1801.00586v1 [cond-mat.quant-gas] 2 Jan 2018

arxXiv

Singular Loops and their Non-Abelian Geometric Phases in Spin-1 Ultracold Atoms

H. M. Bharath, Matthew Boguslawski, Maryrose Barrios, Lin Xin and M. S. Chapman
School of Physics, Georgia Institute of Technology
(Dated: January 3, 2018)

Non-Abelian and non-adiabatic variants of Berry’s geometric phase have been pivotal in the
recent advances in fault tolerant quantum computation gates, while Berry’s phase itself is at the
heart of the study of topological phases of matter. Here we use ultracold atoms to study the unique
properties of spin-1 geometric phase. The spin vector of a spin-1 system, unlike that of a spin-1/2
system, can lie anywhere on or inside the Bloch sphere representing the phase space. This suggests
a generalization of Berry’s phase to include closed paths that go inside the Bloch sphere. Under this
generalization, the special class of loops that pass through the center, which we refer to as singular
loops, are significant in two ways. First, their geometric phase is non-Abelian and second, their
geometrical properties are qualitatively different from the nearby non-singular loops, making them
akin to critical points of a quantum phase transition. Here we use coherent control of ultracold 3" Rb
atoms in an optical trap to experimentally explore the geometric phase of singular loops in a spin-1

quantum system.

Geometry and topology of the state space (or param-
eter space) of a physical system often manifests, with no
regards to the dynamics, as observable physical proper-
ties of the system. A striking example is Berry’s geo-
metric phase, which is the geometrical part of the overall
phase of the wave function picked up when a quantum
system is transported adiabatically along a closed loop
in a parameter space [I]. Although, the condition of adi-
abaticity here speaks of the dynamics, it was later es-
tablished that this condition is dispensable [2] and that
more generally, geometric phase is purely a manifestation
of the geometry of the underlying space [3], independent
of the dynamics, and therefore it can be formulated as a
kinematic property of paths in the underlying space [4].

Two applications follow. First, quantum control opera-
tions that depend only on the geometry of the underlying
space are robust to dynamical fluctuations and therefore
can be used as fault tolerant quantum gates [5, [@], also
known as holonomic gates [7H9]. Adiabatic holonomic
gates in two-level systems have been demonstrated us-
ing nitrogen vacancy centers [10], and solid state qubits
[I1]. Non-Abelian, nonadiabatic holonomic gates have
been demonstrated using microwave induced control in
NV centers [12, [I3] and transmon systems [14]. More
recently, optically controlled holonomic gates have been
implemented in NV centers [15], [16], ion traps [17] and
NMR systems [I8]. Second, physical quantities that de-
pend only on the topology of the underlying space are
robust to perturbations of dynamical variables and there-
fore can be used as topological order parameters to study
topological phases of matter [I9]. A classic example is
quantum Hall states, whose Hall conductivity is quan-
tized according to the Chern number of the underlying
space (i.e., total integral of the Berry curvature). Also,
mixed state generalizations [20, 2I] of geometric phase
have been used to characterize topological phases [22] 23].

In this paper, we report on the experimental observa-
tion, using ultracold 8"Rb atoms, of a new non-Abelian
variant of geometric phase [24] unique to spin-1 and
higher systems. This geometric phase is richer than

Berry’s phase in may ways: it is defined for all loops on or
inside the Bloch sphere and it is carried not by the overall
phase, but by the spin fluctuation tensor. Another im-
portant feature of this geometric phase is the singularity
at the center of the Bloch sphere. Loops passing through
the center are qualitatively different from their neighbor-
ing loops obtained by a small perturbation. Therefore,
we refer to them as singular loops [25], and the loops
that do not pass through the center as non-singular loops.
Here, we experimentally induce a class of singular loops
and observe their geometric phase accumulated in the
spin fluctuation tensor.

We begin by briefly summarizing the theory of singular
loop geometric phases. The quantum state of a spin-1/2
system is uniquely represented by a point on the Bloch
sphere whose coordinates are given by the expectation
values of the spin operators S;, S, and S,. Spin-1 (and
higher) quantum states differ in two ways — first, the ex-
pectation value of the spin vector, S = ((S,), (Sy), (ST
(here, (-) represents the expectation value) is not confined
to the surface of the Bloch sphere; it could be anywhere
on or inside the Bloch sphere. And second, a quan-
tum state is not uniquely represented by its spin vector;
there can be several different quantum states which share
the same spin vector. For spin-1 systems, this ambigu-
ity is resolved by considering the quantum fluctuations
of the spin vector, which, geometrically, is an ellipsoid
surrounding the head of the spin vector (Figure [1| (a)).
The ellipsoid represents a rank two tensor (7'), whose
components are the expectation values of the quadratic
spin operators T;; = £({S;,S;}) — (Si)(S;). The pair
(§ ,T') uniquely represents a spin-1 quantum state up to
an overall phase (Supplementary Information). Figure
(b) shows three examples.

Geometric phase arises in this system when the ellip-
soid is parallel transported along a closed loop inside the
Bloch sphere (Figure[lfc, d)). As a result of the parallel
transport, the ellipsoid returns in a different orientation
which can be described by a 3D rotation, represented
by a 3 x 3 matrix. This rotation matrix (R), a member
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FIG. 1. Theory of singular loop geometric phases: (a) and (b) show a geometric representation of spin-1 quantum states.
(a) shows that the spin vector (S) and the spin fluctuation tensor (') can together be represented by a point inside the Bloch
sphere surrounded by an ellipsoid. This pair of the vector and the ellipsoid uniquely represent a spin-1 quantum state up
to an overall phase. (b) illustrates that the lengths of the ellipsoid’s axes are constrained by the length of the spin vector.

Explicitly, they are given by /1 — |§|2 and 1/ VISP ”;W For the three examples labelled 1,2 & 3, the spin vectors §1,2,3

satisfy 0 < |S1| < 1,|S2| = 1 and |Ss5| = 0. The ellipsoid degenerates to a disk for the last two cases. (c) and (d) show the
geometric phases carried by the ellipsoid when it is parallel transported along a non-singular and a singular loop inside the
Bloch sphere respectively. In either of these cases, the final orientation of the ellipsoid is different from the initial orientation,
due to an SO(3) geometric phase. For singular loops, this geometric phase is non-Abelian. (e) and (f) contrast non-singular
and singular loops under a radial projection. The former has a continuous projection and a well defined solid angle, while the
latter doesn’t. This problem is resolved by defining a generlized solid angle for singular loops using a diametric projection, as
illustrtaed by (g) and (h). (g) shows a surface obtained by sweeping a diameter along the loop. The solid angle enclosed by this
surface is the generalized solid angle of the singular loop. This surface is indeed a loop in the space of diameters of a sphere,
i.e., in a real projective plane (]R]P)Q). (h) shows a Boy’s surface, a representation of the real projective plane, together with the

loop projected on it. The generalized solid angle is equal to the holonomy of this loop.

of the SO(3) group, is the geometric phase of the loop.
This geometric phase is an operator, unlike Berry’s phase
which is a complex scalar, and is therefore more similar to
Wilczek-Zee phase [26] and Uhlmann phase [20], both of
which are unitary matrices. This can be measured easily
in the components of the spin fluctuation tensor, specif-
ically, the component T;; changes to R;Tj, R i after the
parallel transport.

The parallel transport of the ellipsoid has a deep geo-
metrical significance to the abstract space of quantum
states. The Fubini-Study metric, also known as the
“quantum angle” characterizes the geometry of the space
of quantum states [29]. Among the infinitely many ways
of transporting the ellipsoid along a loop inside the Bloch
sphere, the parallel transport is a special one; it mini-
mizes the Fubini-Study length of the resulting path in
the space of quantum states. The relation between par-

allel transports and paths with minimal length has been
explored extensively in [30} [31].

Geometrical interpretation of this geometric phase,
particularly for singular loops, needs an extended notion
of solid angles introduced in [24] as generalized solid an-
gles. For a non-singular loop, the geometric phase is a
rotation about the spin vector by an angle equal to the
solid angle of the loop (Figure[I[e)). This is because the
parallel transport of the ellipsoid inside the Bloch sphere
along a non-singular loop is reminiscent of the parallel
transport of a tangent vector to a sphere. The solid an-
gle of a non-singular loop is the angle of the cone obtained
by sweeping a radius along the loop (Figure e))7 which
produces a radial projection of the loop. For the case of
singular loops, this geometric notion of solid angles is not
well defined, as illustrated in Figure f). The radial pro-
jection is discontinuous and therefore, such loops require
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FIG. 2. Experimental sequence: (a) shows the singular loop that we choose to implement experimentally. It starts and
ends at the center of the Bloch sphere. (b) shows how an ellipsoid is parallel transported along this loop. In particular, it
starts out as a disk at the center and returns in a different orientation, rotated according to the geometric phase of the loop
which is an SO(3) operator. The generalized solid angle of this loop is given by the holonomy of its projection on a Boy’s
surface (real projective plane). (c) shows this projection. It is an open path and its holonomy is defined by closing it with
a geodesic [27) 28], shown by the dashed curve. (d) illustrates the holonomy of this path, i.e., the angle of rotation of a unit
tangent vector to the Boy’s surface, after it is parallel transported along this loop. The experimental sequence of transporting
the ellipsoid along this loop inside the Bloch sphere is illustrated in (e). Starting from a flat disk, an arbitrary tilt is induced
using an RF pulse. Following, the loop is induced using microwave pulses for each the radial segment and RF pulses for each
curved segment of the loop. Finally, in order to observe the geometric phase, we measure S2 as the tilted disk spins about the
z axis at the Larmor rate. (f) shows the oscillation of S2 before (black) and after (blue) the transport along the loop. The
geometric phase is encoded in the phase shift and the amplitude shift between the black and the blue datasets.

a generalization of the notion of solid angles. plane (Supplementary Information). The latter is an ab-
stract manifold, defined as the configuration space of a
two-sided symmetric right rotor, each of whose configu-
ration is a diameter of a sphere. Because it is a close
relative of the sphere, it is known as a “half sphere”
and it is also the configuration space of nematic crys-
tals. It is non-orientable and has no embedding in real

three dimensional space; however, it can be represented

The key idea behind generalized solid angles is to use
diametric projections, instead of radial projections. The
discontinuous jumps in a radial projection of singular
loops are always diametrically opposite (Figure (f)) and
therefore, sweeping a diameter along the loop generates a
continuous cone with a well defined angle (Figure [Ifg)).
This angle is equal to the standard solid angle for non-

singular loops and is a convenient generalization to sin-
gular loops.

While the standard solid angle is the integrated curva-
ture or holonomy of a loop on a sphere, the generalized
solid angle is the holonomy of a loop on a real projective

by an immersion, i.e., a self intersecting surface, known as
Boy’s surface [32] (Figure [[h)). The cone generated by
sweeping a diameter along a loop inside the Bloch sphere
represents a path in the real projective plane. Thus, us-
ing a diametric projection, a loop inside the Bloch sphere



is projected to the real projective plane, and the holon-
omy of the projected path is defined as the generalized
solid angle of the loop inside the Bloch sphere [24].

We now turn to the experimental measurements. The
experiments are performed using ultracold 8’Rb atoms
confined in an optical dipole trap (Supplementary In-
formation). The spin-1 quantum system is provided by
the F' = 1 hyperfine level of the electronic ground state
of the atom. The atoms are initialized in the mp = 0
state, which is a spin state located at the origin of the
Bloch sphere whose fluctuations are a planar disk in the
x — y plane. From this starting point, any path within
the Bloch sphere can be induced by a combination of ro-
tating (rf) magnetic field pulses and microwave 27 pulse
connecting the F, Mr = 1,0 — 2,0 states. The former
generates the familiar Rabi rotation of the spin, and the
latter realizes a quadrupole operator that changes the
spin length [33] 34]. The final state of the system is
determined by measuring the populations in mprp = 0,+£1
using a Stern-Gerlach separation of the cloud followed by
a fluorescence imaging of the atoms [33]. This provides
a direct measurement of (S,) and (S?). The transverse
components of the spin length and moments, e.g. (S2),
are measured using a 7/2 rf pulse preceding the Stern-
Gerlach separation.

To investigate the unique aspects of the geometric
phase considered here, we use the class of loops shown
in (Figure fa)). These are singular loops that start and
end at the center (Figure 2{c)). These loops capture the
distinguishing features of this geometric phase, and they
are also convenient to realize experimentally. The exper-
imental sequence is shown in Figure e)). Starting from
the initial state, an initial rf pulse is used to tilt the flat
disk to the desired angle, 6;;;;. We then induce a trans-
port along the loop using a sequence of microwave and
rf pulses. In a frame rotating at the Larmor frequency, a
resonant rf field is a constant field while the microwave
fields are insensitive to the Larmor rotation. Therefore,
the pulse sequence shown in Figure e) effectively in-
duces the loop in the rotating frame.

For the loops shown in (Figure [(a)), the generalized
solid angle is ¢, and the corresponding geometric phase
is R = R,(¢)Ry(—¢) (Supplementary Information). For
the initial state, the spin fluctuation tensor is a disk at
the center of the Bloch sphere intersecting the x —y plane
along the z-axis and making an angle 0y;;. When this
disk is parallel transported along the indicated loop, the
geometric phase R manifests as a different final orienta-
tion of the disk, which now has an angle 0}, = ¢ + Oy
with the x —y plane and intersects it along the rotated
axis ¥/ = & cos ¢ + ysin ¢.

Our experiments are done under a constant Larmor
precession about the z-axis. Therefore, as a tilted disk
at the center spins about the z-axis, (S7) and (S7) both
oscillate at twice the Larmor frequency (wr). In particu-
lar, if a disk is tilted by 6;;; and intersects the x — y
plane along the z-axis at ¢ = 0, then (S2(¢)) = 1 —
sin? 0y, sin® (w t) and (Sg (t)) = 1—sin® Oy, cos? (wpt). If
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FIG. 3. Geometric amplitude shift and phase shift:
(a) shows a comparison with theory of the experimentally
observed geometric amplitude shifts. The theoretical value of
this amplitude shift is % €0s 20.;;; (continuous curve). The tri-
angular markers show the experimentally observed amplitude
shifts for different tilt angles. The inset shows the geometric
phase shifts for these five tilt angles and the continuous line
shows the corresponding theoretical value, i.e., 7. The bottom
inset shows the disks (magnified) at the starting point with
different tilt angles used in the experiment. (b) shows the
geometric phase shift for different values of the coverage an-
gle (¢). The continuous line shows the theoretical geometric
phase shift, i.e., 2¢. The inset shows the loops corresponding
to the different values of ¢ used in the experiment.

it is parallel transported along the given loop in a frame
rotating at the Larmor rate, the accumulated geomet-
ric phase can be observed by measuring (S2(¢)). It is
straightforward to see that, after the parallel transport,
(S2(t)) = 1 —sin? @), sin®(wrt + ¢). That is, the geo-
metric phase can be observed as a phase shift as well as
an amplitude shift of the oscillation of (S2(¢)). The ge-
ometric phase shift would be 2¢ and the amplitude shift
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We have measured both the geometric phase shifts
and amplitude shifts for a range of angles (611, ¢) as
shown in Figure [3| In Figure a), we investigate loops
with a fixed angle ¢ = 7 for different initial orienta-
tions of the disk, 0;;;; in order to demonstrate a nontriv-
ial amplitude shift. The geometric phase of this loop is
R = R.(7/2)R,(—m/2) and the solid angle is 7/2. The
theoretical phase shift in the oscillation of {(S2) is 2¢ = 7
for each of the initial orientations of the disk, and the
experimental values are in good agreement as seen in the
inset of Figure [3(a). The theoretical amplitude shift de-
pends on the initial disk orientation — it is %cos 2041+
As can be seen in Figure a), the observed amplitude
shift is in excellent agreement with the theory. Data sets
with explicit sinusoidal fits showing the phase shift and
amplitude shift corresponding to three of the different
initial orientations are shown in Figure f).

In Figure [3(b), we demonstrate the dependence of the
phase shift to the generalized solid angle of the loop.
For these measurements, the starting disk orientation is
Otie = 7 and the range of loops investigated is shown in
the inset to the figure. The measured phase shifts show
excellent agreement with the theoretical phase shift in
the oscillation of (S2), which is 2¢.

We note for the measurments in Figure b), it is nec-
essary to compare the results with reference loops with no
geometric phase in order to isolate the geometric phase
from the dynamical phase. In the rotating frame, the
transport induced by the rf pulse is naturally a parallel
transport; i.e., the rf field evolves the system along the
path of least Fubini-Study length [5]. However, this is
not true for the microwave pulses; the transport along
the straight segments is not parallel and the system is
taken along a path of non-minimal Fubini-Study length
(Supplementary Information). Consequently, some dy-
namical phase is accumulated during this transport that
needs to be measured in order to isolate the geometric
phase. To accomplish this, we take two data sets each
measuring the oscillation of (S2) — one after transport-
ing the disk along the loop and another after transport-
ing the disk radially outward and then back inward, for
which there is no geometric contribution. A comparison
of these two data sets allows determination of the ge-
ometric phase shift and amplitude shift of the induced
loops as shown in Figure [2{f).

We have demonstrated the experimental feasibility
to induce singular loops and observed their geometric
phases. Like Berry’s phase and its other variants, we
expect this geometric phase also to have a two fold ap-
plication — enhancing our understanding of topological
phases of matter and developing fault tolerant quantum
control operations. In particular, this experiment opens
up the possibility of preparing one dimensional systems,
e.g. atoms in a ring trap, in states that correspond to
singular loops inside the Bloch ball. Such states can be
expected to have interesting physical properties emanat-
ing from the nontrivial nature of singular loop geomet-

would be sin? ;;;; — sin® 6

ric phases. Indeed, the very nature of singular loops is
reminiscent of critical points in a phase transition. For
instance, phase transitions in a mixed-state Kitaev chain
was studied using geometric phases recently [23]. In this
model, the spin vector, through the chain, traces out a
loop inside the Bloch sphere. The quantum critical point
is characterized by a singular loop.

ACKNOWLEDGMENTS

We thank John Etnyre, T. A. B. Kennedy and Carlos
Sa de Melo for fruitful discussions and insights. We also
acknowledge support from the National Science Founda-
tion, grant no. NSF PHYS-1506294.



Supplementary Information

In this document, we fill in the technical details of the
four ideas discussed in the paper that are pivotal to our
results:

e A spin-1 quantum state (excluding the overall
phase) is uniquely represented by a point inside the
Bloch sphere surrounded by an ellipsoid.

e When this ellipsoid is parallel transported along a
closed loop inside the Bloch sphere, it picks up an
SO(3) geometric phase.

e There is a definition of geometric phases in general,
that is completely independent of the system’s dy-
namics.

e The notion of solid angles enclosed by a loop on the
Bloch sphere can be generalized to loops inside the
Bloch sphere, including those that pass through the
center.

In sections I, ITI, IT and IV, we fill in the technical details
of the above four ideas in that order. In section V, we
briefly summarize the experimental control operations.

I. GEOMETRIC COORDINATES FOR SPIN-1
QUANTUM STATES

A spin-1 quantum state is a three dimensional complex
vector. Ignoring the overall phase, a normalized state
vector has four independent parameters and therefore,
the space of spin-1 quantum states is a four dimensional
manifold. As mentioned in the main text, points in this
manifold can be represented by the pair (,57’ T), of the
spin vector and an ellipsoid, or, by an unordered pair of
points on the Bloch sphere, known as Majorana constel-
lation [29]. The latter comes from the observation that
the symmetric (i.e., triplet) subspace of a pair of spin-1/2
systems is homemorphic to a spin-1 system.

A pair of points on the Bloch sphere is represented by a
pair of unit vectors (71, #2). The corresponding spin vec-

tor is given by S = % It is straightforward to check
that the ellipsoid of quantum fluctuations is oriented such
that it’s axes are parallel to 7y + 79, 71 — 75 and 71 X 7.
The smaller of the axes normal to the spin vector is paral-
lel to 71 — 72 and we denote the corresponding unit vector
by 4 = ﬁ;i:;zl. While (#1,72) can be considered as ge-
ometric coordinates for a spin-1 state, an equivalent set
of coordinates are (S,4). Note that (S,a) and (S, —a)
represent the same state and therefore, we write (§ ,£0)
(see Figure {4).

II. DEFINING GEOMETRIC PHASES USING
METRICS

Geometric phases are carried by the system’s gauge
variables. For instance, in Berry’s phase of a spin-1/2
system, the overall phase of the the quantum state is
the gauge variable. A point on the Bloch sphere does
not completely specify the full quantum state vector; one
has to append the overall phase, i.e., the gauge variable.
Consequently, given a loop on the Bloch sphere, there
are several ways of tuning the control parameters so as
to transport a system along the loop. They all would in-
duce the same loop, but differ in the profile of the overall
phase along the loop. Of these, there is a special one,
which corresponds to the parallel transport of the over-
all phase along the loop. Geometric phase of a loop is
the mismatch between the initial and final overall phase
values of the parallel transport. At the heart of this def-
inition is the rule of parallel transport — what does it
mean to parallel transport the overall phase? One way
to define parallel transports is to use a structure called a
connection form, which we do not elaborate here.

In general, the various ways of tuning the control pa-
rameters that all induce the same given loop, differ not
only in the profile of the gauge variable, but also in the
distance traversed in the full Hilbert space (including the
gauge coordinate). Quite intriguingly, in all the well
known examples of geometric phases, when the gauge
variable is parallel transported, the system traverses the
least possible distance in the Hilbert space [30} [35]. This
prompts a more general definition of parallel transport —
to parallel transport a system is to minimize the distance
traversed. If we tune the control parameters such that
not only the given loop is induced, but also, the system
travels the least distance in the full Hilbert space, then we
have parallel transported the system. This holds for all
examples of parallel transport. Indeed, it is intuitive that
when a state is being parallel transported on the Bloch
sphere, we carefully avoid any “unnecessary” changes to
the overall phase. This is consistent with the idea of min-
imizing the total distance traversed in the Hilbert space,
because changes in the overall phase also contribute to
this distance. This also hints at a geometric interpre-
tation of the dynamical phase — it is a measure of the
deviation from minimality of distance traversed in the
Hilbert space. If the actual path traversed in the Hilbert
space is not the one that minimizes the length, the dy-
namical phase is non-zero and it needs to be subtracted
from the total phase in order to obtain the geometric
phase. To illustrate these ideas, we consider an example
loop on the Bloch sphere.

Let us consider a latitude at 6 (Figure[5)) on the Bloch
sphere. Because this example is of Berry’s phase (and
not our geometric phase), we consider a spin-half sys-
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FIG. 4. Majorana constellation: Three example states represented by the pair (g, T) and by a pair of points (endpoints of

the chord) on the Bloch spheres.

tem transported along this loop. The three obvious ways
of doing this are illustrated in Figure f] The familiar
adiabatic change of the direction of the applied magnetic
field, where the spin vector remains parallel to it through-
out (this was Berry’s original example) is shown in Figure
[fa). Figure[f|b) shows a constant field in the z-direction
pulsed on for a period in which the spin vector completes
exactly one rotation, thereby tracing out the loop. This
is the example considered in [2]. Figure [5fc) shows a
magnetic field of constant magnitude, always maintained
normal to the spin vector. This field transports the spin
vector along the latitude, while itself traversing a differ-
ent latitude. The three Hamiltonians (H,, Hy, H.) and
the corresponding times (T,, Ty, T;) are:

H,(t) = Qcosbo, + Qsinb cos(wt)o, + Qsin O sin(wt)oy,

2
W > & T, = ]
w
2
Hb(t):QO'zZ szﬁﬂ-
H (t) = —Qsinfo, + Qcos 0 cos(wt)og + Q2 cos O sin(wt)oy,

Q:wsiné?&TCZQ—7r
w

(1)
Og.,y,- are the Pauli matrices. Starting with the same ini-
tial state |¢), the three Hamiltonians induce the same
path on the Bloch sphere, but different paths in the

Hilbert space — they differ in the profile of the overall
phase. Explicitly, the paths in the Hilbert space are,

|9ha(t)) = €= |y)
1y (£)) = €¥7= 1))
|the(t)) = €172 ™7 )

(2)
The lengths of the three paths are computed using s =

[/ @[)dt = [ \/{@]H2[)dt and the dynamical phase
using ¢q = [(Y|H|y)dt (see Ref. [2]). Below is a table
comparing the three paths:

04 = (w+ Qcosb)o, + Nsinbo,

e = (w—Qsinfh)o, + Qcosbo,

Path|Path length| Total phase |Dynamical|Geometric
Phase Phase

Ya % 2#(% — cos ) % —27 cos 6

Uy 2m 0 2mcosf | —2mcosb

Pe 27 sin 0 —2m cos 6 0 —2m cos 6

Clearly, 1. has the least length among the three and
in fact, among all possible paths, because its length is
equal to that of the latitude [30]. This is indeed the
parallel transport (see Ref. [5]). ¢, has the largest path
length (because 2 >> w) and that is reflected in the very
large dynamical phase. Intuitively, dynamical phase is a
unnecessary rotation of the quantum state about its own
spin vector, causing the system to traverse a longer path
in the Hilbert space. Such rotations have been cautiously
avoided in 1., resulting in a zero dynamical phase and
minimal path length.

The above examples illustrate two fundamental ideas
regarding geometric phases — first, that geometric phase
is a purely kinematic property depending only on the
geometry of the loop, regardless of the dynamics inducing
the loop [, 6] and second, minimization of the length
is a general definition of parallel transport. Using these
two ideas, we provide a mathematical definition of our
geometric phase in the following section.

IIT. CALCULATING THE GEOMETRIC PHASE

In our geometric phase, the gauge variables are the
components of the spin fluctuation tensor. The space of
quantum states has a metric, known as the Fubini-Study
metric(spg), which is essentially the fidelity measure be-
tween two normalized quantum states 1, ¥s:

sps(V1,12) = cos™ (|(¥1]¢2)]) 3)

Hereafter, we write a loop inside the Bloch sphere param-
eterized by t as S(t) with the parameter ranging from 0
t0 tfinai. Parallel transport of the ellipsoid (or the chord)

along §(t) is a loop in the space of quantum states, which



FIG. 5. Dynamical Phase: (a), (b) and (c) show three different ways of inducing a latitude in a spin-1/2 system. The

magnetic field in each case is indicated by B. While the geometric phase is the same for all three of them, the dynamical phase

is different (see text).

we may write 1(t) = (5), £a(t)), where, a(t) is a unit
vector in space chosen such that it is always normal to
S and the length of ¢(¢) under the Fubini-Study metric
is minimized. This condition, of minimizing the length
translates to the following differential equation on w(t)

a(t)24] -

Ao (250
dt ®) <dt§(t)| (4)

The parallel transport of any starting state 1(0) along
~(t) is obtained by solving the above differential equation
with the corresponding initial value of ().

|S(1)]

The corresponding geometric phase, i.e., the SO(3) op-
erator R is also obtained by solving a differential equa-
tion. We introduce a path X(¢) in SO(3) which sat-
isfies the following differential equation (we have used

St) . .. .
EOT 0(t) for simplicity here):

The superscript “T” indicates the transpose of a vector.
The solution to this equation provides X (¢) and, the ge-
ometric phase of S (t) is given by R = X (tfina). Finally,
the generalized solid angle is given by cos™* (7€~RIA€), where
k is some vector normal to both #(0) and 0(tfinar). This
is the angle by which R rotates a vector normal to ©(0)
and 0(¢ final)-

We now show how the geometric phase and generalized
solid angle of the loop induced experimentally Figure @(a)
are determined. Assuming that the loop goes out upto
a radius r and with the parameter t7;,, = 1 it can be

parametrized as:

(47t,0,0): 0<t<1/4
(rcos(2m(t —1/4)),0,rsin(2n(t — 1/4))) :
o) 1a<e<ay2
) = (rsin ¢ sin(2w(t — 1/2)),r cos psin(2w(t — 1/2)),
rcos(2m(t—1/2))): 1/2<t<3/4
(0,4r(1 —4),0): 3/4<t<1

; ; S() = S®) .
It is convenient to calculate 9(t) = O
(1,0,0): 0<t<1/4
(cos(2m(t —1/4)),0,sin(2w(t — 1/4))) :
(sin @ sin(27(t — 1/2)), cos psin(2nw(t — 1/2)),

cos(2m(t —1/2))): 1/2<t<3/4
(0,1,0): 3/4<t<1
The solution to Eq. [f] are:
1: 0<t<1/4
Ry(=2m(t —1/4)): 1/4<t<1/2

1/2<t<3/4

R.(¢)Ra(—¢): 3/4<t<1

The geometric phase is R = X (1) = R,(¢)Rz(—¢). Ex-
plicitly, this is a 3 x 3 matrix:

cos¢ sin¢cos ¢ 0
R=| —sing cos®’¢ —singcose (6)
0 sin ¢ cos ¢
The generalized solid angle is obtained using k = Z(this is
the only choice, normal to both ©(0) and 9(1)), cos™1(% -

R2) = ¢.

1/4<t<1/2

R.(¢ —7/2)Ra(—27(t — 1/2))R.(7/2 — ¢)Ry(—7/2) :
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FIG. 6. (a) shows the loop induced in the experiment. (b) shows a plot of the angle of rotation of the ellipsoids about the spin
vector, while the latter is advanced away from the center using microwaves, as a function of the phase shift « between the m =0
and m = —1 components. This phase is representative of the length of the spin vector, which is given by |S| = sin 26 sin .

A. The dynamical phase in our loops

In this section, we make a few remarks on the gen-
eral properties of dynamical phase and show that for the
loops considered in the main text, only the straight seg-
ments contribute a non-zero dynamical phase. Although
our geometric phase is different from Berry’s phase in
that it minimizes the Fubini-Study metric as opposed to
the standard Eulidean metric, it can be shown that the
arcs in the induced loops contribute no dynamical phase
because of the way they are induced — by applying a
field normal to the spin vector.

The straight segments, however, accumulate a non-zero
dynamical phase, because they are induced by the Hamil-
tonian S2, which rotates the ellipsoid about the spin vec-
tor. Figure |§|(b) shows this rotation angle as a function
of the length of the spin vector, for various starting tilt
angles.

However, the straight segment contributes a zero geo-
metric phase and therefore, it is straightforward to sub-
tract the dynamical phase as described in the main text.

IV. THE GENERALIZED SOLID ANGLE

In the main text, the generalized solid angle of a loop
inside the Bloch sphere was defined as the holonomy of its
diametric projection into the real projective plane (RPQ).
In this section, we address the questions of what is meant
by holonomy? Why is it equal to the solid angle of the
cone generated by sweeping a diameter along the loop?
and how is it a justifiable generalization of the standard
solid angle? Although these questions are answered in
Ref. [24], here we provide a more intuitive and a quali-
tative version of it.

A. What is “Holonomy”?

Holonomy roughly translates to ‘a local quantity which
captures a global property’, an elementary example of
which is the so called spherical excess of a spherical tri-
angle. While it is well known that the sum of internal
angles of a spherical triangle exceeds m by an amount
known as the spherical excess, a lesser known fact is that
the spherical excess is equal to the area or the solid angle
enclosed by the triangle, known as Girard’s theorem.

The spherical excess is quite obviously related to par-
allel transports. The sum of internal angles of a spherical
triangle and the sum of its external angles together sum
up to 3w. Therefore, the latter falls short of 27 by the
spherical excess. It is easy to picture the sum of exter-
nal angles — a car driven along a spherical triangle on
the earth is steered by an amount equal to the sum of
the external angles [37]. While the car comes back to
its original orientation, i.e., rotates effectively by 27, it’s
steering wheel is rotated by less than 27w. This means,
if the car were parallel transported, i.e., moved some-
how along the spherical triangle without being steered,
it would return in a different orientation, rotated by the
spherical excess.

So far, we have used only the trivial properties of a
spherical triangle. An elementary, but non-trivial prop-
erty of a spherical triangle is the Girard theorem, which
says that the spherical excess of a triangle is exactly equal
to the enclosed solid angle. This means that the car’s ro-
tation, a local quantity, actually captures a global prop-
erty — the solid angle. Therefore, we may refer to the
angle of rotation due to parallel transport as a “holon-
omy” .

Naturally, when a tangent line is being parallel trans-
ported along a loop on a sphere, we expect that the dis-
tance traversed in some space is being minimized. To
build an analogy with the geometric phase discussed in



the previous section, tangent lines with a fixed point of
tangency have one degree of freedom i.e., rotation about
the point of tangency and this is the gauge variable. The
full configuration space of the tangent line is a three di-
mensional manifold. A configuration of the tangent line
is specified by three coordinates, including two of the
point of tangency and one of the orientation of the tan-
gent line. Transporting a tangent line along a loop on a
sphere would correspond to a path in this configuration
space. This configuration space has a nontrivial topology
and is known as lens space, L(4,1). This space can be un-
derstood as a “bundle of circles” over a sphere. That is,
at each point on a sphere, a circle is attached to carry the
gauge variable. This structure is known as a circle bun-
dle over a sphere. The rule assigning a parallel transport
is known as connection form, which, in the present case
is formulated as minimization of a distance. The solid
angle of a loop on the sphere is the holonomy of the nat-
ural connection form on this bundle. Natural here means
maximally symmetric, i.e., one that does not involve an
arbitrary choice (of a basis, etc) and in this case it comes
from a natural metric on L(4,1). Owing to Girard’s the-
orem, the solid angle can be defined as the holonomy of
the natural connection form.

B. Holonomy of loops on RP?

In the main text, we have shown that a non-singular
loop inside the Bloch sphere can be radially projected
into the sphere and its solid angle can be defined as
the holonomy of the projection. We have also shown,
while singular loops cannot be continuously projected
to a sphere, both non-singular and singular loops can
be continuously projected to the real projective plane
through a diametric projection. Therefore, the appropri-
ate definition of generalized solid angle is the holonomy
of these projections in RP?, provided, it agrees with the
standard solid angle for the subset of non-singular loops.

That raises the question, what is the appropriate
holonomy for loops on RP?? Incidentally, L(4,1) is also
a circle bundle over RP?; in fact, L(4,1) is also the con-
figuration space of a unit tangent vector to RP2. At each
point on RP?, the tangent vector has a circle’s worth
of configurations, which form a circle in L(4,1) corre-
sponding to the point in RP2. This bundle also has a
natural connection form that defines parallel transport
of the unit tangent vector along a loop on RP? (see fig-
ure 2(d) of the main text). The holonomy of a loop in
RP? is defined as the angle of rotation of a unit tangent
vector when parallel transported along the loop. The
corresponding connection form also comes from the same
metric on L(4,1) and the corresponding holonomy does
agree with the standard solid angle for projection of non-
singular loops [24]. In fact, L(4,1) is the only lens space
that is a circle bundle over both sphere and RP?.

While the generalized solid angle is a scalar, the ge-
ometric phase has been defined as an SO(3) operator.
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Because the Bloch sphere has a singularity at the center,
it is important to retain more information than just an
angle of rotation. Consequently the geometric phase, as
it is defined, is the full SO(3) operator.

C. Holonomy of open paths in RP?

Before ending this section, we discuss the holonomy
of open paths in RP?. Like the loop induced in the ex-
periment, it is possible that the projection of a singular
loop is an open path in RP?. The geometric phase, be-
ing an SO(3) operator, is still well defined and represents
a transformation between the tangent vectors of RP? at
the two endpoints of the loop. However, generalized solid
angle, which is just the angle of rotation needs some clar-
ification.

The problem of deciding the angle between two tangent
vectors at two different points on RP? is analogous to
the problem of comparing the phases of two laser beams
in different momentum modes and dates back to 1956
[28]. The straightforward solution is to connect the two
points by a geodesic and thereby close the open path.
Geodesics in general have the special property that they
do not accumulate any geometric phase [27].

Accordingly, the generalized solid angle is defined as
follows: if R is the geometric phase of a loop whose pro-
jection is open in RP? and d; and ds are its endpoints
(i.e, the diameters to a sphere representing the initial and
final points on RP?), the generalized solid angle is

Q = cos™!(k - RE) (7)

for some unit vector k which is normal to both dy and
dy. If di = do, i.c., if the path is closed in RP?, Q is
simply the angle of rotation of R. If dy # ds, the above
expression provides the holonomy of the loop obtained
by closing the path using a geodesic in RP?.

V. EXPERIMENTAL QUANTUM CONTROL

In this section, we summarize how the spin vector of
ultracold 8"Rb atoms is experimentally controlled. The
internal state of the atoms within the F' = 1 hyperfine
level (see Figure[7[(b)) can be controlled using microwaves
and magnetic fields rotating at radio frequency. An ar-
bitrary control is brought about by a combination of ro-
tation and resizing of the spin vector inside the Bloch
sphere. To suppress any noise in the magnetic field, we
operate the system at a fixed applied ambient field of 20
mG in the z-direction. The linear Zeeman splitting of the
mp = 0,%1 states is 700 Hz/mG and therefore, the sys-
tem undergoes a constant Larmor precession at 14 kHz
about the z-axis. A rotation of the spin vector about an
arbitrary axis within the x —y plane by an arbitrary angle
can be performed using a magnetic field rotating in the x-
y plane at 14 kHz. This is engineered by two coils placed
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FIG. 7. Our system and control operations :

(b) Hyperfine Structure
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(c) Stern — Gerllach

(e) Resizing the Spin

Magnetization

(a) shows a schematic of 8TRb atoms trapped using the dipole force in a

laser field. (b) shows the hyperfine structure of 3’Rb. All control operations on the F = 1 hyperfine level are performed in the
rotating frame (at Larmor frequency). (c) shows a typical Stern-Gerlach separation induced by a magnetic field gradient. (d)
illustrates a controlled rotation of the quantum state. A constant magnetic field in the x-y plane in the rotating frame (i.e., a
rotating magnetic field in the lab frame) rotates the quantum state. (e) shows a Ramsey sequence illustrating the control of
the spin vector using RF and microwave induced transitions. In particular, the state v = S'| — 1) + em%m) + 3| + 1)(see

text), is prepared and its spin vector is measured. The data shows a measurement of the length of the spin vector in the x-y

plane, in time, for four different values of a.

to produce magnetic fields in two orthogonal directions,
driven out of phase. Although a single coil would be suf-
ficient under the rotating wave approximation (RWA), at
the required frequencies, fast RF rotations would see a
breakdown of the RWA [38,139]. A rotation about an axis
in the x —y plane making an angle £ with the z-axis, i.e.,
T cos&+gsin € by an angle 1 can be brought about by an
RF pulse of pulse length 7 and starting phase £&. An ar-
bitrary SO(3) operator can be constructed by composing
such rotations.

The length of the spin vector can be controlled by
a detuned 7 transition between |F' = 1,mp = 0) and
|[F = 2,mp = 0) levels induced by microwaves (i.e.,
clock transition). The energy gap between these two
levels is A = 6.8 GHz. A 7— transition at a detun-
ing of ¢ changes the phase of |F = 1,mp = 0) relative

)
is the rate of the microwave transition at zero detuning.

where 2

For instance, the statelz/) =3 - 1>1+ %|Oz + 2+ 1) is
transformed to ' = | —ﬂ1> + ew‘ﬁ|0> + 35/ +1) . The
former has a spin vector S = (0,0,0)” while the latter

has, S = (sina,0,0)7 (see Figure e)). This technique

can be viewed as a dressed Hamiltonian, H = S2.
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