs is still far from the steady state and the spectrum

starts converging at tevo = 1.5 µs, hence, we choose tevo = 2.5 µs and nsample = 200.

In Figure 13 we use the Monte-Carlo method with nsample = 200 and tevo = 2.5

µs to calculate the spectrum of a few multi-atom-cavity systems ((b) and (d)) and

compare them with those obtained by the matrix diagonalization method described

in Section 3.2 ((a) and (c)). In Figure 13(a) and 13(b), the system consists of a

cavity and 1 (red curve), 2 (blue curve), 3 (black curve), 4 (gray curve) atoms all

driven directly by the external probe laser. Again, the AC-Stark shift is ignored for

simplicity at this point. The peak detuning of the spectrum scales roughly as
√
Ng0

and the peak height scales linearly as N where N is the total number of atoms in the

system.

In Figure 13(c) and 13(d), the system is slightly different, only the first atom is

directly driven by the external probe laser and the other atoms are indirectly driven

by the cavity photons. The peak detuning of the spectrum also scales as
√
Ng0 and

the peak height scales inversely as the N . The absorption of the cavity photons by

the indirectly driven atoms gives rise to higher chance of losing the cavity photons

through spontaneous emission, resulting in lower cavity output signal.

In both cases, the simulation results of the Monte-Carlo method agree well with

the one that calculates the steady state density matrix. The question is, how far

can we go within reasonable amount of time? For N = 15, nsample = 200, and

44



6.0

4.0

2.0

0.0
-20 0 20

(b)

2.0

1.5

1.0

0.5

0.0
-20 0 20

Probe Laser Detuning (MHz)

(d)

2.0

1.5

1.0

0.5

0.0

C
av

ity
 O

ut
pu

t R
at

e 
(×

10
6 )

-20 0 20

Probe Laser Detuning (MHz)

(c)

6.0

4.0

2.0

0.0

C
av

ity
 O

ut
pu

t R
at

e 
(×

10
6 )

-20 0 20

(a)

number of atoms
 1  3
 2  4

Figure 13: Comparison between the method used in Section 3.2 and the Monte-
Carlo method. The cavity QED parameters of the system used in the calculation are
1

2π
(g0, κ, γ⊥) = (9.3, 7.0, 3.0) MHz. The Rabi frequency of the external probe laser is

3.4 MHz and the cavity frequency detuning is 0. In (a) and (b), all atoms are directly
driven by the external probe laser. Whereas in (c) and (d), only the first atom is
directly driven by the external probe laser and the other atoms are excited by the
cavity photons.
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tevo = 2.5 µs, it takes about 900 hours (>1 month) to finish the calculation for

a spectrum with 30 points on a single processor. By using multi-core processors,

the code can be written to calculate different part of the spectrum and executed

simultaneously. By simultaneously running six simulations on two computers, the

total time for completing the calculation for N = 1 to N = 15 can be reduced to

two weeks. Though the total number of atoms is still less than what we have in

the experiment (∼30), it still provides valuable insight and assists us to develop a

semi-classical models for the system.

3.3.2 Semi-Classical Model for Multi-Atom Cavity QED

In this section, we construct a semi-classical Hamiltonian that fulfills the criteria set

by the full quantum Hamiltonian at low number of atoms, and determine in what

limit this semi-classical Hamiltonian yields spectra close to the correct one.

It was shown in the early works of the multi-atom-cavity systems that the atom-

cavity interaction in a system with N atoms can be collectively enhanced by a factor

of
√
N [51, 121, 126, 127]. Figure 13 also indicates that the spectrum of a system

with N atoms and atom-cavity coupling rate g0 resembles the spectrum of a system

with one atom and atom-cavity coupling rate
√
Ng0. Therefore, we will use

√
Ng0 as

the atom-cavity coupling rate for the semi-classical Hamiltonian. The other criterion

is that the peak height should scale roughly linearly as N . The scaling is reproduced

by multiplying the external excitation by a factor of
√
N , and the semi-classical

Hamiltonian takes the following form,

Hsc = (∆0 −∆L)σ̂+σ̂− + (∆c −∆L)â†â

+ i
√
Ng0(σ̂−â

† − σ̂+â) +
√
NΩ(σ̂+ + σ̂−). (3.18)

For a system with atoms distributed in two independently controllable optical con-

veyor belts, the semi-classical Hamiltonian can be written as,

Hsc = (∆0 −∆L)(σ̂1+σ̂1− + σ̂2+σ̂2−) + (∆c −∆L)â†â
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+ i
√
N1g0(σ̂1−â

† − σ̂1+â) + i
√
N2g0(σ̂2−â

† − σ̂2+â)

+
√
N1Ω1(σ̂1+ + σ̂1−) +

√
N2Ω2(σ̂2+ + σ̂2−). (3.19)

N1 and N2 are the number of atoms in the corresponding optical dipole traps (L1

and L2), Ω1 and Ω2 are the Rabi frequencies of the respective external probe lasers.

In Figure 14, we compare the results of using Monte-Carlo method (red curve)

and those obtained from semi-classical Hamiltonian (blue curve). In these four cases,

the cavity QED parameters and the external probe laser intensities are the same, and

the differences are the number of atoms in each optical dipole trap. It is readily seen

that the semi-classical results in Figure 14(a) and 14(c) do not exactly reproduce the

results of the Monte-Carlo method. In Figure 14(b) the semi-classical results have

the basic shape and intensity. In Figure 14(d), the results from two different methods

are basically the same. It is noteworthy that the lower the cavity output signal is,

the better these two methods agree with each other.

In the low excitation limit, 〈â†â〉 � n0, the semi-classical Hamiltonian seems to

describe the system to a good approximation. n0 is the cavity photon saturation

number defined in Eq. 3.9, and 〈â†â〉 is the average cavity photon number which is

related to the cavity output signal by,

cavity output signal = 2κ〈â†â〉. (3.20)

For example, the peak value of the cavity output signal in Figure 14(d) is 0.2

×106, corresponds to an average of 0.0023 cavity photon number, which is smaller

than the saturation photon number n0 = 0.013 for the system. On the other hand,

the maximum average cavity photon number for the system in Figure 14(b) is 0.045,

hence the semi-classical Hamiltonian does not work well in this case.

In order to apply this method to our cavity system with two optical conveyor belts,

the AC-Stark shift has to be taken into account and added to the Hamiltonian. The

optical dipole traps used in this experiment operate with trapping potential about
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Figure 14: Comparison between the Monte-Carlo method and the semi-classical
Hamiltonian. The cavity QED parameters of the system used in the calculation are
1

2π
(g0, κ, γ⊥) = (9.3, 7.0, 3.0) MHz. Ω1

2π
= 3.4 MHz, Ω2

2π
= 0 and the cavity frequency

detuning is 0. It is seen that these two methods agrees well in (d) and the low signal
parts of (a), (b), and (c). Suggesting the semi-classical Hamiltonian is accurate for
the low excitation case.
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Figure 15: Calculation for a cavity system with two optical conveyor belts. There are
5 atoms in the optical dipole trap directly driven by the external probe laser, and 0, 2,
4, 6, 8 atoms in other trap indirectly driven by the cavity photons. The cavity QED
parameters of the system used in the calculation are 1

2π
(g0, κ, γ⊥) = (9.3, 7.0, 3.0)

MHz. Ω1

2π
= 3.4 MHz, Ω2

2π
= 0, the probe laser frequency detuning is −8.9 MHz,

and the AC-Stark shift is 130 MHz. (a) Spectrum of the cavity output signal with
different number of atoms in L2 using Monte-Carlo simulation and the semi-classical
Hamiltonian. (b) The ratio of signal with atoms in L2 to signal without atoms in L2,
giving a idea of the dynamics of the cavity output signal as the atoms in L2 are lost
from the trap.
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2 mK, creating AC-Stark shift about 130 MHz.

The probe laser frequency is −8.9 MHz detuned from the bare atomic resonance

in the experiment, and we repeat the experiment with different cavity detuning.

Figure 15(a) shows the calculation of the system with up to 13 atoms in the cavity

using Monte-Carlo method and the semi-classical Hamiltonian. The system is still in

the low excitation limit, hence, the semi-classical Hamiltonian works well. In order to

compare the result of the calculation to the experimental data, the ratio of the cavity

output signal with a given number of atoms to that without atoms in L2 is plotted

in Figure 15(b). It is shown that the results of calculation from these two methods

agree very well with each other, therefore we have confirmed that the semi-classical

Hamiltonian can be used to describe systems with large number of atoms.

In Chapter 6, we will use the semi-classical model and extend the discussion to

about 25 atoms in the cavity, which is beyond the capability of the Monte-Carlo

method, and use it to explain the results of the experiment.
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CHAPTER IV

EXPERIMENTAL APPARATUS

In the preceding chapter, the theoretical background for the experiments has been

discussed. This chapter focuses on the design and important technical details for the

single atom experiment and the cavity QED experiment.

4.1 Vacuum System

In order to reduce the collision rate between the trapped atoms and the background

particles for maximizing the trap lifetime, the experiment takes place in a evacuated

chamber. The vacuum system is maintained at a pressure of 10−11 torr. The chamber

is constructed mostly with standard stainless steel conflat parts, and a custom made

rectangular uncoated quartz cell from Allen Scientific Glass is attached to the chamber

with a 2.75” CF flange. The inner cross section of the cell is 1”×1”, which allows

the use of high numerical aperture imaging lens mounted outside the vacuum system.

Figure 16 is a diagram of the vacuum system.

Various pumps are used to bring the pressure of the system to the level of 10−11

torr. For initial evacuation, the chamber is connected to a pumping station via a

valve. In the pumping station, a roughing pump brings the pressure to 10−3 torr, a

turbo pump brings the pressure further down to 10−9 torr, and a residual gas analyzer

(RGA) is used for the purpose of leak checking and monitoring the partial pressure

from hydrogen, carbon dioxide, nitrogen, oxygen and water vapor. During the turbo

pumping stage, the temperature of the system is brought up to 400◦ Celsius (100◦

Celsius if there is a cavity in the chamber) for two weeks. This significantly reduces

the water vapor in the system as well as the outgassing of the material used for the

cavity.
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Figure 16: An illustrative diagram of the vacuum system used in the cavity experi-
ment and the single atom experiment.

After the bake out, each filament of the titanium sublimation (Ti-sub) pump is

fired several times to bring down the hydrogen partial pressure. At this point, the

main chamber is disconnected from the pumping station. The ion pump and the ion

gauge on the chamber are turned on after the valve is sealed. The pressure of the

system gradually goes down to 10−11 torr in a few days. The ion gauge is mostly used

for diagnostic purposes after this point and remains off for the rest of the time.

The atom source is provided by a rubidium getter from SAES Getters, which is

mounted on an electrical feedthrough. Running current through the getter heats the

getter and causes the rubidium atoms to dissociate and release in the chamber. The

typical electrical current used ranges from 1.5 A to 4 A.

Running current through the getter temporarily raises the background pressure

and the number of rubidium atoms in the chamber. Part of the rubidium atoms ended

up coated on the walls of the chamber and the quartz cell. These atoms can be reused

by shining a blue light emitting diode (LED) to temporarily raise the vapor pressure

of the rubidium. The blue light causes the rubidium to desorb from the quartz cell
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Figure 17: (Left) Energy level diagram for the 87Rb D2 line. (Right) Level structure
of the 87Rb 5S1/2, F = 1 and F = 2 ground states and the 5P3/2, F = 3 excited state
sublevels in a weak magnetic field.

walls. This phenomenon is known as light-induced atom desorption (LIAD) [128],

which provides a highly controllable source for this experiment and keep the pressure

low for the rest of the time. This technique provides an on-demand atom source for

the single atom experiment, and the rubidium getter has not been used for about

three years. In the cavity QED experiment on the other hand, the getter is fired once

a week for about 30 minutes.
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Figure 18: Spatial dependent Zeeman shifts of the F ′=1 excited states. The cooling
beam is red detuned from the F=0 → F ′=1 transition shown as gray dashed line.
The σ+ and σ− cooling beams direction are shown by the red arrows.

4.2 Magneto-Optical Trap

Two essential elements are needed in the making of a magneto-optical trap (MOT):

the lasers for optical molasses and repumping and a magnetic field gradient. Figure 17

shows the level diagram of the 87Rb D2 line and the transitions used for laser cooling.

In order to explain how magneto-optical trap works, let us consider an atom

with total angular momentum F=0 ground state and F ′=1 excited state. With the

presence of external magnetic field gradient, the spatial dependent Zeeman shifts of

the excited states are shown in Figure 18. The energy shift ∆ is given by

∆ = µmFB, (4.1)

where µ is the magnetic dipole moment of the electron and B is the magnetic field

at the position of the atom. For an atom at x, the energy of the |F = 1,mF = −1〉

state is decreased. Hence the atom is more likely to absorb the σ− light than the

σ+ light and pushed towards the origin. For an atom at −x, it is the opposite. This

directional and position dependent radiation pressure cools the atoms and confines
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them at the origin.

4.2.1 Optical Molasses and Cooling Laser

The MOT lasers consist of two laser systems frequency stabilized near two transi-

tions of the 87Rb D2 lines. Each system comprises an external cavity diode laser

(ECDL) as the master laser and injection-locked slave lasers. The diffraction grating

of the master laser is mounted in Littrow configuration [129]. All lasers are temper-

ature stabilized with thermo-electric coolers (TEC) and housed in insulating boxes.

The TEC is controlled by homemade proportional-integral (PI) circuit based on a

design from Hulet’s group [130]. The laser diodes used are manufactured by Sharp

(GH0781JA2C), which have free running wavelength centered at 784 nm and 120 mW

maximum output power. The output wavelength of the ECDL can be coarsely tuned

to 780 nm by slightly changing the angle of the grating and fine-tuned to 87Rb D2

lines by changing the temperature and current for the diode.

The trap master laser is locked to the F = 2→ F ′ = 3, F ′ = 1 crossover signal of

the 87Rb D2 transition FM spectroscopy, it is −211.8 MHz from the F = 2→ F ′ = 3

cycling transition. The laser locking scheme introduces 55 MHz detuning and a

double-pass acousto-optic modulator (AOM) further detunes the frequency by 2 ×

100 MHz to 2 × 140 MHz before injecting to the trap slave laser. The injection

locked slave laser is sent through a −110 MHz AOM for fast switching control before

fiber coupling and delivered to the experiment. The available detuning range of the

trapping laser is −50 MHz to 15 MHz. The injection locked probe slave laser is set up

in another independently controlled double-pass AOM configuration centered at 200

MHz, this allows a detuning range much further to the higher frequency to explore

the AC-Stark shifted atoms in the optical dipole trap.
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Figure 19: Laser detuning scheme for the master laser and its injection locked slave
lasers.
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4.2.2 Magnetic Field Gradient and MOT Coils

The magnetic field gradient is generated by two coils arranged in an anti-Helmholtz

configuration. The coils are made out of 0.25” diameter copper refrigerator tubing

that is wrapped in Kapton tape for electrical insulation. Two different pair of coils

are used in single atom and cavity QED experiment. In the single atom experiment,

each coil is tightly binded in 5 layers of 8 turns with 2.5” inner diameter. The coils are

placed on either side of the quartz cell with 1.5” separation, and it gives a 1.25 G/cm
A

current to magnetic field gradient conversion. A maximum magnetic field gradient

of 400 G/cm is generated, and it is current limited (320 A) by a 15 kW Electronic

Measurement Inc. power supply.

As for the cavity QED experiment, each coil is binded in 3 layers of 4 turns with

2.5” inner diameter. The separation between the coils is 2.75”, which gives a 0.56 G/cm
A

current to magnetic field gradient conversion. A maximum magnetic field gradient of

280 G/cm is generated, and it is voltage limited (15 V) by the power supply. One

of the coils is mounted on a three dimensional translation stage, to allow for fine

adjustments of the MOT position with respect to the cavity by a few millimeters in

each direction.

The typical magnetic field gradient field required to create a single atom MOT is

around 250 G/cm. For loading large number of atoms into the optical dipole trap,

the magnetic field gradient is set to 100 G/cm. The ohmic heat load is carried away

by running filtered tap water through the copper tube.

4.3 Photon Detection and Imaging System

A diagram of the detection system for the single atom experiment is shown in Fig-

ure 20. A high numerical aperture microscope objective (Mitutoyo Corp. Plan Apo

NIR Infinity-Corrected 20X) is used to collect the fluorescence from the trapped

atoms. A 50/50 beamsplitter is used to send half of the light to an Andor iXon
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Figure 20: Illustrative diagram of the detection system for the single atom experi-
ment.

EMCCD camera, and the other half to a avalanche photodiode (Perkin Elmer Single

Photon Counting Module AQR-14). The camera is used to determine the loading of

single atoms in the optical dipole trap. After the single photon counting module is

implemented in the system, the camera is mostly used for diagnostic purposes.

4.4 Optical Dipole Traps

Optical dipole traps are used to hold or transport cold atoms initially prepared in the

MOT. Various trap designs are used for different purposes, which will be introduced

in the following sections. The dipole trap laser is a 20 W fiber laser from IPG

Photonics. It is a externally seeded fiber amplifier (Seeding laser: YAR-20k-1064-

LP-SF, amplifier: YAR-20-LP-SF) which puts out a single-mode, linearly polarized

beam centered at 1064 nm.
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4.4.1 Single Focus Trap

The setup of the single focus trap is relatively simple and thus provides a testbed for

the loading of cold atoms from the MOT before moving on to other trap designs or for

diagnostic purposes. The trap laser beam is initially beam-shaped to a 500 µm beam

waist, expanded by 19× telescope, and finally focused by a 2” diameter achromatic

lens with 350 mm focal length. The focused beam has a minimum waist of 18 µm,

and with ∼3 W of optical power, a trapping potential of 1 mK can be achieved.

4.4.2 1D Optical Lattice

Starting from the single focus trap, the 1D optical lattice can be made by re-collimating

the beam on the other side of the chamber and retro-reflecting the beam back on it-

self. The alignment of the retro-reflecting beam is critical. By using a fiber coupled

trap beam, the alignment can be done by fiber coupling the retro-reflected beam back

into the incoming fiber. The 1D optical lattice provides multiple trapping sites com-

pared to the single focus trap [25]. Though the loading position is randomized, each

trapping site is well defined by the trap beam waist and the standing wave antinodes.

4.4.3 Optical Conveyor

In the cavity QED experiment, cold atoms are initially prepared in the MOT and

transported to the cavity several millimeters away. The optical conveyor is con-

structed with two counter propagating beams. Both beams are the first order diffracted

beams of a 40 MHz AOM (IntraAction AOM-402AF4). By detuning the frequency

of one beam, the wave envelopes move at the speed v which is proportional to the

frequency difference between these two beams.

v = λ∆ν
2
. (4.2)
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Figure 21: A schematic of the optical conveyor setup used in the cavity experiment.
For simplicity, mirrors are not shown in this diagram.

λ is the wavelength of the trap beam, ∆ν is the frequency difference between the

counter propagating beams. Typically, a 5 kHz frequency difference is applied, yield-

ing a 2.67 mm/s lattice speed. Figure 21 shows the diagram of the optical conveyor

setup.

4.4.4 Single Focus Traps with The Imaging System

In the last few sections, several trap designs have been introduced. They share one

common feature, the space required is large due to the use of several long focal length

optics. For the 1D optical lattice and the optical conveyor, the beam alignment is

critical and hence the performance of the trap is very sensitive to the misalignment.

For the above reasons, a simple, compact, and robust trap design is desirable. In this

section, we will focus on the development of a new trap design for the single atom

experiment that fulfills these requirements.

The microscope objective used in our detection system has a much higher nu-

merical aperture (Mitutoyo Corp. Plan Apo NIR Infinity-Corrected 20×, NA = 0.4)
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Figure 22: The dichroic beam splitter is used to integrate the single focus trap with
the detection system. The reflection efficiency of the 1064 nm light is 99% and the
transmission efficiency of the 780 nm light is 95%.

compared to the focusing lens used to create optical dipole trap in the previous sec-

tions (f = 350 mm, 2” diameter, NA = 0.07), which enables us to focus the trap laser

beam to a minimum waist of several microns. The optical power required to achieve

the same trapping potential is much less, and these super tight focus traps typically

operate in collisional blockade regime [24, 131], making it an ideal candidate for single

atom experiments. In our previous work [41, 132], the loading of single atoms in the

1D optical lattice is completely random and requires automated post processing to

select the single atom events. This new trapping scheme can greatly increase the

success rate of obtaining single atom events and therefore the overall repetition rate

of the experiment.

A IntraAction AOM (AOM-402AF4) is used to control the power of the trap beam.

The 40 MHz modulation frequency is generated by a function generator (HP E4430B)

and sent to a voltage variable attenuator (Mini-Circuits ZX73-2500). Then the signal

61



is sent to an amplifier (Delta RF Technology Inc. LA-10-2-512-40) before going to

the AOM. The first order diffracted beam from the AOM is fiber coupled and sent

to a 4× telescope. The expanded beam has a beam diameter of ∼5 mm and passes

through the rear aperture (12 mm diameter) of the microscope objective without

getting clipped. The trap laser is combined with the detection system through a 1064

nm/780 nm dichroic beam splitter as shown in Figure 22. The combined detection

and trapping system is tested by using the camera to take an image of a pinhole with

50 µm diameter. The image shows that each camera pixel corresponds to 2.5 µm by

2.5 µm at the detection region. In order to make sure the 1064 nm trap laser beam is

focused on the focal plane of the detection system, the collimation of the 4× telescope

is adjusted. The minimum trap beam diameter is determined to be around 5 µm by

comparing to the pinhole diameter.

For a 1064 nm single focus trap with 5 µm beam diameter, the optical power

required to create 1 mK trapping potential is around 90 mW. The transmission effi-

ciency of the 1064 nm light through the microscope objective is 75% and 85% through

other optics in the detection system. The power control AOM has a deflection effi-

ciency around 70% and the fiber coupling efficiency is 75%. The total efficiency ηtotal

of the power delivered to the trap is,

ηtotal = 75%× 85%× 70%× 75% = 33%.

With this efficiency, 1 W laser can produce trapping potential more than 3 mK,

which is substantially greater than the other trap setups previously used with the

same optical power. In the dual lattices cavity experiment, it requires a total of 7

W optical power (losses included) to create a single conveyor with 2 mK trapping

potential, and it is limited by the maximum output power of the fiber laser. In the

retro-reflection 1D lattice setup of the single atom experiment, it is limited by to the

maximum optical power we can apply before damaging the fiber tip, which is about

2.5 W for the continuous running case with 75% fiber coupling efficiency.
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To conclude, this tightly focused single focus trap has several advantages compared

to some previous trapping schemes used in the single atom experiment:

1. Simple and robust design that utilizes the high numerical aperture lens for

trapping and imaging.

2. The tightly focused trap operates in the collisional blockade regime that works

as a well-localized source for single atoms.

3. The optical power required to achieve the same trapping potential is much less

compared to previous trap designs.

For these reasons, most of the experimental work in Chapter 5 is performed with this

new trap design, with some comparisons made to the earlier measurements, performed

in the 1D optical lattice.
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CHAPTER V

CHARACTERIZING OPTICAL DIPOLE TRAPS WITH

SINGLY TRAPPED 87RB

In this chapter, we will present the measurements of the AC-Stark shifted F = 2 →

F ′ = 3 transitions of the singly trapped 87Rb atoms in the far-off-resonant optical

dipole trap (FORT) and demonstrate mF ′ state dependent light shifts with different

polarization of the probe. The temperature of the atoms in the FORT is measured

in order to characterize the heating due to probing the atoms. The main motivation

of our study is to quantify the state dependent light shift so that it can be used to

improve the optical pumping scheme for future quantum information protocols.

Various techniques have been used to measure the AC-Stark shift for optically

trapped neutral atoms. For instance, a destructive imaging technique was performed

with cesium atoms to measure the differential light shift of the D2 transition [37],

where a strong, unidirectional, and near resonant beam is applied to kick the atom

out of the trap for different frequency detunings. In other experiments, the trans-

mission spectra of singly trapped 87Rb atoms were obtained and showed a polariza-

tion dependent light shift difference of 20 MHz between the |F = 2,mF = ±2〉 →

|F ′ = 3,mF ′ = ±3〉 transitions in a circularly polarized FORT at 980 nm [39]. Shifts

of higher level states were measured using Rydberg excitation spectrum of the 85Rb

5P → 50S transition in the FORT at 1064 nm [36]. Finally, measurements of the AC-

Stark shift for the 87Rb 14D5/2 Rydberg state was determined by a photoionization

spectrum [38].

In our experiment, the measurements of state dependent AC-Stark shift are ob-

tained from emission spectrum with singly trapped 87Rb atoms in optical dipole traps
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operating at 1064 nm. A gated probing/cooling technique is utilized to reduce the

chance that atoms are heated out of the trap by probing and eliminate the scattering

from the cooling beams. Continuous observation of single atoms with trap lifetime

over 100 seconds and a signal to noise ratio of 25 has been observed.

5.1 Experimental Setup

The schematic of the experiment is illustrated in Figure 23. The MOT has a six-beam

configuration, one pair of the optical molasses beams are along the z-axis (magnetic

field gradient direction) and the other two pairs lie on the x-y plane. For each molasses

beam, the intensity is 2 mW·cm−2 and the beam diameter is 1 mm. To create a single

atom MOT, field gradient of 250 G/cm is required. On the other hand, to load large

numbers of atoms, the field gradient is set to ∼80 G/cm.

Two different traps are used in this experiment, a single focus trap and a 1D optical

lattice. For the single focus trap, a high numerical aperture microscope objective

(Mitutoyo Corp. Plan Apo NIR Infinity-Corrected 20×, NA = 0.4) is used to create

a tightly focused beam for the optical dipole trap and to collect the fluorescent signal

from the trapped atoms. For the 1D optical lattice, the trap beam comes into the

vacuum chamber along the y-axis with a minimum waist of 18 µm near the MOT and

is retro-reflected by a mirror on the other side of the chamber. Cold samples of 87Rb

atoms are initially prepared in a MOT. During the loading stage, the MOT beams are

−11 MHz detuned from the F = 2 → F ′ = 3 cycling transition. Once the magnetic

field gradient is turned off, the MOT beams are further red-detuned to −23 MHz for

optimal cooling and the atoms are transferred to the optical dipole trap. The trap

beam comes from a ytterbium fiber laser operating at 1064 nm. In order to define

the quantization axis for the atoms, the magnetic field is zeroed to less than 10 mG

using microwave spectroscopy [133, 134], then a bias magnetic field of ∼500 mG is

applied along the y-axis or z-axis.
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Figure 23: Schematic for the single focus trap and the 1D optical lattice. (a) Single
focus trap setup (side view). The long working distance microscope objective is
mounted outside the quartz cell. The 780 nm (red) and 1064 nm beam (green) paths
are combined with a dichroic beam splitter (CVI Laser Optics SWP-45-RU1064-
TU780-PW-2025-C). (b) 1D optical lattice setup (top view), the detection system is
not shown for simplicity. In both trapping scheme, the fluorescent signal is collected
by the microscope objective, sent to a 50/50 beam splitter, half of the light is sent to
a EMCCD camera and the other half is sent to the single photon counting module
(SPCM).
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Figure 24: (a) The fluorescent signal of the atoms in the single focus trap when the
FORT is continuously being loaded for over 200 seconds. The probe laser is 63.2
MHz blue detuned from the bare resonance and the probe intensity is ' 2Isat. (b)
Histogram of the signal. In this measurement, the gated probing/cooling technique
is employed, which will be introduced in Section 5.3.

In order to determine the total photon collection efficiency η for the single photon

counting module (SPCM), we measured the transmission efficiencies of the optics in

the detection system and the quantum efficiency of the SPCM (PerkinElmer SPCM-

AQR-14). The microscope objective has a transmission efficiency of 75%, the line

filter has a 95% transmission efficiency, the beamsplitter sends 50% of the light to the

SPCM, the SPCM has a measured quantum efficiency of 35% at 780 nm, and 92%

transmission efficiency through other optics.

η =
(NA

2

)2

× 75%× 95%× 50%× 35%× 92% = 0.45%

The total photon collection efficiency η of the detection system is 0.45%. In the

following sections, we will discuss the loading of single atoms into the FORT and the

trap frequency measurements for each trap, respectively.
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Figure 25: Trap frequency measurements of the single focus trap with parametric ex-
citation. Single atom survival rates are plotted vs the modulation frequencies applied
to the trap laser intensity.

5.1.1 Single Focus Trap

The tightly focused single focus trap operates in the collisional blockade regime where

light-assisted collisions result in a high two-body loss rate [135]; it ensures that only

one atom is loaded each time [24, 131]. Figure 24 shows the loading dynamics of this

single focus trap. The probe laser is −3 MHz detuned from the shifted resonance at

∼+66 MHz so that the amount of photons scattered by atoms not in the single focus

trap is negligible. It is evident that there is a maximum of one atom loaded in the

single focus trap. The detection technique used here will be introduced in Section

5.3.

The trapping potential is determined by using parametric excitation to measure

the radial and longitudinal trap frequencies [136–138]. Parametric heating leads to a

high loss rate of the atoms at modulation frequencies 2ν/n for n = 1, 2, 3, . . ., with the

strongest loss at n = 1 [136]. The trap laser intensity is modulated at a controlled

frequency by an acousto-optic modulator (AOM) before fiber coupled and sent to

the experiment chamber. After a single atom is loaded in the trap, the modulation

frequency is applied to the AOM for 500 ms before measuring the survival probability

of a single atom in the trap. The optimal modulation depth and time for parametric
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Figure 26: Trap frequency measurements of the 1D optical lattice with paramet-
ric excitation. Single atom survival rates are plotted vs the modulation frequencies
applied to the trap laser intensity.

heating are determined empirically, typically less than 10% and 1 second, respectively.

The procedure is repeated 20 times at each modulation frequency and the resulting

survival rate versus modulation frequency graph is plotted in Figure 25. Since there is

only one atom loaded at a time, individual successful survival events for single atoms

are used instead of the total fluorescent signal from the atoms. With 70 mW trap

laser power, the measured trap frequencies of the FORT are (νr, νz) = (42.5, 3.5)

kHz, which corresponds to '2.5 µm minimum beam waist and kB×0.88 mK trapping

potential (equivalent to h×18 MHz).

5.1.2 1D Optical Lattice

The trapping potential of the 1D optical lattice is also determined with the trap

frequency measurement. The results are shown in Figure 26. The initial trap loading

is followed by image acquisition with 1 second exposure time, then the modulation

source is turned on for 500 ms before the second image is taken. Finally the trap

laser is switched off and a background reference image is taken. There are 50 atoms

initially loaded into the 1D optical lattice on average. This procedure is repeated 20

times at each modulation frequency and the results are normalized to unity. With

1.4 W trap laser power, the measured trap frequencies of the FORT are (νr, νz) =
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Figure 27: Level structure of the 87Rb 5S1/2, F = 1 and F = 2 ground states sublevels
in a weak magnetic field.

(3.8, 280) kHz, which corresponds to '18 µm minimum beam waist and kB×1.1 mK

trapping potential. The sub-micron confinement in the longitudinal direction makes

the single trapping site highly anisotropic, with the longitudinal trap frequency nearly

two orders of magnitude larger than the radial trap frequency.

5.2 Microwave Spectroscopy - Zeroing The Magnetic Field

In order to zero the magnetic field, we utilize microwave spectroscopy of the 87Rb

5S1/2, F = 1 and F = 2 ground states sublevels. In the weak magnetic field limit,

where the interaction is much weaker than the hyperfine coupling, the Zeeman split-

ting between the adjacent hyperfine sublevels is linear with the magnetic field (700.624

Hz/mG). Figure 27 shows the level structure of the hyperfine ground states under a

weak magnetic field. For atoms randomly distributed in the ground state manifolds,

the resonances of the microwave spectroscopy occur at 2∆, ∆, 0, −∆, and −2∆

detuning from the clock transition frequency (6.834682611 GHz).

In order to generate the microwave at the clock transition frequency, a 3.417 GHz

signal is generated by a function generator (HP E4422B), which is phase-locked to a 10

MHz reference (EndRun Technologies Præcis Gfr). The signal is sent to a RF switch
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before sending to the frequency doubler. The signal then passes through a isolator to

prevent feed-back from the amplifier. Finally, the signal is sent to a amplifier (ALGA

Microwave ALPA-647240-50-01) before connecting to a cylindrical copper horn [137].

In the experiment, a fluorescent image of the atoms is taken with 1 s exposure

time after the initial trap loading to determine the number of atom in the 1D optical

lattice. The atoms are then prepared in the F = 1 ground state before applying the

microwave pulse tuned to the |F = 1,mF = 0〉 → |F = 2,mF = 0〉 clock transition.

Then a resonant, unidirectional laser is applied to kick the atoms in the F = 2 states

out of the trap. Finally, an fluorescent image of the remaining atoms is taken with 1

second exposure time to determine the atom survival rate.

Figure 28(a) shows the process of determining the π-pulse length that maximizes

the coherent transfer of atoms from the F = 1 state to the F = 2 state. The experi-

ment is repeated ten times at each microwave pulse length and there are on average

twenty atoms loaded in the lattice at each run. The red dashed line at 54% represents

the atom survival rate without applying microwave pulse, 46% of the atoms are lost

during the two fluorescent image acquisition process which is due to the trap lifetime

and the loss from the detection process. It can be inferred from the figure that the

π-pulse length is 150 µs which corresponds to a 6.7 kHz linewidth. The atoms are

initially randomly distributed among the mF states of the F = 1 manifold, which

means that typically only one third of the atoms will be affected by the microwave

pulse. Therefore, an oscillation contrast of 33% should be observed instead of 10%.

The disagreement possibly comes from the loss of atoms in the first image acquisition

process or because the atom kick-out beam does not work efficiently. The former

causes the number of atoms in the |F = 1,mF = 0〉 state becomes less than 1/3 of

the original number of atoms, the latter further reduces observed contrast. The loss

of atoms due to data acquisition can be improved by reducing the exposure time, but

it will increase the number of experimental runs to achieve the same signal to noise
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Figure 28: (a) The process of determining the π-pulse length that inverts the popu-
lation. (b) Microwave spectroscopy that shows the first resonance at ∆ detuning.
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Figure 29: An example of long trap lifetime of the single focus trap. The probe laser
detuning is 49.2 MHz and the intensity is ' Isat.

ratio. For the purpose of measuring and zeroing the magnetic field, a 10% drop in

the atom survival rate is more than enough to determine the microwave spectrum.

Having determined the π-pulse duration, the experiment is now repeated at dif-

ferent microwave frequencies with 2 kHz steps. The frequency step has to be smaller

than the linewidth of the microwave pulse to ensure the coverage of the desired sig-

nal. The microwave π-pulse at the clock frequency coherently drives the atoms from

the |F = 1,mF = 0〉 state to the |F = 2,mF = 0〉 state. At microwave frequency ∆

(∆ > 0) detuned from the clock frequency, the |F = 1,mF = 0〉 → |F = 2,mF = 1〉

and the |F = 1,mF = 1〉 → |F = 2,mF = 0〉 transitions are driven as shown in Fig-

ure 27. Figure 28(b) shows a scan that covers the first peak at 156 kHz, which

corresponds to a field of 233 mG. The experiment is repeated near the previous fre-

quency detuning after slightly adjusting the current of the bias coils one axis at a

time. The background magnetic field can be canceled to within ∼10 mG, limited

by the linewidth of the π-pulse and AC background fields in the lab. After zeroing

the magnetic field, the quantization axis is then defined by applying current to the

desired pair of bias coils. Finally, microwave spectroscopy is done one more time to

determine the strength of the magnetic field.
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5.3 Gated Probing/Cooling Technique

In our system, the MOT beams scattering off the quartz cell walls is the major source

of background for atom detection. It makes the detection of single atoms difficult

as the fluctuation of the background is comparable to the signal from single atoms.

On the other hand, the MOT beams are required for sub-Doppler cooling in order to

achieve trap lifetime over 100 seconds [132]. In this section, we will begin with the

discussion of single atom detection with the camera and the SPCM and move on to

the implementation of the gated probing/cooling technique. The latter has allowed

us to continuously observe a single atom with a signal to noise ratio of 25 for over

100 seconds, which is ideal for studying the light shifted spectrum of the optically

trapped single atoms.

In our detection system, each camera pixel corresponds to 2.5 µm by 2.5 µm in the

trapping region. The atom position in the single focus trap is localized within 2 by

2 pixels. On the camera, the scattering of the MOT beams corresponds to 2.5× 103

cts/s per pixel and 2.5 × 103 cts/s × 22 = 104 cts/s over the region of interest with

a fluctuation of 100 cts/s. For single atoms in the FORT excited by the MOT beams

with a detuning of −70 MHz from the shifted resonance, the count rate is '1000

cts/s on the camera, which corresponds to a signal to noise ratio of 10.

Though single atoms can be well distinguished on this system with the camera,

a technique for detecting single atoms excited with arbitrary detuning with high

repetition rate while keeping the same atom is preferred. To probe the atom near the

shifted resonance, a pair of counter-propagating probe beams are set up along the

z-axis as shown in Figure 23, which gives a maximum signal of ∼40 cts/ms on the

SPCM. For comparison, the scattering of the MOT beams off the quartz cell walls

greatly exceeds the fluorescent signal from single atoms, typically on the order of

1000 cts/ms, which gives a signal to noise ratio of ∼1. The signal to noise ratio can

be improved by reducing the field of view of the SPCM (currently 50 µm by 50 µm)
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Figure 30: Population of trapped atoms in a 1D optical lattice. The trap lifetime is
112 s. Single atom count rate is 23.4 cts/ms so there are ∼10 atoms loaded in the
trap in the beginning.

which increases the alignment difficulty of the imaging system. The more favorable

method is to completely turn off the MOT beams during the probe stage.

In order to reduce the background scattering, a gated probing/cooling technique is

employed. The MOT and the probe beams are switched on and off in an alternative

manner such that the SPCM is on during the probing period and off during the

cooling period. After each probing period, the atoms are sub-Doppler cooled by the

MOT beams to the bottom of the trap, to suppress the possibility of losing atoms

due to heating from the probe process. The total background scattering is typically

less than 3 cts/ms for the probe power used in the experiment. The resulting signal

to noise ratio is ∼25, which is a factor of 20 improvement. This technique enables us

to perform operation with repetition rate up to 10 kHz and retains the high signal

to noise ratio. Figure 29 shows the continuous observation of a single atom in the

single focus trap for over 250 seconds with the gated probing/cooling technique. For

every 100 µs, the atom is probed for 1 µs and cooled for 99 µs. Figure 30 shows the

population of trapped atoms in the 1D optical lattice continuously observed with the

same technique. It allows us to probe single atoms over a large detuning range with

a lifetime over 60 seconds, which is well suited for measuring the AC-Stark shifted

spectrum for the optically trapped atoms.
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Figure 31: Fluorescent signal of atoms in the MOT using the gated probing/cooling
technique. Single atom count rate is 18.5 ct/ms, which can be inferred from the
discrete jumps in the signal.

5.4 Single Atoms in the MOT

The gated probing/cooling technique is first applied to study atoms in the MOT.

Figure 31 shows the SPCM fluorescent signal of atoms in the MOT when it is being

continuously loaded. The discrete jumps of the fluorescent signal can be used to

determine the single atom count rate. The single atom count rate is 18.5 cts/ms and

the background is 2.5 cts/ms. For this measurement, the probe beam power is 11.5

µW, the probe beam waist is 125 µm, and the probe detuning is −6.8 MHz from the

bare atom resonance.

In Figure 32(a), the spectrum of single atom in the MOT is measured with different

probe power. The magnetic field gradient is set to∼250 G/cm to ensure only one atom

can be loaded into the MOT. The experiment data are well fitted to the Lorentzian

distribution centered near the atomic resonance. One possible source of the −2 MHz

frequency shift in the spectra is the drift of the AOM modulation source (voltage

control oscillator) in the probe laser setup and the laser locking setup as shown in

Figure 19. Another potential source of this frequency shift is the Zeeman shift, in

which case the atoms are not trapped at zero magnetic field region due to unbalanced

MOT beams. The maximum count rates for 11.5 µW and 21.3 µW probe power are
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Figure 32: (a) Spectrum of single atoms in the MOT. The probe laser is detuned
with respect to the resonance of the 5S1/2, F = 2 → 5P3/2, F ′ = 3 transition. (b)
The single atom count rates are plotted vs the probe beam powers at different probe
detunings.

very close, which indicates the atomic transition is nearly saturated. In Figure 32(b),

a plot of the count rates of single atoms in the MOT versus the probe beam powers

is presented, showing the saturation of the photon scattering rate. The data in

Figure 32(a) are fitted to the Lorentzian distribution of the two-level system scattering

rate. The data in Figure 32(b) are fitted to the photon scattering rate formula for a

two-level atom [113],

Rsc =
γ

2

s

2(1 + s)
,

s ≡ I/Isat
1 + (2δ/γ)2

, (5.1)

where s is the saturation parameter of the transition which is proportional to the

probe laser intensity I, Isat is the saturation intensity of the transition, γ is the decay

rate of the excited state, and δ is the probe laser detuning from the transition.

5.5 Measurements of The Light Shifted Spectrum

With the demonstration of the gated probing/cooling technique with single atoms in

the MOT, we’re now ready to measure the light shifted spectrum of of single atoms

in the optical dipole trap. Figure 33 shows the AC-Stark shift of the 5S1/2, F = 2
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Figure 33: AC-Stark shift of the 5S1/2, F = 2 ground states and the 5P3/2, F ′ = 3
excited states. In the experiment, different polarization of light is used to quantify
the quadratic light shifts of the excited states. The trapping potential used for this
calculation is 0.88 mK. The trap beam is linearly polarized along the quantization
axis, and the ground states are uniformly lowered by h× 18 MHz.

ground states and the 5P3/2, F ′ = 3 excited states. As shown in the figure, different

polarizations of probe can be used to quantify the splitting within the hyperfine

manifold. When the atom is pumped by linearly polarized light, the steady state

population is heavily weighted around mF = 0,±1 states [139]. On the other hand,

when the atom is pumped by circularly polarized lights, the atom is driven to the

respective stretched state at the steady state. Therefore, the spectrum of the atom

pumped by linearly polarized light can be characterized by three transitions with

relatively close shifted detuning, where as the atom pumped by circularly polarized

light can be characterized mostly by the cycling transition.

In Figure 34, the AC-Stark shifted spectrum of single atoms are measured for dif-

ferent trap depths. In these measurements, both the trap beam and the probe beams

are linearly polarized along the bias magnetic field direction (y-axis, shown in Fig-

ure 23). The atoms are initially loaded in the FORT with 0.88 mK trapping potential,
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Figure 34: (a) Spectrum measurements of single atoms in different trapping poten-
tials using gated probing/cooling technique. The probe intensity is ' 2Isat. (b) Peak
detuning vs trap depth, the slope is 67 ± 2 MHz/mK from line fitting. (c) Peak count
rate vs trap depth.
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then the trap laser power is increased/decreased to the final value for the measure-

ments. In Figure 34(a), each data point is obtained by averaging over the fluorescent

signal from one and the same atom for about 60 seconds. The gated probing/cooling

technique is used for these measurements, with typical probing and cooling time set

to be 1 µs and 99 µs, respectively. The resulting spectra fit well to the Lorentzian

distribution centered near the respective |F = 2,mF = 0〉→|F ′ = 3,mF ′ = 0〉 transi-

tions. It suggests that the single atom population is heavily weighted on the mF =

0, ±1 states after driven by the probe laser for 1 µs.

For the spectrum measurements of the untrapped single atoms (0 mK), the probing

time is reduced to 500 ns to reduce the chance of losing the atom, and the trap beam

power is switched off for 1 µs during the probing period. The AOM used for trap

beam power control (IntraAction AOM-402AF4) has a measured optical rise and fall

time (10% ↔ 90%) of 200 ns. The probe laser, trap beam control, and the gating

for the SPCM are triggered from two pulse generators (Stanford Research Systems

DG535) for independent control. The spectrum for this measurement is fitted to a

Lorentzian distribution centered at 0.4 MHz from the bare resonance, which is likely

due to a small error of the probe laser frequency relative to the atomic transition.

Figure 34(b) is the plot of the peak detuning versus trap depth. The peak detuning

is linearly dependent to the trap depth with a slope of 67 MHz/mK which compares

well with the theoretical result of 80 MHz/mK presented in Chapter 2. Figure 34(c)

is the plot of peak count rate versus trap depth, the drop in maximum count rate

at high trap depth is due to the increase of linewidth broadening. The source of

linewidth broadening was introduced in Section 2.8, and will be further discussed in

Section 5.7.
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Figure 35: The spectrum of single atom with circularly and linearly polarized probe.
The trapping potential is 0.88 mK for all these measurements.

5.6 Differential Light Shift within Zeeman Manifold

To demonstrate and quantify the mF state dependent AC-Stark shift, we change the

linearly polarized probe beams to left and right circularly polarized probe and com-

pare the results with the same trapping potential. The trap beam polarization is ro-

tated 90◦ and it is now along the probe beam propagation direction and bias magnetic

field direction (z-axis, shown in Figure 23). Figure 35 shows the spectrum of single

atoms in the single focus trap with different polarization of probe beams. The circu-

larly polarized probes drive the atom to the stretched states, making the major peak

centered at a much lower frequency. The calculation shown in Figure 33 indicates the

difference is about 35 MHz for this trap depth, which agrees well with the data shown

in Figure 35. The tails in the high frequency for the measurements with circularly

polarized probes are possibly due to either imperfect alignment between the bias mag-

netic field and the probe beam propagation direction or imperfect polarization of the

probe and trap beams. The Lorentzian fitting of the spectrum peaks are centered at
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(σ+, σ−, π) = (33.9±0.2, 36.0±0.1, 64.4±0.1) MHz with the same FWHM of 14 MHz.

From the calculation, the |F = 2,mF = ±2〉 ↔ |F ′ = 3,mF ′ = ±3〉 transitions are 34

MHz blue detuned from the bare resonant frequency and the |F = 2,mF = 0,±1,±2〉

↔ |F ′ = 3,mF ′ = 0,±1,±2〉 transitions are 71, 67, and 54 MHz blue detuned, respec-

tively. For the |F = 2,mF = ±2〉 ↔ |F ′ = 3,mF ′ = ±3〉 transitions, the measure-

ments show good agreements with the calculation. On the other hand, the measure-

ment with the linear polarized probe, the peak is about −5 MHz from the calculated

|F = 2,mF = 0,±1〉 ↔ |F ′ = 3,mF ′ = 0,±1〉 transitions. An explanation will be

provided in the next section in which the temperature measurements of these single

atoms are also presented.

The peak detunings for the σ+ and σ− probe beams are 2 MHz apart from each

other. It is smaller than the natural linewidth but it is an indication that the trap laser

is elliptically polarized and the trap beam propagation direction is not completely

perpendicular to the quantization axis. It is shown in Eq. 2.52 that the light shift

has a term linearly dependent to mF and it is non-vanishing if both of these two

requirements are not satisfied. Peak detunings separation of ∼20 MHz has been

observed in a circularly polarized trap with 1.3 mK trapping potential [39].

5.7 Temperature Measurements and Linewidth Broadening

In Chapter 2, the discussion of the linewidth broadening due to the spatial varying

light shifts has been introduced. This broadening is proportional to the temperature of

the optically trapped atoms and provides an explanation for the linewidth broadening

shown in Figure 34(a). In this section, temperature measurements of the single atoms

in the optical dipole trap will be presented. In the experiment, single atoms are

initially loaded in the trap, then the AOM controlled trap beam is switched off for a

variable amount of time and turned back on. During the trap off period, the atom

moves in a random direction with kinetic energy associated with the atom temperature
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Figure 36: Temperature measurements of single atoms in the single focus trap with
0.35 mK trapping potential fitted to the Monte-Carlo simulation at 45 µK.

and its initial position from the center of the trap. If the total energy (kinetic and

potential energy) of the atom is greater than zero when the trap is turned back on,

the atom will escape from the trap. The successful rate of recapturing the atoms is

determined by the trapping potential, the geometry of the trap and the kinetic energy

of the atoms.

Figure 36 shows the results of the drop and recapture measurements in the single

focus trap with 0.35 mK trapping potential. After successfully loading the single

atom into the trap, the probe beams and the MOT cooling beams are switched off

10 ms before lowering the trap beam power. After the pre-programmed trap off time

has passed, the probe beams and the MOT cooling beams are turned back on 10 ms

after the trap beam to determine whether if the recapture is successful or not. The

trap beam is controlled by an AOM with a measured 200 ns optical rise and fall time,

which is much shorter compare to the inverse of the trap frequencies (ν−1
r , ν−1

z ) =

(22.2, 286) µs for 0.88 mK trap depth. Each data point in Figure 36 is the average

over 100 runs of the experiment. In this case, the recapture rate is determined by

the successful recapture events of single atoms instead of the total fluorescent signal.

The results are compared to a Monte-Carlo simulation which indicates a temperature
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Figure 37: FWHM of the single-atom spectrum in different trap depths as shown
in Figure 34(a). The red solid line is the natural linewidth of the 87Rb 5S1/2 ↔
5P3/2 transition and the red dashed line is the power broadened linewidth with probe
intensity I = 2Isat.

of 45 µK.

As shown in Figure 37, the transition linewidth broadens beyond the 6.07 MHz

natural linewidth as the trapping potential increases. The linewidth is consistent

with the power broadened linewidth at low trapping potential, which is 10.3 MHz

for the probe intensity used in the experiment (I = 2Isat). The increase of linewidth

broadening is ∼15 MHz and cannot be explained by thermal Doppler broadening. A

Doppler broadened linewidth of 10 MHz corresponds to thermal atoms with ∼100 mK

in temperature, which is much larger than the trapping potential of the FORT. The

source of this broadening stems from the spatial varying light shifts which is discussed

in 2.8. As the atom moves in the trap, it experiences a range of light shifts. Using

the energy distribution of the atoms determined from the temperature measurement,

we can estimate the linewidth broadening of this effect. It also provides an expla-

nation why our measured AC-Stark shifts are slightly smaller than predicted by the

calculations. With the same temperature, the discrepancy between the measurement

and the calculation of a specific transition is proportional to its own AC-Stark shift.

The FWHM of the Maxwell-Boltzmann energy distribution function f(E) is given
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in Eq. 2.55,

f(E)FWHM = 2.02× kBT.

Figure 33 shows that for the |F = 2,mF = 0〉 ↔ |F ′ = 3,mF ′ = 0〉 transition, the shift

for the transition is ∼71 MHz/880 µK. For atoms in 0.35 mK deep trap as shown in

Figure 36, the temperature is 45 µK. The corresponding broadening is,

linewidth broadening = 2.02× 45µK× 71

880

MHz

µK
= 7.3 MHz.

Along with the power broadened FWHM linewidth of 10.3 MHz, the final FWHM

linewidth is about 12 MHz. As the trapping potential increases, the cooling laser

(centered at −23 MHz from bare resonance) is further red detuned from the shifted

resonance, resulting in reduced cooling efficiency.

5.8 Probe-Induced Heating

The loss mechanisms of the optically trapped neutral atoms include the collision with

background molecules, parametric heating from the trap laser intensity fluctuation

[136, 138], the heating from the radiation pressure during the detection process, etc.

For our system, the 10−11 Torr background pressure and the stability of the trapping

laser allow us to achieve trap lifetime greater than 100 seconds. On the other hand,

continuous detection of optically trapped atoms with near resonant laser can heat the

atoms out of the trap in far less than a second. Therefore, it is important to study

the probe-induced heating and use this information to develop neutral atom qubits

with long storage time. The experiments in this and the following sections are done

before the implementation of the new single focus trap and hence are performed in

the 1D optical lattice.

In order to study the heating mechanism of the probe beams induced on the

atoms, we measure the temperature of the atoms in a 1D optical lattice after probing

the atoms. After the initial loading of atoms into the 1D optical lattice, we use
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Figure 38: Temperature measurements of atoms in the 1D optical lattice with 1.5
mK trapping potential for studying the probe-induced heating. The probe intensity
is ' 0.5Isat and the probe detuning is +33.2 MHz from the bare resonance. The
results are fitted to the Monte-Carlo simulation to determine the temperature of the
atoms. (a) Temperature measurements for after atoms being probed for 0, 10 µs, 20
µs, and 40 µs. (b) Zoom in of (a) showing the first 300 µs. (c) The temperature of
the atoms versus the probe time.
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the camera to take a background subtracted image with 1 s exposure time. The

MOT cooling beams are turned off 10 ms before applying probe laser for different

durations, then the trap beam is switched off for a pre-determined time. Another

background subtracted image is taken after the MOT cooling beams are turned back

on to determine the atom recapture rate. For each data point in Figure 38(a), the

fluorescent signal within the region of interest (9 by 32 pixels) is summed over 50

runs of the experiment to determine the atom survival rate. There are on average 10

atoms loaded in each run.

The trap beam has a measured 5 µs slow switch-off time due to the signal source

(National Instruments PCI-6713) for controlling the AOM modulation source has a

comparable switch-off time. In the single focus trap setup, it is replaced with a pulse

generator (Berkeley Nucleonics Corporation Model 555) so that the switch-off time

is limited by the optical rise and fall time of the AOM (200 ns).

The drop and recapture rate of atoms in the 1D optical lattice is plotted in Fig-

ure 38(a). The data is fitted to the Monte-Carlo simulation and the heating rate of

the atoms due to the probe beams is plotted in Figure 38(c); the straight line fit has

a slope of 2.2 µK/µs. The power of the probe beams are 1.38 µW and the detuning of

the probe is +33.2 MHz from the bare resonance. The average count rate measured

with the SPCM for these probe and trap parameters is 6 cts/ms, which corresponds

to photon scattering rate of

photon scattering rate =
detected count rate

total collection efficiency

=
6 cts

ms
0.45%

= 1.3
photon

µs
.

Hence the average heating rate is 1.7 µK per scattering event. For comparison, with a

perfectly balanced pair of counter-propagating beams, the average energy increase for

each photon absorption and re-emission event is twice the recoil energy [113], which

is 2×362 nK. The additional heating could come from the imbalanced probe beams
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Figure 39: Plots of the single atom lifetime (in cycle) versus the probe time in each
cycle. The probe detuning is 33.2 MHz from the bare resonance.

pair or if the actual photon collection efficiency is lower than the estimated value used

in the calculation.

As shown in Figure 38(b), the recapture rates drop by ∼10% within the first 10

µs and continue to decay at a different rate. This results from highly anisotropic

trapping geometry for the 1D optical lattice. The ratio of the high and the low trap

frequencies is 60 for the 1D optical lattice and 13 for the single focus trap. With the

same kinetic energy, it is easier for the atoms to escape from the trap along the tight

confinement axis, the trap beam direction in 1D optical lattice and radial direction

in single focus trap, during the trap off time.

With the knowledge of probe-induced heating, we will study the relation between

trapped atom lifetime and the probe time per cycle in the following section.

5.9 Single Atom Trap Lifetime vs Data Acquisition Time

In Section 5.3, the gated probing/cooling technique was introduced. The cycle time

and the probe time within each cycle is chosen such that the photon scattering for
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Figure 40: Plots of the single atom lifetime (in cycle) versus the detected count per
cycle.

the chosen probe time does not heat the atom out of the trap, and the cooling

time is sufficiently long for the cooling beams to recool the atoms. For example, in

the previous section, the probe-induced heating measurements suggest each photon

scattering event heats up the atom by 1.7 µK. Without cooling, a single atom in a 1

mK trap can scatter at most 590 photons before leaving the trap. It is important to

maximize the probe time per cycle without significantly reducing the trap lifetime.

Figure 39 shows the plots of the single atom lifetime in a 1.1 mK trap versus the

probe time in each cycle for various probe power. The cycle time ranges from 50 µs

to 4 ms to ensure that the atoms are cooled to the bottom of the trap. Due to the

various cycle time used in these measurements, the trap lifetime is expressed in the

number of probing/cooling cycles instead of in the unit of time. For low probe power,

it is possible to keep the single atoms for nearly 1000 cycles with 100 µs probe time.

In the above measurements, the single atom count rates for different probe power

settings are, (12, 4.9, 2.9, 1.5) µW = (30, 20, 12, 8) cts/ms, respectively. Figure 40

shows the single atom lifetime versus the detected counts per cycle. As stated earlier,
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a trapped atom cannot scatter more photons than that which the corresponding

heating exceeds the trapping potential. Therefore, the single atom lifetime should be

closely related to the total number of scattering events (or detected counts) per cycle

instead of probe power or probe time per cycle. In the figure, the black, gray, and blue

curves collapse rather closely to each other, which supports the above hypothesis.

5.10 Summary

In summary, we measured the mF state dependent AC-Stark shifts with different

polarizations of probe beams with single atoms in the single focus trap. The calcula-

tion of the AC-Stark shifts for the F = 2 → F ′ = 3 transitions agrees well with the

spectrum measurements of single atoms in the FORT. The trapping environments

and the heating due to the probing process are also characterized for atoms in the

trap, which can be used to guide future experiments with single atoms in the optical

dipole traps.
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CHAPTER VI

DYNAMICS OF CAVITY LIGHT FIELD IN A DUAL

LATTICE CAVITY QED SYSTEM

In this chapter, I will discuss our experimental demonstration of deterministic delivery

and selective addressability of single atoms to an optical cavity. I will also discuss a

second experiment that couples atoms in dual quantum registers to an optical cavity.

In the latter case, rubidium atoms are loaded into two independently controlled optical

lattices, and the dynamics of the cavity mediated interaction are explored with this

dual-conveyor cavity system.

6.1 Neutral Atom Register

The preparation and coupling of quantum registers to a cavity mode is a promising

technology for the experimental realization of proposals for quantum computing [140,

141] and probing novel quantum phases [142]. In early experiments, loading atoms

into the cavity is done in a probabilistic manner; either from free-falling laser-cooled

atoms initially prepared in a magneto-optical trap (MOT) [58], or transferred atoms

from a MOT using an optical dipole trap with unknown number of atoms [54, 67].

Deterministic loading of single atoms to the cavity and the precise control of these

single atoms are required for some practical applications, and these are demonstrated

by loading and transferring single atoms from a single-atom MOT [55]. Here we

present an alternative route: load the optical dipole trap from a MOT with unknown

number of atoms, bring these randomly distributed atoms through the cavity, use

the time stamp of the signal to determine the positions of the atoms, and move the

desired atom(s) back to the cavity on demand. This technique can be expanded to
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Figure 41: The schematic of the experiment. For simplicity, only one pair of MOT
beams are shown in the figure, the other MOT beams lie on the x-y plane.

multi-conveyor coupled to a cavity and represents an important step towards scalable

quantum information processing designs [143, 144].

6.1.1 Experimental Setup

The experiment begins with capturing and laser cooling 87Rb atoms in a MOT. The

laser cooled atoms are loaded into an optical conveyor [25] and transported to a

cavity situated 3.2 mm away from the MOT. Figure 41 shows an illustration of the

experimental setup. The MOT has a six-beam configuration with powers of 4 mW

per beam and a diameter of 12 mm. The MOT is operated with a magnetic field

gradient of ∼5 G/cm in order to sparsely load the atoms over half a millimeter in the

optical dipole trap. In this section, only one of the lattices is used.

The far-off resonant trap (FORT) consists of two counter-propagating beams from

a fiber laser operating at λ = 1064 nm. The foci of the lattice beams are located

at the cavity, with a waist of 18 µm and optical powers of 2.5 W each, providing a
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trap depth of U/kB = 2.1 mK at the cavity and 170 µK at the MOT. The dipole

trap beams are controlled by two phase-locked acousto-optical modulators (AOMs).

When the frequencies of the two beams are the same, they create a stationary standing

wave trap for atom storage. However, when a frequency difference is induced between

the two AOMs, the resulting traveling wave forms an atomic conveyor lattice with

submicron precision [55, 145], which can deterministically transport the atoms from

the MOT to the cavity. The speed of the traveling wave is related to the frequency

difference ∆ν by,

v =
λ∆ν

2
.

By inducing a 5 kHz frequency difference between the lattice beams, the atoms are

transported towards the cavity with a velocity of 2.67 mm/s.

The atoms are moved 2.6 mm from the MOT and stopped about half a millimeter

from the center of the cavity. They are then brought slowly through the cavity mode

at a velocity of 1 ∼ 5 mm/s. In order to individually resolve the atoms, two probe

beam pairs with a Rabi frequency of Ω
2π

= 10 MHz per beam are set to excite the atoms

as they enter the cavity mode. Each probe consists of two frequencies, a pumping

light locked 8.9 MHz red-detuned from the F = 2 → F ′ = 3 transition of 87Rb and

a repumping light locked to the F = 1 → F ′ = 2 transition to pump the atoms out

of the F = 1 dark state. The two probe beams are focused at the cavity with a 60

µm waist and counter-propagate in a lin ⊥ lin polarization configuration that allows

the atoms to experience constant illumination, independent of position. With the

combination of the probe, the AC-Stark shift due to the FORT, and the enhanced

emission into the cavity mode, the atoms experience cooling when situated inside the

cavity mode [146].

The cavity used in this experiment is constructed from two superpolished concave

mirrors with the same radius of curvature (R = 2.5 cm) separated by 500 µm as shown

in Figure 42. The cavity mirrors have transmission losses of 8 ppm and 100 ppm, so

93



Figure 42: A close up picture of the cavity. The mirrors are coned down from a 3
mm diameter to a final surface diameter of 1 mm, which is machined from a 7.75 mm
diameter mirror. The cavity mirrors are glued on to a piezo ceramic and separated
by 500 µm.
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Figure 43: The top view of Figure 41 with one lattice and the cavity (gray circle)
shown. The cavity position can be adjusted in the x-y plane (along the blue ar-
rows directions) with the two 1D translation stages for maximizing the atom-cavity
coupling rate.

that the photons escaping the system from the 100 ppm side is 12.5 times as much

of the other side, making it a one-sided cavity. For cavity length control, the mirrors

are glued on a piezo ceramic using Varian Torr Seal. A hole with ∼2 mm diameter is

drilled at the center of the piezoceramic for the dipole trap laser beams to go through.

The cavity TEM00 mode has a waist of 25 µm, and the total measured losses are 300

ppm. The vacuum chamber is mounted on a 1D translation stage which is mounted

on another 1D translation state; it allows us to adjust the cavity position with respect

to the FORT beams foci as shown in Figure 43. The overlap between the cavity mode

and the lattice beams has to be optimized for maximizing the atom-cavity coupling

rate.

For this system, the cavity QED parameters are 1
2π

(g0, κ, γ⊥) = (9.3, 7.0, 3.0) MHz,

respectively, where g0 is the maximum atom-cavity coupling rate, κ is the decay

rate of the cavity, and γ⊥ is the transverse decay rate of 87Rb. From Eq. 3.10

the single atom cooperativity of this system is C1 = 2.8, hence the system operates

in the intermediate coupling regime. The cavity is locked on resonance with the

F = 2 → F ′ = 3 transition via an off-resonant beam (λ = 784 nm) that is locked to

the 780 nm laser via a transfer cavity. The transfer locking technique is described in
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Figure 44: An background subtracted image of five atoms in the optical lattice taken
in a different system. The pixel size is 2.5 µm by 2.5 µm. The two atoms on the very
left are separated by 10 µm.

detail in [118, 119].

In order to separate the different wavelengths in the output of the cavity, a nar-

rowband laserline filter is used such that the 784 nm locking light is reflected and the

780 nm atomic signal passes with 99% efficiency. The 784 nm light is fibercoupled into

an optical heterodyne system to produce a locking signal. Then the 780 nm light is

filtered once more with another narrowband laserline filter with 99% efficiency before

it is fibercoupled into a single photon counting module (SPCM) for photon count-

ing. As the atoms enter into the cavity mode and are excited by the external probe

beams, the SPCM detects the scattered photons from the passing atoms with a total

efficiency of 20%. This efficiency accounts for a 50% quantum efficiency of the SPCM

and 40% efficiency from fiber coupling and transmission losses.

6.1.2 Experimental Results

Due to the method used to load the atoms into the optical dipole trap, the atoms

are randomly distributed in the optical lattice. The neutral atom register is slowly

scanned through the cavity mode in order to separately detect single atoms. For the

case that the separation between adjacent atoms is less than twice the cavity mode

waist (∼50 µm), we will not be able to resolve them. To avoid this, the loading time

of the MOT is set to 2 ∼ 5 seconds with gradient field of ∼5 G/cm so that the atom

density in the MOT is low and the atoms are sparsely loaded in the optical lattice.
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Figure 45: Single atom in the cavity with continuous observation about 10 seconds.
The Rabi frequency is 19 MHz, the probe beam detuning is −8.9 MHz, the cavity
detuning is −2 MHz, and the AC-Stark shift is ∼130 MHz.

Figure 44 is an image of five atoms randomly distributed in an optical lattice. The

image is taken in a different 1D optical lattice setup with higher numerical aperture

imaging system (Mitutoyo Corp. Plan Apo NIR Infinity-Corrected 20×, NA = 0.4) for

the purpose of showing the randomness of loading process. In the cavity experiment,

the restricted optical access makes it difficult to use the same imaging optics, hence

a microscope objective with longer working distance (37.5 mm) and lower numerical

aperture (Mitutoyo Corp. Plan Apo NIR Infinity-Corrected 5×, N.A. = 0.14) is used

instead. The lower photon collection efficiency and the stray light scattering off the

cavity mirrors make it impossible to detect single atoms using the camera.

Figure 45 shows a single atom delivered to the cavity via probabilistic loading

and continuously observed for 10 seconds before lost from the trap. Once the atom

is transferred to the cavity, it is excited by two counter-propagating external probe

beams. For cavity frequency greater than the probe laser frequency, ωc−ωp = ∆c−∆p

> 0, an atom absorbing a photon from the external probe lasers and emitting it into

the cavity mode causes the atom to lose energy. Continuous observation of atoms in

the cavity with long lifetime is realized with this cavity-assisted cooling [54].

Deterministic loading of single atoms to the cavity have been demonstrated [55].

In this deterministic single atom loading scheme, only one single atom can be used
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for each run of the experiment, which prohibits the possibility of realizing multi-

qubit operation in a cavity. Here we present a technique to identify the randomly

distributed atoms in the optical lattice and bring the desired atoms back on demand.

In this fashion, multiple single atoms in the optical lattice can be coupled to the cavity

one after another in a controlled manner, providing a promising route for realizing

complex and scalable quantum information experiment designs.

Real time analysis of the cavity output signal in the course of lattice movement

allows us to determine the position of a specific atom and move it back into the cavity

mode on demand. We show this process in Figure 46. In (a), four atoms in the lattice

are initially brought through the cavity mode with a velocity of 2.67 µm/ms. It can

be seen that the second atom is 190 µm past the first atom and the third atom is 190

µm past the second atom. Finally, the last atom is 240 µm further away from the

third atom. For the deterministic return, we focus on the first atom that entered the

cavity mode. The position of the atom of interest is derived by measuring how much

time the atom continued to travel in the optical trap after it was seen in the center

of the cavity mode. Using this information, we can bring the desired atom back and

continuously observe it in the cavity, as shown in (b). It is clear that the correct

atom is addressed because the other three atoms are detected as they go through the

cavity mode in the process of bringing the first atom back. For (c) and (d), the lattice

speed is 1.60 µm/ms and the program is pre-coded such that, upon detecting 2 or

more atoms, the lattice will bring the last atom back to the cavity mode and detect

for 0.5 seconds, then it will bring the first atom to the cavity mode for continuous

observation. The separation between these two atoms is 560 µm.

The success rate of bringing two atoms back to the cavity one after another as

shown in Figure 46(c) and 46(d) is 5%. The failure comes from atom losses after

the initial scanning and the distribution of atoms in the lattice, either too dense to

resolve individual atoms or no atom at all in the scanning region. The atom losses
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Figure 46: Deterministic selectivity of atoms in a register. In (a), four atoms are ini-
tially swept past the cavity mode with a velocity of 2.67 µm/ms. The atom of interest
is located at 150 ms, the first atom that went through the cavity mode. The position
of the first atom is obtained by determining the time stamp of the corresponding
peak signal, then the atom is returned back to the cavity and continuously observed
in (b). As the first atom was brought back to the cavity, the other three atoms are
detected as they passed through. The cooling beams were −8.9 MHz detuned from
the F = 2→ F ′ = 3 transition with a Rabi frequency of 19 MHz, and the cavity was
2 MHz detuned from the F = 2→ F ′ = 3 transition. In (c) and (d), the lattice speed
is 1.60 µm/ms. The program is pre-coded such that, upon detecting 2 or more atoms,
the lattice will bring the last atom back to the cavity mode and detect for 0.5 seconds,
then it will bring the first atom to the cavity mode for continuous observation. The
success rate for this operation is around 5%.
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Figure 47: Illustrative diagram of two different methods used to distribute optical
power for dual lattice setup.

could be improved by increasing the trapping potential of the lattice. The latter can

be improved by increasing the MOT size (originally ∼0.5 mm3), scanning range, and

trapping potential. Together, more atoms will be loaded into the lattice across more

lattice sites, resulting a higher chance of getting resolvable single atoms.

6.2 Dual Conveyors

In this section, we will explain the experimental approach for adding a second atom

conveyor to the system and demonstrate the coupling of atoms in two independent

optical conveyors to the same cavity. With the ability to selectively address the

desired atoms of each lattice in a dual lattice system, several quantum information

protocols can be realized [143, 144]. It also allows us to study the cavity-assisted

interaction between the independently controllable atoms. The experiment results

are compared to the semi-classical model developed in Chapter 3.
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Figure 48: Illustrative diagram of the dual lattice cavity system. The two lattices
are separated vertically by 150 µm at the cavity.

6.2.1 Experimental Setup

In order to change the system from a single atom register conveyor to a dual conveyor

system, two different approaches have been taken to distribute the available optical

power for the FORT beams as shown in Figure 47. In the first attempt, the zeroth

order beams of the first AOMs are recycled to produce the other two necessary beams.

In the second attempt, the initial fiber laser beam is split into four beams with half

waveplates and polarizing beamsplitters (PBS) before sending through AOMs. In the

first scenario, less optical power goes into the unused zeroth beams in the very end, at

the expense of beam profile quality. The second method yields less power but better

beam profile. The second method is used because it is easier to create two lattices

with relatively close trapping potentials in this way. In both cases, the FORT beams

have opposite polarization for different lattices, ensuring that the two traps do not

interfere. This also allows us to combine the FORT beams using PBS with minimal

losses.

An additional pair of probe beams are constructed for the second lattice with

shutter controlled pumping and repumping lights. This allows us to excite atoms in

both lattices, or only excite atoms in one lattice and shine repumping light on atoms

in the other lattice to keep them out of the F = 1 dark state. In this case, atoms in

the second lattice are not directly driven by the external probe lasers, instead, they
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Figure 49: The change of the cavity output when the second lattice brings atoms
into the cavity at 450 ms. For both figures, the number of atoms in each lattice is less
than three. The cavity detuning is −4 MHz and the probe beam detuning is −8.9
MHz.

are driven by the cavity photons. The latter scheme is fundamentally different from

a multi-atom-cavity system with only one optical dipole trap and one external probe

lasers. An illustrative diagram of the dual lattice cavity system is shown in Figure 48.

The two lattices are separated vertically by 150 µm at the cavity, sufficiently apart

so that the probe beams excite atoms only in one of the lattices (probe beam waist

= 60 µm). The atoms are loaded simultaneously from the MOT, but each lattice has

independent translational control.

6.2.2 Dual Registers with A Cavity

In Section 6.1.2, the delivery of the desired atoms to the cavity is performed and

the results are shown in Figure 46. In order to perform the proposed schemes for

the controlled-Z, controlled phase-flip and Hadamard gate operations, a dual lattice

system with two atoms in each lattice is required [143, 144]. As shown in Figure 46(c)

and 46(d), the success rate of deterministically bring back two atoms, one after an-

other is 5%. Therefore, the success rate of having two conveyors performing this task

is 0.25%, making it impractical to test the above schemes before improvements are

made to this technique. Hence we began to study the interaction between atoms in

these two independently controllable lattices with the current system.

In the experiment, the first lattice brings atoms to the cavity with its dedicated
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probe beams on, and continuously observe the atoms for a period of time and the

second lattice brings more atoms to the cavity with only repump beams on. The

probe beams for the lattices are separated by 150 µm and there is no cross addressing

of atoms in the wrong lattice. Figure 49 shows the response of the cavity signal as the

second lattice brings atoms to the cavity. It is peculiar that the cavity signal could

either increase or decrease when the second lattice brings atoms to the cavity. In the

rest of the chapter, we will focus on the study of this interaction and compare the

results to the semi-classical model developed in Chapter 3.

In the following, we will refer to the two lattices as L1 and L2. In order to study

the dynamics of the cavity photon field when L2 brings atoms into the cavity mode,

the experiment is done with fixed probe beam detuning and various cavity detuning.

Each lattice has 5 ∼ 15 atoms in the cavity mode on average. L1 brings atoms in with

its dedicated pumping and repumping laser turned on, L2 brings in atoms 500 ms

later with only repumping laser turned on. The atoms in L2 are indirectly excited by

the cavity photons. Due to the lack of external probe beams and the subsequent three

dimensional cooling, atoms in L2 have much shorter lifetime compared to atoms in L1.

As atoms in L2 gradually leave the trap, the cavity output signal changes accordingly.

In Figure 50 we show results at three different cavity detuning. The response of the

cavity field depends on the cavity detuning and the number of atoms in L2. In

Figure 50(a), as L2 brings atoms into the cavity mode, the cavity output signal drops

significantly and as the atoms leave L2, the cavity signal resumes its original level. In

Figure 50(b), the cavity output signal initially goes down as L2 brings in atoms and

goes back up and exceeds the original level as the atoms leave L2. After all atoms

in L2 are gone, the cavity output signal resume its original level. In Figure 50(c),

the cavity signal goes up as L2 brings in atoms and goes back to its original level as

atoms left L2.

In order to explain result shown in Figure 50, we use the semi-classical Hamiltonian
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Figure 50: The change of the cavity output when the atoms in L2 enter/leave the
cavity mode under different cavity detuning, (a) −14 MHz (b) −2 MHz (c) 4 MHz
and the probe beam detuning is −8.9 MHz. With sufficient cooling, atoms in L1
typically have lifetime over 10 seconds unless the cavity detuning is near resonant.
Indirect cooling for atoms in L2 greatly reduces the lifetime to less than 2 seconds
for most of the cavity detuning.
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Figure 51: Calculation of the cavity output spectrum with different number of atom
in L2 using semi-classical Hamiltonian. The parameters used in the calculation are,
AC-Stark shift = 130 MHz (2 mK trap depth), Ω

2π
= 6.7 MHz, and ∆p

2π
= −8.9 MHz.

described in Section 3.3.2,

Hsc = (∆1 −∆p)σ̂N1+σ̂N1− + i
√
N1g0(â†σ̂N1− − σ̂N1+â) +

√
N1Ω(σ̂N1+ + σ̂N1−)

+(∆2 −∆p)σ̂N2+σ̂N2− + i
√
N2g0(â†σ̂N2− − σ̂N2+â) + (∆c −∆p)â

†â, (6.1)

where Ω is the Rabi frequency of the external pumping light, ∆p and ∆c are the

pumping light and cavity detuning from the bare atom F = 2 → F ′ = 3 transition,

respectively. N1 and N2 are the number of atoms in each lattice, ∆1 and ∆2 are the

AC-Stark shift for atoms in the corresponding optical dipole trap. σ̂+ and σ̂− are the

raising and lowering operator for the atom, â† and â are the creation and annihilation

operator for the photons in the cavity mode. Figure 51 is a plot of the cavity output

signal versus the cavity detuning with 5 atoms in L1 and different numbers of atoms

in L2. The vertical gray dashed lines mark the regions that correspond to the three

different types of signal seen in Figure 50 as atoms in L2 leave the trap. With constant

number of atoms in L1, the increasing number of atoms in L2 shifts the peak to the

higher cavity detuning with nearly constant height. On the other hand, changing

the number of atoms in L1 will shift the peak as well as the peak height. Hence the

results shown in Figure 50 is unique to the cavity system with two independently
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Figure 52: Lifetime of atoms in L2 that is indirectly cooled by the cavity photons.

addressable lattices.

The experiment is repeated 100 times at each cavity frequency ranging from −24

MHz to 4 MHz with increment of 2 MHz. The probe laser frequency and its intensity

is the same throughout the experiment. The lifetime of atoms in L2 is shown in

Figure 52. The signal level from atoms in L1, the ratio of signal after to before L2

brings atoms to the cavity, is shown in Figure 53. As stated earlier, the lack of cavity

cooling makes the atoms in L2 have much shorter lifetime compared to the atoms in

L1. For atoms in L1, absorbing a photon from the external probe and emitting it into

the cavity mode cools the atom if the probe laser detuning is lower than the cavity

detuning; absorbing a photon from the external probe and emitting it out of the

cavity from the side also cools the atom if the probe laser frequency is less than the

light shifted resonance frequency. On the other hand, atoms in L2 only absorb cavity

photons, therefore the cooling and heating mechanisms are different from the atoms

in L1. Qualitative analyses of these two mechanisms for atoms in L2 are presented

below.

For atoms in L2, the absorption of cavity photons and re-emission back into the

cavity mode does not cool the atoms since the energy of the absorbed and emitted

photon have the same energy. For every absorption or emission event, the atom gains
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a momentum of ~/λc in either direction with equal opportunity (λc is the wavelength

of the cavity photon). This is a one-dimensional random walk in the momentum

space and the rms deviation of the momentum distribution after Nev absorption and

emission events is
√
Nev~/2λc. Therefore, this repeated cavity photon absorption and

emission process heats up the atom in L2 and the heating rate is proportional to

the cavity photon number, which scales linearly as the cavity output signal. In the

experiment with about 10 atoms in L1, the cavity signal is at maximum for cavity

detuning around −5 MHz, which corresponds to the maximum heating rate and the

shortest lifetime for atoms in L2.

In our experiment, the rate of photon emitted into the cavity mode is
2g20
κ+γ⊥

=

8.2 MHz [44] and the rate emitted out of the cavity mode is γ⊥
2π

= 3.0 MHz. In this

intermediate coupling regime, the photon emitted into modes other than the cavity

mode are not negligible and have to be taken into account as well. The emitted

photons from the light shifted atoms are ∼130 MHz with respect to the bare atomic

resonance for 2 mK trapping potential and the absorbed photons from the cavity mode

with cavity detuning around −10 MHz. Therefore, an atom absorbing a cavity photon

and emitting it out of the cavity causes the atom to lose energy. The competition

between the heating and cooling effects give rise to the observed lifetime for atoms in

L2 as shown in Figure 52, where the heating is dominant with cavity detuning around

−5 MHz.

The semi-classical Hamiltonian qualitatively shows the dynamics of the cavity

field as the number of atoms in the indirectly cooled lattice changes accordingly.

Figure 15(a) shows the spectrum of the cavity output signal with different number

of atoms in L2 using Monte-Carlo simulation and the semi-classical Hamiltonian. In

Figure 53, we present data fitted with the results of calculation obtained from the

semi-classical Hamiltonian. The parameters used in the calculation are, AC-Stark

shift = 130 MHz (corresponds to 2 mK trap depth), Ω
2π

= 6.7 MHz, and ∆p

2π
= −8.9
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MHz. There are 5 atoms in the lattice directly cooled by the external probe beams,

and the 4 different curves in Figure 53 represent (5, 10, 15, 20) atoms in the other

lattice, respectively.

The discrepancy between the calculation and the results of the experiment stem

from the number of atoms in L1 and L2 are not the same for each run, and the number

of atoms used in the calculation comes from the steady state cavity signal, which is

smaller than the lattice originally brought in.
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CHAPTER VII

CONCLUSION AND OUTLOOK

7.1 Cavity QED Experiment

In this thesis, a cavity system with the ability of detecting individually trapped atoms

in a 1D optical lattice has been presented. The developed techniques of deterministic

delivery and selective addressability of single atoms in the cavity system allow the

next generation experiments to advance in utilizing single-atom qubit in the cavity

system for quantum information protocols.

A dual lattice cavity system was explored in the many-atom regime. The system

consists of two 1D optical lattices coupled to the same cavity with dedicated external

probe lasers. The optical lattices and the probes are independently controllable and

the interactions between atoms in these two lattices through the cavity photons have

been observed. A semi-classical model was established based on the Jaynes-Cummings

model with low number of atoms and it well describes the dynamics of the interaction

between the atoms in these independently controlled lattices.

Performing logic gate operations and generating large-scale qubits have always

been important research goals in the field of quantum information science. Proposed

schemes for implementing controlled-Z, controlled phase-flip and Hadamard gates on

two atomic qubits through cavity-assisted interaction in a dual lattice cavity system

have been made [143, 144]. The dual lattice cavity system combined with the ability

to identify single atoms in the 1D optical lattice and bring them back into the cavity

on demand suggests a potential way to scale up the number of qubits in the cavity

system. This is similar to the concepts of the scalable ion trap designs, where the

trap is divided into the interaction region (trapping sites in the cavity mode) and
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the storage regions (trapping sites outside the cavity mode). The cavity-assisted

interaction in the strong coupling regime enables gate operation rates much faster

than the decoherence rate, and the long storage time of single atoms in the optical

traps makes it possible to greatly increase the repetition rate by reusing the qubits

many times before losing them from the trap. Future cavity QED experiments can be

envisioned that will provide both features presented in this thesis and enable future

breakthroughs in the field of quantum information science.

7.2 Single Atom Trapping Experiment

In the other half of the thesis, experimental work on the characterization of single

atoms in the optical dipole traps and the measurements of single atom fluorescent

spectroscopies have been presented. The objective is to provide a extensive study on

the optically trapped single atoms and the heating mechanism during the detection

process for utilizing single atoms as long-lived atomic qubits.

The work begins with the construction of our newly designed single focus trap

that uses the same optics as the detection system. The high numerical aperture

microscope objective allows us to focus the 1064 nm trap beam to 2.5 µm minimum

waist. This creates a single focus trap in the collisional blockade regime, which is

ideal for the single atom experiments.

Next, the trapping potential is characterized by trap frequency measurements and

compared to our previous 1D retro-reflecting optical lattice design. This new trap

reduces the optical power required to create the same trapping potential compared

to the 1D retro-reflecting optical lattice by a factor of 5; therefore, allows us to store

single atoms in a much deeper trap that is robust against the probe induced heating.

Improvements have also been made to the detection system. The gated prob-

ing/cooling technique allows us to continuously observe long-lived atoms with high

signal to noise ratio that is comparable to the destructive detection methods. Single
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atom fluorescent spectroscopies with linearly and circularly polarized probe beams

are taken with this technique to demonstrate and quantify the differential light shifts

of the 5P3/2 F
′ = 3 Zeeman states.

The temperature of the atoms in the optical dipole traps are measured with the

drop and recapture technique, which leads to the study of probe induced heating.

The relation between single atom storage time and probe time per cycle is explored

under different conditions, providing a better understanding on the trade-off between

atom storage time and signal strength.

The future work of this experiment will be focused on utilizing these individually

trapped atomic qubits in quantum information protocols based upon the current

results. For instance, optical pumping is essential in the generation of entangled

photon pairs [58, 141]. The optical pumping of 87Rb atoms to the |F = 2,mF = ±2〉

→ |F ′ = 3,mF ′ = ±3〉 cycling transition can be achieved by shining the σ+ and σ−

lights resonant to the F = 2 → F ′ = 3 transition. On the other hand, 87Rb atoms

can be optically pumped to the |F = 2,mF = 0〉 state by shining linearly polarized

F = 2 → F ′ = 2 light. The dipole forbidden |F = 2,mF = 0〉 → |F ′ = 2,mF ′ = 0〉

transition prevents the atom being pumped after it falls into the |F = 2,mF = 0〉

state. In both cases, a repumping laser is needed to bring the atoms out of the F = 1

dark state.

The newly designed single focus trap allows us to increase the trapping potential

to 10 mK with the existing apparatus; therefore, significantly increases the amount

of the maximum scattered photons from a single atom before being heated out of the

trap. The increase in the trapping potential would drastically increase the differential

light shifts of the 5P3/2 excited states to over 100 MHz; which would, in turn, greatly

reduce the optical pumping efficiency. This can be prevented by implementing the

scheme discussed in Chapter 2 to eliminate the light shift quadratically dependent

on mF ′ . Another solution is to utilize a electro-optic modulator (EOM) to create
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sidebands that simultaneously address these well-separated transitions.

With these improvements, robust and long-lived single-atom qubits can be imple-

mented for quantum information experiments that require precise addressing of the

energy levels, and hence provides foundations for future developments in the research

of quantum information science.
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APPENDIX A

PROGRESS TOWARDS MECHANICAL OPTICAL

CONVEYOR BELT

In Chapter 4, the technique of transporting atoms from the MOT to the cavity with

optical conveyor belt is introduced. A high power beam is required for 3 ∼ 4 mm

travel distance with sufficient trap depth. In the experimental setup of the optical

conveyor belt, the AOM efficiency of the first order beam usually ranges from 60% to

70%. Along with other losses, 9 ' 10 W of the total 18 W optical power is available

for the trap beam. In the system with two optical conveyor belts, the trap only works

marginally.

On the other hand, in the cavity experiment where strong interaction between the

atoms and the cavity is desired, the cavity mirror spacing is typically on the order

of hundreds of µm. A high power gaussian beam passing through the cavity will

inevitably heat up the cavity. In our experiment, sending laser beams with ∼8 W

optical power through a 500 µm cavity will thermally expand the cavity length by

about 2 × 780 nm through inspection of the cavity mode, and it takes over an hour

to reach the equilibrium. These are the two major reasons that drive the pursuit of

a new trap design that requires less optical power.

A retro-reflecting optical lattice is a possible candidate for the goal of using the

least optical power to create the trap with the same trapping potential. Wave en-

velopes in the retro-reflecting optical lattice can not be moved in the same fashion as

the counter-propagating beam optical lattice. In Figure 54, it is shown that by phys-

ically moving the retro-reflecting mirror, the wave envelopes and the trapped atom

move over the same distance. Without the need for setting up the counter-propagating
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MirrorTrapped Atoms

d

Figure 54: In the retro-reflecting optical lattice, the mirror defines the node of the
standing wave. By moving the mirror along the beam propagation direction, the
wave envelopes, and hence the trapped atom also move in the same direction over the
same.

beam and the use of an AOM, only ∼40% of the optical power is required to achieve

the same trapping potential. In this chapter, we will focus on the developments of

mechanical optical conveyor belt.

A.1 Experimental Setup

One of the best technologies for positioning a physical object with submicron precision

is the piezoelectric stacks. Typical travel distance of a preloaded piezo actuator ranges

from tens of microns to hundreds of microns, which is much shorter than the distance

between the MOT and the cavity in the experiment. Though long travel distance

can be achieved by mounting several piezo actuators in series, it requires mounting

space over a meter which is not realistic in our experiment. The cost and space

effective solution is to combine the pneumatic cylinder (Clippard AF-RSR-10-1/2-

V) and the open-loop preloaded piezo actuator (Physik Instrumente P840.60), in

which the pneumatic cylinder pushes the mirror for several millimeters and the piezo

actuator is responsible for precision positioning of the atoms relative to the cavity

mode. Figure 55 shows the schematic of the experiment. The retro-reflecting mirror

is mounted on a 1D translation stage (S1), and the stage motion is controlled by a
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Figure 55: Illustrative digram showing the setup for the mechanical optical conveyor
belt. The retro-reflecting mirror is mounted on a 1D translation stage (S1). The
stage is pushed by the pneumatic cylinder when the valve to the air supply is open,
stopped when the stage hits the rubber glued on the preloaded piezo stack mounted
on another translation stage (S2).

pneumatic cylinder. A 3-way valve (Clippard ET-3-6 VDC) is utilized for external

control of the air flow from the compressed air tank to the cylinder. The preloaded

piezo actuator, which is also mounted on a 1D translation stage (S2), is used to stop

the motion of S1 along with the mirror. The gap between the tip of the piezo actuator

and S1 corresponds to the maximum travel distance of the mirror, is adjusted to the

distance between the MOT and cavity with the use of S2.
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Figure 56: The detector signal of the interference fringes for one run is shown in
(a). The zoomed-in view in (b), (c), and (d) correspond to the stage before, during,
and after the mirror moves. The oscillation in (d) results from the mechanical vibra-
tion after the stage is stopped by the piezo actuator, which shows different pattern
compared to (c).

A.2 Speed Measurement of The Optical Lattice

It is important to measure the speed of the optical lattice for the purpose of com-

paring it to the former experimental setup. As shown in Figure 55, a PBS is used to

tap off a small percentage of optical power from the incoming beam and the retro-

reflected beam. These two beams are fiber coupled and combined on a 50/50 neutral

beamsplitter, and the output is directed to a optical detector. The interference fringes

formed on the detector moves as the retro-reflection mirror moves. By counting the

number of fringes swept across the sensor of the detector, the travel distance of the

mirror, and hence the optical lattice, can be determined accurately to the level of half

wavelength of the trap laser, 532 nm in this case.
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Figure 57: (a) The travel distance of the mirror by counting the number of interfer-
ence fringes swept through the detector. (b) The speed of the mirror.

Figure 56 shows the detector signal for one trial. A trigger signal opens the valve

at 112 ms, the stage moves about 50 ms before hitting the piezo actuator and stopped.

The stage vibrates for another few hundred milliseconds after it is brought to stop, it

is believed that this causes significant loss of atoms in the trap. The travel distance

and speed is plotted in Figure 57. The travel distance is obtained by counting the

number of interference fringes swept through the detector and multiply by the half

the trap laser wavelength, and the speed is obtained by taking the derivative of the

above data. By changing the pressure of the supplied air with regulator, the average

speed can be adjusted accordingly.

Fluorescent images of the atoms in the optical lattice are taken with Andor camera

before and after moving the optical lattice. It is shown that the vibration of the

mirror after it is stopped causes great loss of atoms in the trap. Attempts have been

made to reduce the impact by lowering the speed of the mirror and replacing various

vibration absorptive materials for stopping the stage motion. Nevertheless, the loss

rate remains high and makes this scheme impractical, unfortunately.
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A.3 Possible Improvements

By using the interferometric detection technique, it is demonstrated that the current

mechanical optical conveyor setup has the required travel range and the ability to

accurately position the atoms. Nevertheless, the vibration caused by stopping the

conveyor is responsible for significant loss of the atoms and makes the current design

impractical. The possible improvements include connecting many piezo stack in series

or using low vibration linear actuators. With these improvements, the mechanical

optical conveyor with long travel distance and low atom loss can greatly increase the

trapping potential with the same optical power, which can in turn reduce the atom

loss rate and improve the success rate of the experiment described in Chaptor 6.
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