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SUMMARY

Most neutral atom quantum computing experiments rely on destructive state de-

tection techniques that eject the detected qubits from the trap. These techniques

limit the repetition rate of these experiments due to the necessity of reloading a new

quantum register for each operation.

We address this problem by developing reusable neutral atom qubits. Individual

87Rb atoms are trapped in an optical lattice and are held for upwards of 300 s.

Each atom is prepared in an initial quantum state and then the state is subsequently

detected with 95% fidelity with less than a 1% probability of losing it from the

trap. This combination of long storage times and nondestructive state detection will

facilitate the development of faster and more complex quantum systems that will

enable future advancements in the field of quantum information.
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CHAPTER I

INTRODUCTION

1.1 Classical Information Storage

Methods of information storage have existed for thousands of years. Ancient civi-

lizations used pictures and objects to store and transmit important information and

concepts. These gave way to ideographic and phonetic writing systems, descendants

of which are still in use today. Until the last century, written languages represented

the most effective and reliable method of information storage [1]. However, with the

development of the first digital computers in the 1940s, and the first digital magnetic

storage in the 1950s, a new paradigm in information storage began to emerge. The

storage and transmission capacities for digital information quickly eclipsed traditional

systems and have been increasing exponentially ever since. Today, the vast majority

of information is coded and stored primarily in digital form.

The most basic unit of digital information is a bit. A bit is a mathematical

representation of a two state system, with the two states typically denoted as 0 and

1. Using a sufficiently large number of bits, any arbitrary information can be stored

in binary through an appropriately defined conversion process. All information stored

in modern computers is composed of bits. Bits are, in turn, frequently assembled into

bytes, units which consist of strings of eight bits.

One of the first digital storage mediums was the punch card. Punch cards were

first used in the 1700’s to control textile looms, and were adapted for data storage in

1889 [2]. Several decades later, magnetic storage began to replace punch cards, first in

primary computer memory and later for archival storage. At the same time, memory

capacity rapidly increased, while the physical size of each bit decreased accordingly. In
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modern computer memory, a typical bit is less than 25 nm across, with new technology

constantly reducing this value. These advancements have revolutionized information

storage, making it possible to accurately preserve unprecedented amounts of data [1].

The march of progress in the computer industry in the past forty years has been

impressive, but new innovations will soon be required. As modern processors rapidly

approach fundamental limits of performance imposed by the size of the atom, it

becomes increasingly important to explore new paradigms in information science. A

particularly fascinating approach to surpassing these limits harnesses the power of

quantum mechanics to effectively enable massive parallel calculations. This field of

research is generally known as quantum information.

1.2 Quantum Information

One of the first people to suggest applying the principles of quantum mechanics to

computing problems was Richard Feynman, in 1982. In order to overcome the diffi-

culty of modeling quantum mechanical processes on a classical computer, he suggested

the construction of a quantum simulator, which would model a quantum system by

using another quantum system [3]. David Deutsch extended this idea to propose a

general-purpose quantum computer, which could simulate any quantum system [4]. A

quantum simulator would help solve a large array of theoretical problems, and would

therefore be an extremely valuable tool for physicists.

In 1994, Peter Shor developed an algorithm for a quantum computer that was

designed to factor large numbers [5]. Factoring large numbers take an exponential

amount of time to solve classically, but the solution can be checked in polynomial

time. In contrast, Shor’s algorithm can solve such a problem in polynomial time,

given a sufficiently powerful quantum computer. A few years later, another quantum

algorithm was proposed by Lov Grover [6]. Using Grover’s algorithm, a quantum
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computer can perform a search of an unordered database much faster than any clas-

sical computer. The discovery of these quantum algorithms led to increased interest

from the general public and funding from the government, and efforts to build a

quantum computer intensified.

Several elements are required in order to create a quantum computer [7]. The

first requirement is a source of stable quantum bits (qubits). A qubit is the quantum

version of the bit. Whereas a bit can only occupy one of two states (0 or 1), a qubit

can be in any quantum superposition of the two, with the most general state given

by |ψ〉 = α |0〉 + β |1〉, where α2 + β2 = 1. A quantum computer will require a large

array of qubits, which must be individually addressable without disturbing any of the

neighboring qubits. Further, a quantum computer must be able to initialize each of

these qubits into a specific quantum state, with high reliability.

The next requirement is the ability to perform quantum gate operations. In ad-

dition to state manipulations involving one qubit, a quantum computer requires the

ability to generate entanglement between arbitrary pairs of qubits. All necessary

two-qubit manipulations can be achieved by implementing a series of controlled-not

(CNOT) gates. A CNOT gate takes two input qubits, the control and the target. If

the control qubit is in the |1〉 state, then a NOT is performed on the target qubit.

Otherwise, the inputs are unchanged. If the control qubit is in an equal superposition

state, |ψ〉 = 1√
2

(|0〉+ |1〉), and the target is in the state, |ψ〉 = |1〉, then a CNOT gate

will produce an entangled state, |ψ〉 = 1√
2

(|1〉 |0〉+ |0〉 |1〉). Any arbitrary quantum

calculation can be performed through a series of one-qubit unitary operations and

two-qubit CNOT gates. The final step in a quantum calculation is to read out the

result. This requires the ability to accurately detect the state of each qubit, either

sequentially or all at once. Furthermore, all of the preceding steps must be accom-

plished within a time period significantly shorter than the coherence time or the qubit

loss rate.
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1.3 Quantum Computing

Experimental work in quantum computing has advanced a great deal over the last

fifteen years. Although large-scale quantum computations are still perhaps many

decades away, a number of important milestones have been reached, and steady

progress is being made. Some of the most promising results to date in quantum

computing have used trapped ions. The first quantum logic gate using trapped ions

was demonstrated in 1995 [8]. Three years later, the same group demonstrated the

ability to deterministically entangle two ions with a fidelity of 0.7 [9]. This fidelity

was later improved to better than 0.97 [10]. In 2005, Grover’s search algorithm was

implemented using two trapped ions [11] and entanglement between eight ions was

demonstrated [12]. Two-dimensional control over trapped ions was achieved in 2006

[13], and in 2009, a prototype for a scalable quantum processor was demonstrated

[14].

Neutral atom quantum computing experiments have thus far lagged somewhat be-

hind ion trapping. This is mainly due to the relative ease of trapping ions. Because

ions are charged, they can be trapped directly using electric fields, which produce an

extremely deep trap. The resulting potential can be many hundred thousand times

deeper than a typical neutral atom trap. Furthermore, since ions are mutually repul-

sive, they naturally tend to form convenient strings or lattices at fixed intervals. This

makes maintenance and manipulation of trapped ion strings relatively easy compared

to neutral atoms. Nevertheless, neutral atom traps have several distinct advantages

over ion traps. While strings of ions are easy to generate, neutral atom traps scale

more easily into two and three dimensions. In addition, ion traps require a physical

trap structure near the trap, while neutral atom traps can be constructed entirely us-

ing laser beams. Ion traps also require a source of ionized atoms, typically an oven or

heated filament. In contrast, neutral atom traps require only an evaporative neutral

atomic source. This reduces the complexity of neutral atom vacuum chambers. The
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lack of a physical trapping structure can also increase optical access to the trapped

atoms, and the lack of a charge eliminates any concerns about electric interactions

between the atoms and nearby surfaces. Finally, neutral atom quantum operations

can be performed very quickly using Rydberg gates [15].

Recently, neutral atom experiments have made significant progress. Trapping

of single neutral atoms in a MOT was first demonstrated in 1994 [16]. Meschede’s

research group was able to transfer individual atoms into an optical trap in 2000

[17], and into an optical lattice the following year [18]. This led to the development

of a neutral atom quantum register in 2004 [19]. Volz et al. were able to create

entanglement between a single atom and a single photon in 2006 [20], and the first

entanglement between two neutral atoms was reported in 2010 [21]. This was followed

shortly by the implementation of the first neutral atom CNOT gate [22]. These recent

developments are extremely promising. Nevertheless, the relative difficulty involved

in storage and maintenance of neutral atom qubits has limited the rate and scope of

these experiments. This problem could be largely solved through the development of

an improved quantum register.

1.4 Quantum Registers

The quantum register is the quantum equivalent of a classical processor register. A

quantum register is simply a piece of quantum memory, a string of qubits that can be

initialized and entangled. There are several general requirements for a useful quan-

tum register. At a minimum, it must hold enough qubits to enable a single quantum

calculation of the desired complexity, and it must be stable enough to faithfully main-

tain the quantum states for the duration of the calculation. Furthermore, it must be

possible to perform initialization operations on any single qubit in the register and to

perform entanglement operations on any pair of qubits. If the gate operations consist

solely of a series of externally directed laser pulses, then a fixed register is probably
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sufficient. However, direct interaction approaches, such as collisional entanglement,

and complex hardware approaches, such as those involving optical cavities, will de-

mand greater versatility. For such operations, the quantum register must be able to

move specific qubits to the location where they can become entangled.

A quantum register can be characterized by at least three important parameters.

The first is its capacity, or the total number of qubits it can hold. This value directly

limits the scope of quantum calculations that can be performed. To solve problems

that are intractable for a classical computer, at least a few hundred qubits would be

required. The second important attribute of a quantum register is its coherence time.

If the coherence time isn’t significantly larger than the total calculation time, errors

will be introduced into the calculation. Error correction can counteract this to some

degree, but at the cost of further overhead [23]. The final important parameter is the

maximum possible repetition rate for performing quantum calculations. In an ideal

system, the repetition rate would be determined by the speed of the entanglement

generation. However, if the quantum register must be rebuilt for each calculation,

the repetition rate is instead limited by the time required to prepare a new register.

Neutral atom quantum registers have progressed a great deal over the last several

years. In 2002, Greiner et al. used the Mott insulator phase transition to fill each

site in an optical lattice with exactly one atom [24]. In 2007, individual atoms were

trapped in a three-dimensional lattice with over 500 resolvable lattice sites, with each

site separated by 5 µm [25]. A quantum gas microscope using high numerical aperture

optics was demonstrated in 2009 and was able to resolve trapping sites separated by

only 640 nm [26]. These trapping sites were generated in two dimensions by using

a holographic mask and focusing the trapping light through the imaging optics. In

2010, Klinger et al. proposed a register which employs two independent hexagonal

lattices at different wavelengths to trap two different species of atoms [27].

Despite these advancements, most neutral atom qubit systems share a common
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limitation. Neutral atom state readout is typically destructive (in the sense that many

of the atoms are ejected from the trap), requiring that qubits be reloaded after each

measurement. Our work focuses on the production of robust and reusable qubits for

quantum information applications. First, we demonstrate drastically increased trap

lifetimes, using both active and passive means. We then achieve non-destructive state

detection of a neutral atom qubit trapped in an optical lattice, including the ability

to prepare and detect the same qubit as many as 100 times without losing it from

the trap. By demonstrating reliable, non-destructive state detection in free space,

coupled with extremely long storage times, this work will significantly advance the

state of neutral atom quantum computing.

The first portion of this thesis will discuss the history and theory behind neutral

atom trapping and quantum information. This will cover past work with neutral atom

qubits and explain the need for improved storage and detection schemes. Following

that is a description of the basic experimental setup, which will lay the groundwork for

the experimental sections to follow. The latter part of this thesis will focus on experi-

mental contributions. Chapter 5 will present trap heating and cooling measurements

as well as a variety of cooling schemes. Chapter 6 will describe the system used to

achieve non-destructive state detection. This thesis will conclude by discussing ways

to improve on the system, as well as how one might implement these improvements

in a full scale quantum computing experiment.
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CHAPTER II

NEUTRAL ATOM TRAPPING

The first neutral atom trap to be developed was the magnetic trap, which uses mag-

netic forces to capture atoms. It was first demonstrated by Metcalf et al. in 1985 [28],

although it had been initially proposed much earlier [29, 30]. Later that same year,

the first optical molasses was developed [31]. An optical molasses uses laser beams to

cool atoms. This was followed by the creation of a magneto optical trap (MOT) in

1987 [32]. The MOT has several advantages over the magnetic trap. In particular, it

requires much smaller magnetic fields and is able to trap a greater number of atomic

states. It was later shown to have excellent versatility and control, working well even

in the single atom limit [16].

Another technique for trapping atoms, first demonstrated in 1986, is the optical

dipole trap [33]. This type of trap is much shallower than the others, and therefore

requires a source of cold atoms. Nevertheless, it can provide much tighter confinement

and more controllability than either of the other types of trap, and is, therefore,

well suited for quantum information applications. This chapter will focus on the

development and theory of optical molasses, the MOT, and the optical dipole trap.

2.1 Optical Molasses

Optical molasses was first demonstrated at Bell Labs in 1985 [31]. It utilizes a set

of lasers, detuned slightly from an atomic resonance, to cool atoms. For the correct

detuning, the Doppler effect gives rise to a velocity-dependent radiation force that

causes the atoms to lose energy on average. For many experiments, this cooling

process is the first step toward trapping atoms. As such, it is worthwhile to present

the elementary theory.

8



The momentum of a single photon is ~p = ~~k, where ~k is the wave vector, which

has a magnitude equal to 2π/λ and points in the direction of motion of the photon.

When a photon is absorbed by an atom, this momentum transfers to the atom. If a

beam of light, resonant to an atomic transition, is applied to an atom, this creates

an average force in the direction of the light, proportional to the momentum of the

photons. For a two-level atom, this force is given by [34],

~F = ~~kγ/2
s0

1 + s0

, (2.1)

where γ is the linewidth of the excited state and s0 is the on-resonance saturation

parameter, defined as the ratio of the intensity of the light, I, to the saturation

intensity, Is. The saturation intensity is defined as:

Is =
π~cγ
3λ3

. (2.2)

If the frequency of the light is shifted from atomic resonance by a detuning δ, the

resulting force is reduced somewhat and is given by [34],

~F = ~~kγ/2
s0

1 + s0 + (2δ/γ)2
. (2.3)

For an atom in motion with a velocity ~v, the effective frequency of the light as seen

by the atom is Doppler shifted by δw = −~k · ~v. This changes the effective detuning

of the light, adding a velocity-dependent component, given by,

δ+ = δ − ~k · ~v. (2.4)

If a second beam of light is added, identical to the first but counter-propagating, with

a wave vector ~k2 = −~k, this produces a combined force given by ~F = ~F+ + ~F−, where

~F± = ±~~kγ/2 s0

1 + s0 + (2(δ ∓ ~k · ~v)/γ)2
. (2.5)

In the limit of small atomic velocities, this force can be approximated by [34],

~F ≈ 8~|k|2δ s0

γ(1 + s0 + (2δ/γ)2)2
~v ≡ −β~v, (2.6)
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where β is the damping coefficient. If the detuning δ is negative, then β is positive,

and the resulting force opposes the motion of the atoms.

If this was the only force on the atoms, and the force was continuous, then the

atoms would quickly be brought completely to rest. In reality, as the atoms re-emit the

absorbed photons, this creates a heating force that ultimately limits the temperature

achievable by Doppler cooling. For each absorption and reemission event, the average

kinetic energy of the atoms increases by twice the recoil energy, which leads to a

heating rate of 4~ωrγ [34]. Setting this equal to the cooling rate, and assuming a

saturation parameter less than one, gives a steady state kinetic energy of:

Ekinetic = ~γ/8
(
γ

2δ
+

2δ

γ

)
. (2.7)

This energy is minimized when the detuning is equal to half the linewidth, and pro-

duces a minimum temperature (called the Doppler temperature), given by [34, 35],

TD = ~
γ

2kb
, (2.8)

where kb is Boltzmann’s constant. Doppler temperatures for the alkali atoms range

from about 100 to 250 µK.

2.2 Sub-Doppler Cooling

Early experiments in Doppler cooling were able to achieve temperatures significantly

below the Doppler temperature, violating the predicted theoretical limitations [36].

These unexpected results spurred further theoretical work, which led to the identifica-

tion of additional cooling mechanisms, referred to generally as sub-Doppler cooling, or

polarization gradient cooling. These cooling methods depend on the polarizations of

the optical molasses beams [37, 38], and we will focus on σ+-σ− polarization gradient

cooling, which is used in this thesis.

Two counter-propagating beams with orthogonal circular polarizations produce a

light field with uniform magnitude and linear polarization, but the direction of the

10



Figure 2.1: State diagram for an F = 1→ F ′ = 2 transition.

Figure 2.2: Graph comparing the Doppler and sub-Doppler cooling forces. The
dotted red line represents the Doppler force. The solid blue line represents the sub-
Doppler force. The sub-Doppler force is much steeper at the origin, leading to a lower
minimum temperature.
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polarization changes with respect to position. For simplicity, let us assume for the

moment that the ground state has three Zeeman sublevels (the same process will

work for more than three). The proposed system is illustrated in Figure 2.1. Given

a stationary atom in linearly polarized light, the atom will be preferentially pumped

into the mF = 0 state. As the atom moves, the direction of the linear polarization

changes faster than the orientation of the atom. This brief non-adiabaticity produces

an optical pumping effect which favors either the mF = +1 or mF = −1 state.

Assuming small atomic velocities (kv << δ), this leads to a state imbalance given by

[38]:

P+1 − P−1 ≈
40

17

kv

δ
, (2.9)

where P+1 and P−1 are the population in the mF = +1 and mF = −1 states respec-

tively. Therefore, if the light is detuned to the red of the transition, atoms traveling

towards the σ+ light are more likely to be in the mF = +1 state. Referring back to

Figure 2.1, these atoms are then also more likely to scatter σ+ photons. Similarly,

an atom moving towards the σ− light is more likely to be pumped into the mF = −1

state, and therefore more likely to scatter σ− light. In the limit of low laser power

and low atomic velocity (kv << sγ, s << 1), this results in a force, given by [38]:

~F =
120

17

δγ

5γ2 + 4δ2
~k2~v. (2.10)

This force opposes the direction of motion if the detuning is negative (see Figure 2.2).

Combined with Doppler cooling, this produces a theoretical minimum temperature

(in the semi-classical approximation) of:

kBT =
~Ω2

|δ|

(
29

300
+

254

75

γ2/4

δ2 + γ2/4

)
, (2.11)

where Ω =
√
s0/2γ is the generalized Rabi frequency. This expression assumes

that the temperature is large compared to the heating caused by a single photon

recoil. This cooling method relies entirely on photon scattering, and every scattering
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event is followed by the emission of a photon, which heats the atom. Therefore, the

lowest temperature that can be achieved is the recoil temperature, kBTr = ~2k2/(2m),

representing the energy imparted by a single photon recoil.

2.3 Magneto-Optical Trap

Optical molasses is an excellent tool for cooling atoms, but because the forces are

not position dependent, it does not constitute a trap. One solution to this problem,

first demonstrated in 1987 [32], uses a magnetic field gradient, in combination with

the optical molasses light, to create a position-dependent force. This type of trap is

known as the magneto optical trap (MOT).

An atom with angular momentum F = 0 in the ground state and F ′ = 1 in the

excited state is placed in a one-dimensional optical molasses with detuning δ < 0. The

excited state has three mF states, which are degenerate in the absence of a magnetic

field. Once a magnetic field is applied, the Zeeman effect causes a state-dependent

energy shift with magnitude given by [39],

∆E = ~µ · ~B = µmFB. (2.12)

We now apply a magnetic field of the form B(z) = B0z. If the atom is in a position

z > 0, the energy of the mF = +1 state is increased, while the energy of the mF = −1

state is decreased. Now the F = 0,mF = 0 → F ′ = 1,mF = 1 transition is further

away from the laser frequency, while the F = 0,mF = 0 → F ′ = 1,mF = −1

transition is closer to the laser frequency. This means that atoms in the z > 0 region

are more likely to absorb σ− light than σ+ light. For the z < 0 region, this effect is

reversed.

Each laser beam is now prepared with a specific circular polarization. The light

coming from the +z direction is given σ− polarization, and the light coming from

the -z direction is given σ+ polarization. The result is that atoms at any point other

than the origin are more likely to scatter light that pushes them toward the origin
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Figure 2.3: Illustration of the position-dependent trapping force in a MOT. As the
magnetic field increases, the Zeeman shift causes the mF = −1 transition (red line)
to move closer to resonance with the detuned laser. Assuming the beam coming from
the +z direction is σ− polarized, there is a net force pushing the atom toward the
origin.

than light that pushes them away (see Figure 2.3). For small Zeeman shifts compared

to the laser detuning, this produces an average restoring force which is linear with

position.

This example addresses only one dimension, but it can be extended to three di-

mensions by using six optical molasses beams, two in each direction, and a magnetic

field produced by two coils of wire in an anti-Helmholtz configuration. This setup

provides cooling and trapping in all three dimensions. Also, the example assumed a

single cycling transition. Real atoms do not typically have convenient closed transi-

tions between two levels. In cases with multiple ground states, one or more repump

lasers may be necessary to return the atom to the desired ground state [34].

MOTs are very useful for general cooling and trapping of atoms, but they also have

limitations that preclude their direct use for storing individual atomic qubits. First,

maintaining the trap requires constant repeated excitation on a cycling transition.
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This means the state of the trapped atoms is constantly being perturbed. Second,

atoms are continuously being slowed by the molasses and captured in the MOT, so it

is difficult to isolate a particular sample of atoms for any significant amount of time.

In addition, it is difficult to tightly confine atoms using a MOT. Although the size of

a MOT can vary depending on experimental parameters, it is very difficult to obtain

a diameter less than 20 µm.

2.4 Optical Traps

Many of the limitations of a MOT are avoided in traps based on the optical dipole

force. The first optical traps were created in 1970 by Arthur Ashkin at Bell Labs

[40], who used a focused argon ion laser to manipulate the movement of latex beads

floating in water. When the laser was turned on, the beads would be attracted to

the focus of the laser and remain trapped there. If the laser was then turned off,

the beads would resume normal Brownian motion. This so-called optical tweezers

technique has become an important tool in biophysics [41] and can be used for pre-

cise manipulation of organic matter. Optical traps are useful for a broad variety of

applications because they can generate a force on any material that can be polarized.

In his paper describing this effect, Ashkin suggested using optical traps to confine

neutral atoms. However, even with powerful lasers, the trapping potential for atoms

is very small. Optical atom traps thus require a source of pre-cooled atoms, and for

this reason, an optical trap for neutral atoms was not demonstrated until 16 years

later.

The breakthrough which finally allowed the creation of neutral atom optical traps

was the development of the optical molasses. The optical molasses provided a conve-

nient source of cold atoms, which could then be loaded into an optical trap. Optical

dipole trapping of neutral atoms was first demonstrated by Cable et al. in 1986 [33],

using a laser detuned up to 1300 GHz from resonance. The trap had a lifetime of
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only 5 ms, limited by laser heating of the atoms due to off-resonant scattering from

the trapping beam. In order to overcome this obstacle and improve the trap lifetime,

the far off resonant trap (FORT) was developed. The first FORT, demonstrated by

Dan Heinzen’s group in 1993, used trapping light detuned 65 nm from resonance [42].

Although this required higher laser power than a near-resonant trap, it significantly

reduced off-resonant scattering and improved the lifetime by more than an order of

magnitude.

Optical dipole traps have now become an essential tool in ultracold atomic and

molecular physics. They have applications in important research areas including

atomic frequency standards [43], tests of fundamental symmetries [44], quantum de-

generate gases [45, 46], single-atom trapping [17, 47, 48, 49], and the development of

scalable quantum information processing systems [19]. Furthermore, optical trapping

potentials can be tailored through the choice of optical wavelengths and laser beam

configurations to yield a wide variety of trapping arrangements. This section will first

discuss the general theory behind optical dipole traps and will then look at different

trap configurations and practical applications.

2.4.1 Dipole Trap Theory

The optical dipole force results from the interaction between an induced electric dipole

and a spatially non-uniform electric field. The induced dipole moment is proportional

to the electric field [50],

~p = α~E, (2.13)

where α is the complex polarizability. In the classical limit, one can use the Lorentz

model of an oscillator, which assumes the electron is bound to the atom by a spring

force. The oscillation is driven by the electric field, and the acceleration of the electron

leads to damping according to the Larmor formula. Solving the resulting equation of

16



motion leads to a complex polarizability of [50],

α = 6πε0c
3 Γ/ω2

0

ω2
0 − ω2 − i(ω3/ω2

0)Γ
, (2.14)

where ε0 is the permittivity of free space, ω is the driving frequency, and ω0 is the

transition frequency. The interaction potential generated by the electric field is given

by,

Udip = −1

2

〈
~p · ~E

〉
= −Re(α) |E|2 . (2.15)

Substituting in the previous expression for α and the laser intensity, I = 2ε0c |E|2,

gives:

Udip(~r) = −3πc2

2ω3
0

(
Γ

ω0 − ω
+

Γ

ω0 + ω

)
I(~r). (2.16)

If one applies the rotating wave approximation by assuming that δ = ω − ω0 << ω0,

the second term vanishes, giving the final expression for the potential:

Udip(~r) =
3πc2

2ω3
0

Γ

δ
I(~r). (2.17)

Note that the potential has the same sign as the detuning. This means that, for a

negative detuning, an atom will be drawn toward the area of maximum intensity,

while for a positive detuning, the atom will be pushed away. Both of these regimes

can be used to trap atoms, as will be seen later.

The power absorbed (and later re-emitted) by the atom is related to the rate of

change of the dipole moment, according to

P =
〈
~̇p · ~E

〉
= 2ωIm(α) |E|2 . (2.18)

Dividing by the energy per photon, ~ω, gives the photon scattering rate. Substituting

in the expression for α and taking the rotating wave approximation gives

Γsc(~r) =
3πc2

2~ω3
0

(
Γ

δ

)2

I(~r). (2.19)

By comparing this expression to the expression for the dipole potential, it can be seen

that the potential scales with 1/δ, while the scattering rate scales with 1/δ2. This
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Figure 2.4: Illustration of atoms in (a) a single focus trap and (b) an optical lattice.

means that, for a given trap depth, using a laser detuned further from resonance will

generate a smaller scattering rate.

One other thing to note is that all of these calculations have assumed a simple

two-level atom with one resonance. For real atoms, multiple transitions must usually

be taken into account in order to obtain accurate results. The total potential then

becomes the sum over the potential produced from each applicable resonance.

2.4.2 Single Focus Trap

The simplest optical trap can be created by tightly focusing a red detuned laser

(see Figure 2.4(a)). Since red detuned light (δ < 0) causes atoms to move to the

maximum intensity, this produces a trap at the focus of the beam. These single focus

traps provide the easiest means of trapping atoms using the dipole force. Typically,

the trapping beam is focused on the center of a MOT. Atoms are first loaded into the

MOT and then transferred into the single focus trap. The atoms are typically confined

more tightly than in a MOT and are not continuously subjected to perturbations

from near-resonant light. For sufficiently large trapping light detuning, lifetimes of
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hundreds of seconds can be achieved, usually limited by collisions with background

gases [51].

For a focused Gaussian trapping beam, near the focus, the intensity profile in

cylindrical coordinates is [52],

I(r, z) =
2P

πw2(z)
e
− 2r2

w2(z) , (2.20)

where P is the total optical power and w is the waist of the trapping beam. This

intensity profile provides relatively tight confinement in the radial direction, and

looser confinement in the axial direction. The maximum trap depth is found using

Eq. (2.17) and substituting in the optical intensity at z = r = 0, giving:

Utrap =
3c2

ω3
0

Γ

∆

P

w2
0

. (2.21)

For tighter confinement, an additional perpendicular trapping laser beam can be

added to create a cross trap. The second trap beam provides tight confinement in

the axial direction of the first trap, producing a more localized trap, and one that is

closer to isotropic in three dimensions.

2.4.3 Optical Lattice

Greater spatial control is sometimes needed than can be provided by a single focus

trap. A number of more complicated trap geometries have been used for various

applications. The most common by far, due to its simple setup and versatility, is

the optical lattice. Optical lattices were first used in 1987 to direct and compress

atom beams [53]. The first atom trap using an optical lattice was demonstrated by

Westbrook et al. in 1990 [54].

A one-dimensional optical lattice can be formed by two counter-propagating sin-

gle focus traps, focused at the same point, and can be implemented easily by retro-

reflecting the original trapping beam. The interference between the two beams pro-

duces an axial trapping potential near the focus (r/w0 << 1 and z/zR << 1) given
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by [50],

U(z) ≈ −4U0cos
2(kz), (2.22)

where U0 = Utrap is the maximum trap depth for the corresponding single focus trap

given by Eq. (2.21). For a red detuned trap laser, the atoms are trapped at the

antinodes of the standing wave, producing a lattice of trap sites with spacing λ/2, as

depicted in Figure 2.4(b). Hence, the trapped atoms are extremely well localized in

the axial direction. The trap is also four times as deep as a single focus trap using

the same beam power, assuming that the standing wave is created by retro-reflecting

the laser beam. These properties make the optical lattice a very powerful tool for a

variety of applications, including coupling neutral atoms into a cavity mode [55, 56],

studying quantum phase transitions in quantum gases [57], and creating quantum

registers [19].

The one-dimensional optical lattice can be extended into multiple dimensions by

adding additional beams. A three-dimensional optical lattice, which can be realized

with three retro-reflected beams, provides a very large number of identical but spa-

tially separated traps with extremely tight confinement (∼ λ/2) in all dimensions

[54]. It also has the advantage that it produces stable trapping for either red detuned

or blue detuned light. The advantages of blue detuned traps will be discussed later.

An important variant of the optical lattice is the optical conveyor [58]. For this,

the counter-propagating trap beam is given a frequency shift, δ, relative to the other

trap beam. This adds a time-dependent term to the potential,

U(z) ≈ −U0cos
2(kz − δ

2
t), (2.23)

which causes the interference pattern to ’travel’ at a velocity of

v =
λδ

4π
. (2.24)

By controlling the frequency difference, δ, this allows controlled translation of the

atoms along the trap axis.
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This technique was initially used to accelerate and launch clouds of atoms in

atomic fountain applications [59, 60]. It was particularly useful for this purpose

because it caused very little lateral heating. In 2001, the method was adapted for

precision manipulation of trapped atoms [18, 58, 61]. Individual atoms or small groups

of atoms could be moved along the lattice with minimal heating or loss, and while

maintaining coherence [62]. Conveyors are useful for a number of applications, such

as moving atoms into and out of a cavity [49] or rearranging atoms in a quantum

register [63], and have even been applied to larger objects such as polystyrene beads

[64].

2.4.4 Dipole Trap Frequency

Atoms confined in a trapping potential oscillate at a characteristic resonance fre-

quency. This frequency depends on the position variation of the potential and can be

different in each spatial dimension. Many heating and cooling effects depend critically

on the frequency of these oscillations. Assuming that the atoms are near the center

of the trap, a harmonic approximation can be used for the potential. For a single

focus trap, the second order Taylor expansion gives

U(r, z) = −U0

(
1− 2

(
r

w0

)2

−
(
z

zR

)2
)
. (2.25)

This leads to the trap frequencies,

ωr =

√
4U0

mw2
0

, (2.26)

ωz =

√
2U0

mz2
R

. (2.27)

In the case of the one dimensional optical lattice, the approximation of the potential

is

U(r, z) = −U0cos
2(kz)

(
1− 2

(
r

w0

)2

−
(
z

zR

)2
)
. (2.28)
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For values of z near the focus, this gives frequencies of approximately,

ωr =

√
4U0

mw2
0

, (2.29)

ωz = 2π

√
2U0

mλ2
. (2.30)

Notice that these values are accurate only near the bottom of the trap. As the atoms

become hotter, the anharmonicity of the trap becomes increasingly important, and

the trap frequency deviates from this result. In most cases, the atoms are cold enough

to make this approximation valid.

2.4.5 Localization of Trapped Atoms

The degree of localization of the atom in an optical trap depends on the temperature

of the atom compared to the trap depth. For an atom with energy E = αU0, the

furthest the atom can travel from the center of the trap will be the point where the

trap depth is U = (1 − α)U0. To determine the total confinement length in each

direction, one can substitute this value into Eq. (2.20), giving:

(1− α)U0 = U0
w2

0

w2
e−2r2/w2

. (2.31)

If we assume that all of the energy is in the radial direction, then z = 0 and w = w0.

Eq. (2.31) then reduces to:

(1− α) = e−2r2/w2
0 , (2.32)

which can be rearranged to give:

rmax = w0

√
1

2
ln

(
1

1− α

)
. (2.33)

If we assume that all of the energy is in the axial direction, then r = 0 and w is given

by [52],

w = w0

√
1 +

(
λz

πw2
0

)2

. (2.34)
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Substituting these into Eq. (2.31) gives:

(1− α) =
1

1 +
(

λz
πw2

0

)2 , (2.35)

which can be rearranged to give:

zmax =
πw2

0

λ

√
α

1− α
. (2.36)

Under typical experimental conditions, zmax >> rmax for a single focus trap.

The radial confinement in an optical lattice (at the focus) is the same as for the

single focus trap. In the axial direction, the trap depth as a function of z is given in

Eq. (2.22). If all of the energy is in the axial direction, this leads to:

1− α = cos2(kz), (2.37)

which can be rearranged to give:

zmax =
λ

2π
sin−1

(√
α
)
. (2.38)

2.4.6 Differential Stark Shift

A dipole force trap relies on the spatially dependent energy shift created by the

trapping laser. For a two level atom, the trap potential in the excited state is equal

and opposite to the potential in the ground state. This produces a total shift in the

transition frequency equal to twice the trap potential, as shown in Figure 2.5. This

shift is known as the differential Stark shift.

Multi-level systems are more complicated, and there is usually no direct rela-

tionship between the trap potential in the ground state and the trap potential in the

excited state due to contributions from a large number of different atomic transitions.

Calculating the differential Stark shift requires first calculating the trap potential for

both the excited state and the ground state, taking into account all applicable tran-

sitions. The difference between these two values gives the differential Stark shift in
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Figure 2.5: Stark shift for the excited and ground states of a two level atom.

terms of energy. The differential Stark shift is important because it adds an effective

detuning to the resonance frequency of the transition.

Another important parameter is the differential Stark shift between the two hyper-

fine ground states. For many quantum information applications, coherence between

the hyperfine ground states is crucial, and differential shifts in the ground state en-

ergy levels can cause decoherence. The shift can be calculated by taking the difference

between the Stark shifts for each of the hyperfine states [65]:

~δhfs = U0(∆)− U0(∆ + ωhfs), (2.39)

where ∆ is the detuning of the optical trap, and ωhfs is the frequency spacing between

the two hyperfine levels. For ωhfs << ∆, this equation becomes [65],

~δhfs ≈
ωhfs
∆

U0. (2.40)

It is important to note that these equations give the maximum value of the Stark

24



shift, for the deepest point in the trap. As the atom oscillates in the trap, the differ-

ential Stark shift changes with the atom’s position, producing a constantly changing

resonance frequency. One strategy to compensate for the differential Stark shift of

the optical transition is to create a dipole trap at a magic wavelength [66]. A magic

wavelength occurs when contributions from multiple resonance frequencies create a

trap potential that is equal in both the excited and ground states. A trap at such a

magic wavelength produces no differential Stark shift. Because the differential Stark

shift can increase decoherence [67], a magic wavelength can be particularly useful for

quantum information experiments.

2.4.7 Calculation of Typical Values

All of the experiments described in this thesis use the 87Rb D2 line at 780.241 nm

for cooling, optical pumping, and detection of atoms. Atoms are cooled and detected

using the F = 2 → F ′ = 3 cycling transition. The red-detuned optical traps are

created with a Yb fiber laser operating at 1064 nm. For an optical lattice with 1.7

W of power in each lattice beam, focused to 13 µm, the trap depth is approximately

2 mK (64 MHz) for the 5S1/2 ground state, and -2.9 mK (-91 MHz) for the 5P3/2

excited state. This leads to a differential Stark shift of 155 MHz for the D2 line.

The differential Stark shift between the F = 1 and F = 2 ground states is 750 Hz.

The trap frequencies are 843 kHz in the axial direction and 13.4 kHz in the radial

direction. Both the trap depth and the differential Stark shift are linearly dependent

on the trap power, while the trap frequency varies with the square root of the trap

power.
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CHAPTER III

QUBITS AND QUANTUM INFORMATION

Quantum computing requires quantum memory [68], and many physical systems are

being pursued for storing quantum information, including ions [69], neutral atoms

[19], and various solid state implementations [70]. Regardless of the method used, a

quantum computer requires a large number of qubits, with minimal decoherence or

loss for at least as long as it takes to perform a quantum operation. Figure 3.1 shows

an illustration of a generic atomic quantum register.

This thesis focuses on developing improved neutral atom qubit storage and de-

tection. The qubits are trapped using an optical lattice, with neutral 87Rb atoms

loaded from a magneto-optical trap. Major challenges include loading atoms reliably,

holding atoms for a sufficiently long time, preparing a quantum state, and reading

out the state without losing the atom from the trap. After briefly explaining the

advantages of 87Rb, each of these challenges will then be discussed in turn, beginning

with loading atoms into a trap.

3.1 Choice of Qubit

The first important decision is the selection of the atomic element to be used as

a qubit. To date, alkali atoms have been used exclusively for neutral atom qubit

realizations. For these atoms, the single valence electron produces a reasonably simple

energy level structure near the ground states. This simplicity makes alkali atoms much

more convenient to work with than most other atoms. Although all alkali atoms have

suitable electronic structure for realizing qubits, 87Rb is particularly attractive. It

has a strong cycling transition at 780.241 nm, which can easily be addressed with

relatively cheap diode lasers. In comparison, sodium has its strongest transition at
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Figure 3.1: Illustration of a quantum register. A series of qubits are confined to
evenly spaced traps in a periodic potential.

Figure 3.2: Hyperfine state diagram for the 87Rb D2 line.
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589 nm, which requires much more expensive lasers. Also, 87Rb has half as many

Zeeman ground states as cesium, making optical pumping somewhat simpler. 87Rb

has two hyperfine ground states and the 5P3/2 state has four excited states, along

with several Zeeman sublevels, as shown in Figure 3.2 [71].

3.2 Loading a Quantum Register

Ideally, a quantum register should consist of an array of qubits, equally spaced and

individually addressable. This array can occupy one or more dimensions [22, 25],

but for simplicity the current discussion will be limited to one. It would, however,

be fairly straightforward to scale up to higher dimensions. An optical lattice is one

of the easiest methods to create a series of evenly spaced traps, and therefore seems

ideal for this sort of application. The immediate difficulty, however, is in loading

exactly one atom into each trap. This section will discuss how to load single atoms

into a MOT, then into a lattice, and will finish by examining probabilistic versus

deterministic loading schemes.

3.2.1 Single Atom MOT

In recent years, loading a single atom (or small number of atoms) into a MOT has

become relatively commonplace. It was originally accomplished in 1994 by Hu et al.

[16]. The MOT loading rate is given by [72],

R =
1

2
nv4

cV
2/3

(
m

2kbT

)3/2

, (3.1)

where V is the volume of the MOT and vc is the maximum capture velocity. There is

no exact analytical solution for the capture velocity, but approximate relationships can

be derived in the limits of low and high magnetic field gradient. For a small magnetic

field gradient, the volume and capture velocity of the MOT depend primarily on the

beam diameters. It is assumed that any atom which enters the molasses and is slowed

to the minimum temperature will become trapped. For beam diameter d, V ≈ 1/6πd3
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and v2
c ≈ 2vrΓd [73], where vr is the photon recoil velocity. This results in a loading

rate,

R ∝ d4. (3.2)

The other important limit is for a high magnetic field gradient. In this case, not all

atoms which are slowed by the molasses beams become trapped. Since the molasses

area is large compared to the effective trapping area, the trap volume and capture

velocity depend primarily on the magnetic field gradient. For a magnetic field gradient

B′, V ∝ B′−3 and vc ∝ B′−2/3 [74]. The resulting loading rate scales as:

R ∝ B′−14/3. (3.3)

This relationship between the magnetic field gradient and the loading rate provides

a simple method for loading a small number of atoms. By increasing the gradient,

the loading rate can be reduced enough to (probabilistically) load only one atom in a

specified amount of time [17]. This atom can then be transferred into an optical lattice

by overlapping the two traps. Although this is an effective way to probabilistically

load a single atom, it does not easily extend to loading a uniform chain of atoms.

Additional techniques are needed to produce an evenly spaced chain.

3.2.2 Sparse Loading

The simplest method to load an array of atoms is to sparsely load a string of atoms

probabilistically. If even spacing between atoms is not required, this method produces

an addressable quantum register with the minimum possible effort. Unfortunately,

this method scales poorly. As the number of atoms increases, the chance of two atoms

occupying the same lattice site grows quickly. An improvement on probabilistic load-

ing involves active relocation of individual atoms in the lattice. Miroshnychenko et

al. demonstrated in 2006 [63] that sparsely loaded atoms in a one dimensional optical

conveyor can be actively repositioned using a second, orthogonal optical conveyor.
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This produces evenly spaced atoms, but it still scales poorly with large atom number,

since it relies initially on sparse loading.

3.2.3 Collisional Blockade

A second loading scheme depends on the collisional blockade mechanism to load

individual atoms into approximately half of the lattice sites, with zero atoms in the

other sites. A collisional blockade was demonstrated in a single focus trap in 2002 [48],

and has since been used in a three dimensional optical lattice [25]. In an optical trap,

the rate of collisions varies inversely with the trap volume. If this rate is high enough,

then whenever a second atom enters the trap, collisions will occur very quickly. In

the absence of near-resonant light, these collisions are mediated by the relatively

weak Van der Waals force (F ∝ 1/r6) [75]. These elastic collisions are very unlikely

to cause atoms to leave the trap. If near-resonant light is present, however, inelastic

three-body collisions between the two atoms and a photon can occur. These collisions

can result in a large change in the kinetic energy of each atom, and will frequently

cause both atoms to be ejected from the trap. This provides a simple method to

obtain single occupation of half of the lattice sites. However, unoccupied lattice sites

are arranged probabilistically, and there is no easy way to fill the remaining lattice

sites. One possible compacting scheme has been proposed by Vala et al., but has not

yet been realized experimentally [76].

3.3 Atom Lifetime

Most neutral atom traps exhibit a characteristic lifetime, defined as the time required

for the population to drop by a factor of 1/e. Several different loss mechanisms

must be minimized in order to retain the atoms as long as possible. Important loss

mechanisms include off-resonant scattering from the optical trap laser, heating from

trap fluctuations, and collisions with background gas.

As discussed earlier, off-resonant scattering can be minimized by using a far off
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resonant trapping laser. At sufficient detuning, the resulting heating can be easily

rendered negligible compared to other loss mechanisms, such as background colli-

sions and dipole trap fluctuations [42]. Using standard UHV vacuum techniques,

background pressures below 10−11 Torr can reasonably be achieved [77]. These low

pressures allow lifetimes in excess of 300 seconds [51]. Another source of loss, trap

fluctuation heating, has been analyzed by Savard et al. [78]. Random fluctuations in

the intensity and positioning of the optical trap laser can cause significant heating,

which may limit trap lifetimes to as little as several seconds. These effects will be

discussed in greater detail later.

3.4 State Preparation

A neutral atom qubit must have at least two states, designated |0〉 and |1〉, which are

stable on the time scales of the experiment. One must be able to prepare the atom

in either of these two states, or in an arbitrary superposition of the two. For this

work involving 87Rb, the F = 1,mF = 0 and F = 2,mF = 0 ground states will be

designated as |0〉 and |1〉 respectively.

The F = 1 and F = 2 states can be initialized by direct excitation of an appro-

priate optical transition, with error rates << 1% [79]. Initialization to a specific mF

state is considerably more difficult, although it can still be achieved through optical

pumping [80]. Once the atom is initialized to either |0〉 or |1〉, coherent superpositions

can be created using Raman [81] and microwave transitions [82]. Of these, microwave

transitions provide the easiest and most direct method of preparing the atomic state.

This section will examine the theory behind microwave state preparation and explain

how it is used experimentally.

In order to examine the effect of microwaves on atoms in the ground state, two

assumptions will be made. The first assumption is that the atom has only two relevant

energy levels. In our case, the two levels will be F = 1,mF = 0 and F = 2,mF = 0.
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Figure 3.3: 87Rb hyperfine ground states, showing Zeeman splitting. The F =
1,mF = 0→ F = 2,mF = 0 transition is known as the clock transition.

This assumption is reasonable as long as there is a magnetic field present to lift the

degeneracy of the Zeeman sublevels. The relevant levels and sublevels are shown in

Figure 3.3. The second assumption is that the microwaves are tuned very close to

the resonant frequency (∆ = 0).

The transition in question is a magnetic-dipole transition, so the strongest non-

vanishing effect is magnetic. In the presence of a constant-magnitude AC magnetic

field ~B = Bx̂, and in the presence of decoherence mechanisms, the two-level atom’s

response can be characterized by the optical Bloch equations [65], given by [82, 83]:

u̇ = −∆v − u

T2

, (3.4)

v̇ = ∆u− v

T2

+
ge

2m
Bw, (3.5)

ẇ = −w − weq
T1

− ge

2m
Bv, (3.6)

where ∆ is the detuning of the magnetic field from resonance, T1 is the relaxation

time, T2 is the dephasing time, g is the Landé g-factor, e/m is the charge to mass

ratio of an electron, and (u, v, w) is the Bloch vector. The value of the Bloch vector

is (0, 0,−1) or (0, 0, 1) for the |0〉 and |1〉 states respectively [65]. For microwave
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transitions in a dipole trap, T1 is due primarily to off-resonance scattering from the

dipole trap laser, and is thousands of times larger than T2 [65]. For this reason, the

first term in Eq. (3.6) can safely be ignored. In red-detuned dipole traps, T2 is due

primarily to the differential AC Stark shift between the hyperfine ground states [65].

Setting ∆ = 0 and solving for w gives [82, 84]:

w(t) =

(
C1 cos(st) +

C2

s
sin(st)

)
ebt, (3.7)

C1 = w0, (3.8)

C2 = w0

(
1

2T2

)
− ge

2m
Bv0, (3.9)

b =
1

2T2

, (3.10)

s =

√
(
ge

2m
B)2 −

(
1

2T2

)2

. (3.11)

Assuming that the atoms begin in the F = 1,mF = 0 state, then w0 = −1 and

v0 = 0. Furthermore, for large magnetic fields such that ge
2m
B >> 1/T2, the equations

simplify to:

w(t) = −
[
cos(

ge

2m
Bt) +

(
1

ge
m
BT2

)
sin(

ge

2m
Bt)

]
e
− 1

2

(
1
T2

)
t
. (3.12)

Since ge
2m
BT2 >> 1, the sine term is small, and in most cases can be ignored. This

gives us the final equation for the population inversion:

w(t) = −cos(Ωt)e−
t
τ , (3.13)

where Ω = ge
2m
B is the Rabi frequency and τ = T2 is the coherence time.

This is simply the formula for a damped cosine function. Figure 3.4 shows a graph

of the population inversion versus time for the case of Ω = 5/τ . If the magnetic

field is applied for precisely ∆t = π/Ω (referred to as a π pulse), then the atom

will be transferred into the other state with near unit efficiency, limited only by the
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Figure 3.4: Population versus microwave pulse length, for Ω = 5/τ . Maximum
population transfer is achieved by applying a π pulse.

decoherence during the pulse. Further, any arbitrary superposition between the two

states is achievable by applying a pulse of the appropriate length.

The microwave pulse has a Fourier-limited linewidth inversely related to the pulse

length [83]. For pulses on the order of 1 ms, this yields a linewidth of ∼1kHz. Since

a 1 mG magnetic field produces Zeeman shifts of 700 Hz [85], multiple Zeeman states

can be addressed only if the magnetic fields are very carefully minimized. In general,

due to the effects of stray magnetic fields, microwaves typically address only a single

Zeeman sub-state.

3.5 State Readout

Another requirement for any quantum information system is a reliable mechanism for

reading out the states of the qubits. The most common method is to pulse a high

power kickout beam tuned to the F = 2→ F ′ = 3 resonance [20, 62, 65, 86, 87, 88].

This removes all of the atoms that are in the F = 2 state from the trap, as shown

in Figure 3.5. The trap is then imaged, and any qubits that remain are assumed to

have been in the F = 1 state, while the missing qubits are assumed to have been
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Figure 3.5: Illustration of destructive state detection. A kickout beam tuned to the
F = 2 → F ′ = 3 resonance knocks all of the atoms in the F = 2 (|1〉) state out of
the trap, while atoms in the F = 1 (|0〉) state remain.

in the F = 2 state. Destructive readout has been used in every neutral atom qubit

experiment to date. This method is fairly reliable, with error rates typically below

1%, but it has the obvious limitation that it destroys the quantum register after every

readout.

One solution that has been demonstrated is to use a cavity QED system to increase

the collection efficiency of the scattered photons [56, 89, 90, 91]. The quantum state

can then be determined with fewer scattering events, resulting in lower heating and

minimal loss of the qubits. A drawback of this approach is that cavity QED systems

significantly complicate the experimental setup, and each atom to be detected needs

to be localized within the small cavity mode. These limitations make a free space

solution seem preferable. Direct fluorescence state detection should be possible, but

has never before been demonstrated. This is due primarily to the difficulty of captur-

ing and observing sufficient fluorescence without the aid of a cavity. Nevertheless, it

is achievable with a high aperture lens and high efficiency detectors, as will be seen
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later.

3.6 Repetition Rate

Each implementation of a quantum register has four important properties that largely

determine its efficacy. The first property is the amount of storage space. Since 1-D

optical lattices can easily have hundreds of lattice sites, and lattices can be extended

in multiple dimensions, space limitations will not be a major concern for quite some

time. The second property is the overall error rates of state preparation and detection.

These error rates are frequently below 1% [19], which is low compared to the errors

introduced during quantum gate operations [22]. The third important property is the

total repetition rate for quantum operations. The quantum operations themselves are

usually very fast, t << 1 ms. Initializing a quantum register can also be completed

on the order of a millisecond or faster. However, loading a quantum register takes

much longer. Depending on the method used, it can take as long as several seconds,

and may be a probabilistic process [19]. Some groups have achieved faster results, on

the order of a few hundred milliseconds, but at the cost of limited expandability [22].

The final issue is the stability of the trapped qubits. The loss rate of qubits

from the register is important, particularly as the number of qubits increases. For

example, reliably maintaining 100 atoms for 1 s in a quantum register would require a

trap lifetime of over 150 seconds. Furthermore, these qubits must be able to maintain

their quantum state for long enough to perform the desired quantum operations. For

a red detuned optical lattice, coherence times around 20 ms have been measured [65].

A major factor that is currently believed to limit coherence times is the fluctuation of

the differential Stark shift between hyperfine ground states (Eq. (2.40)) as the atom

moves in the trap [65, 67]. Depending on the speed of the quantum operation, these

limits on coherence time may or may not present a problem in the future.
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The need to prepare a new quantum register for every calculation has thus far lim-

ited the repetition rate for neutral atom quantum operations to about one per second

[22]. By switching to a non-destructive readout scheme, this rate could be increased

by at least an order of magnitude. A robust, easily implemented non-destructive read-

out system would be extremely valuable for future quantum computing experiments.

There are many experimental challenges involved in non-destructive readout. The

next few chapters describe the experimental processes used to realize such a scheme.
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CHAPTER IV

EXPERIMENTAL SETUP

All of the experiments reported in this thesis require a vacuum chamber, imaging

system, magneto-optical trap, and dipole trap. This chapter focuses on the basic

infrastructure and setup which are pre-requisite to the work presented in subsequent

chapters.

4.1 Vacuum Chamber

The experiments are conducted in a vacuum chamber built mostly out of standard,

off-the-shelf pieces. Atom trapping takes place inside a rectangular quartz cell made

by Allen Scientific Glass. The cell measures 27 by 27 by 150 mm and is attached to

the vacuum chamber through a round glass transition piece fitted with a standard

vacuum flange. This in turn is attached to the main body of the vacuum chamber.

The setup is illustrated in Figure 4.1.

A Rb getter from SAES Getters is mounted to a feedthrough inside the vacuum

chamber, with the active area pointed towards the trapping region. The getter is a

filament with a small amount of a rubidium compound deposited on one side. An

electric current is applied across the getter, which heats the active region, causing

part of the compound to dissociate and release Rb atoms.

An ion gauge is attached to the system to continuously measure the vacuum

pressure. For our experiments, the operating pressure is below the minimum pressure

of the ion gauge (10−11 Torr), however, the gauge is used during the initial pumping

out of the chamber and to indicate if the pressure is abnormally high. The ion gauge

is turned off when minimum pressure has been reached.
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Figure 4.1: Representative diagram of the vacuum chamber used in these experi-
ments. A quartz cell is attached to a steel chamber, which features a Rb getter, an
ion gauge, an ion pump, and a titanium sublimation pump. For initial pumpout, the
chamber is attached to a pumping station through the roughing valve.

The vacuum system uses four pumps to reach ultra high vacuum (UHV) pres-

sures. An ion pump and a titanium sublimation pump are permanently attached to

the system. The other two (the roughing pump and the turbo pump) are attached

temporarily. The roughing pump is turned on first and is able to reach pressures

around 10−2 Torr. The turbo pump further reduces the pressure to around 10−9

Torr. With the chamber connected to these pumps, the chamber is baked at a tem-

perature of 400 ◦ C for approximately two weeks. This removes nearly all water from

the system, as well as most other impurities.

Following the bakeout, the ion pump is turned on, and the roughing and turbo

pumps are disconnected from the system. The ion pump utilizes electrons emitted

from an anode to ionize passing atoms, which are then accelerated toward a titanium

cathode using a strong electric field. The atoms form stable compounds with the

titanium on the cathode surface, while also spreading titanium atoms onto nearby
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surfaces [92]. The total pumping rate depends on the mass of the gas particles being

pumped. Under most circumstances, the ion pump runs continuously, and in the

absence of hydrogen, it can typically maintain a pressure as low as 10−11 Torr. It is

relatively poor at removing hydrogen, however, due to its low mass.

A titanium sublimation (TI-sub) pump is used to remove the hydrogen in the

system. The TI-sub pump is made up of titanium filaments mounted inside a large

vacuum nipple. When current is applied to the filaments, titanium is ejected, coating

the inside wall of the nipple with a thin layer of titanium. Hydrogen (along with

several other elements) reacts with the titanium, effectively removing it from the

system. The TI-sub pump is not run continuously. Instead, it is pulsed on for a short

period of time every few months, or if the vacuum starts to become poor. Working

together, these pumps are able to reliably maintain pressures below 10−11 Torr, as

required for our experiment.

4.2 Magneto-Optical Trap

We use a MOT for initial cooling and trapping of 87Rb atoms. Creating the MOT

requires two primary components: a magnetic field gradient and cooling lasers. The

MOT setup is shown in Figure 4.2.

4.2.1 Magnetic Gradient

The magnetic field is supplied by a pair of wire coils made from bare copper refriger-

ator tubing wrapped with kapton tape. The tubing has an outside diameter of 0.25”

and an inside diameter of 0.19”. Each coil has a total of 40 turns, wrapped tightly in

five layers of eight turns each. The inner diameter of each coil is 2.5”. The coils are

placed on either side of the glass cell, 1.5” apart with their shared axis parallel to the

table. A 15 kW power supply is attached to the coils, generating a maximum current

of 320 A, which produces a maximum magnetic field gradient of 400 G/cm near the

center of the glass cell. The coils are cooled by running chilled water through the
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Figure 4.2: Diagram of the magneto-optical trap (MOT) setup. The MOT is created
by shining cooling light from six directions, all of which cross in the center of the glass
cell. Two large coils of refrigerator tubing create the necessary magnetic field gradient,
while six smaller coils of wire control the bias field.

hollow center of the refrigerator tubing to dissipate the heat.

Six bias coils are placed surrounding the trap (one pair in each direction), and

are used to counteract the earth’s magnetic field as well as stray magnetic fields from

nearby electronics, magnets, and other sources. Each coil is made up of 20 turns of

thin wire.

4.2.2 Cooling Lasers

The cooling lasers comprise two 780.241 nm wavelength diode laser systems, each

tuned to a different 87Rb D2 transition. The trapping laser is tuned near the cycling

transition (F = 2 → F ′ = 3), while the repump laser is tuned to the F = 1 → F ′ =

2 transition. Both lasers are locked to their respective transitions using saturated

absorption spectroscopy. Fine control of the laser power and frequency is obtained

through the use of acousto-optic modulators (AOMs). Additionally, either laser can

be blocked completely using a mechanical shutter.

Both laser systems employ a master-slave configuration, with a grating-stabilized
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master laser and an injection-locked slave laser. All of these lasers use the Sharp

Electronics, model GH0781JA2C laser diode, and are controlled using homemade

electronics. The master lasers are set up in the Littrow configuration [93].

The laser diodes are powered by a stable current control circuit based on a design

by Libbrecht and Hall [94]. A modulation input allows fast feedback to the current for

locking and stabilization. Temperatures are stabilized using a thermo-electric cooler

(TEC) attached to the aluminum housing. The temperature of the diode is monitored

using a thermistor, and a PI (proportional/integral) locking circuit controls the TEC.

The temperature control circuit is based on a design by Hulet’s group [95].

Each master laser is locked to its respective transitions using saturated absorption

and FM spectroscopy techniques. A small portion of the light from the laser is redi-

rected and split into two beams, which act as a pump and probe beam respectively.

These beams counter-propagate through a Rb vapor cell, and the probe is focused

onto a photodiode. This produces a saturated absorption signal. In order to obtain

a dispersion signal, the pump beam is modulated using a 210 MHz AOM, and the

modulation signal is mixed with the signal from the photodiode. The resulting sig-

nal is low-pass filtered to remove high frequency oscillations. These techniques are

described in much greater detail in Refs [96, 97].

The lasers are locked to the dispersion signal using a home-built lockbox. The

lockbox amplifies the dispersion signal and creates separate proportional and integral

outputs. The proportional output is connected to the modulation input on the current

controller. The integral output controls the precise position of the laser’s diffraction

grating through the use of a PZT.

Light from the trapping master is double-passed through a variable frequency

AOM. This allows the final frequency of the trapping light to be tuned from about

−50 MHz to +10 MHz relative to the cycling transition. Light from the master

trapping and repump lasers is then used to injection lock the slave lasers. Each
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resulting laser beam passes through an AOM, which allows fast control of the laser

power, and a shutter, which allows the beam to be completely blocked.

Polarizing beam splitter cubes are used to split the trapping laser beam into three

beams of roughly equal power. The repump beam is then combined with one of the

three trapping laser beams. Each beam is then split one additional time, producing

six trapping beams. Using quarter wave plates, the beams are given the appropriate

circular polarizations, and oriented in a standard six beam MOT configuration, with

all beams overlapping at the center of the magnetic coils. The trapping and repump

beams have a maximum diameter of 11 mm, which can be reduced to as small as 1

mm. The total power in each beam is 3 mW (4 mW for the repump), which gives a

total maximum intensity of 10 mW/cm2 (4.5 mW/cm2 for the repump).

4.2.3 Single Atom MOT

To form the MOT, the trapping laser is detuned slightly to the red of transition (δ

= −10 MHz), the magnetic gradient is set fairly low (∼40 G/cm), and a 2 A current

is applied to the getter. This produces a MOT with a steady state population of

>10,000 87Rb atoms.

In order to operate the MOT in the single atom limit, several different approaches

are used to reduce the number of atoms in the trap. First, the rubidium vapor

pressure is lowered by shutting off the getter and leaving it off for several weeks. On

occasions where a higher rubidium vapor pressure is needed, an ultraviolet LED is

shone on the glass cell, which temporarily increases the amount of rubidium gas in

the cell by light induced desorption of rubidium from the glass walls [98]. Once the

light is shut off, the rubidium quickly bonds to the cell again, returning the pressure

to its previous value (the response time is less than a second). The UV light produces

a much lower rubidium vapor pressure than the getter, but it still allows for loading

several thousand atoms.
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Figure 4.3: Diagrams of the primary imaging systems. (a) Light from the trapped
atoms is captured by objective lens L1 (f = 10 mm), passes through a laser line filter,
and is focused onto a CCD camera by lens L2 (f = 75 mm). Total capture and
detection efficiency is 2.9%. (b) Light from the trapped atoms is split by the pick-off
beam splitter BS1 (R = 5%). A small amount of light is focused onto the camera by
lens L2 (f = 75 mm). The rest of the light is focused onto the single photon counting
module by lens L3 (f = 25 mm). Total efficiencies are 0.14% and 1.5% for the camera
and the photon counter, respectively.

The loading rate is further reduced by changing the magnetic field gradient and

the trapping laser beam diameters. Increasing the magnetic field gradient decreases

both the MOT loading rate and the MOT diameter [74, 99]. This method has been

used by Frese et al. in their single atom trapping experiments [17]. Decreasing

the trapping beam diameters also decreases the loading rate [73], but makes precise

alignment of the beams much more critical. If necessary, the trapping laser detuning

can be used to change the loading rate of the MOT, but this will also affect the

minimum temperature of the atoms in the MOT.

4.3 Imaging System

Fluorescence imaging is used to detect the atoms in the trap. The imaging setup is

shown in Figure 4.3(a). To capture light from the atoms in the trap, a 20X microscope

objective (Mitutoyo M Plan NIR 20X) is mounted directly above the glass cell, focused
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on the center of the MOT. The objective lens has a numerical aperture of 0.4, an

effective focal length of 10 mm, and a working distance of 20 mm. It captures about

4% of the fluorescence from the trapped atoms. In most cases, this light is then

directed through a laser line filter (>90% efficiency) and to an Andor back-illuminated

CCD camera. The camera has a quantum efficiency of 80%, resulting in a total system

efficiency of 2.9%. The total magnification of the system is 7.5X, creating a field of

view of just under 1.1 mm on the 8.2 mm square camera sensor.

CCD cameras are useful for detecting the presence of single atoms and for measur-

ing the trap population. However, most of these cameras have a readout noise level

of at least five counts per pixel, which renders any signal smaller than around twenty

counts difficult to detect. Nondestructive state measurements will require detecting

signals as small as a few photons. For these measurements, a PerkinElmer single

photon counting module (model SPCM-AQR-14) is used in addition to the camera,

as shown in Figure 4.3(b). The single photon counting module has an efficiency of

45% and an intrinsic noise level (dark count) of <100 counts per second.

4.4 Dipole Trap

The atoms in the MOT are transferred to an optical dipole trap. The dipole trap is

generated using a single mode 1064 nm Ytterbium fiber laser (IPG Photonics YLR-10-

1064-LP-SF-G) with 10 W maximum optical power. The beam is shaped by passing

it through an optical fiber, which limits the maximum usable power to 4 W. The

beam is then focused onto the center of the MOT. The experiments in this thesis use

a few different trap configurations. The most typical configuration, a retro-reflected

optical lattice, is shown in Figure 4.4. Other setups include a single focus trap, an

optical conveyor, and dual lattices.

The single focus trap setup uses a single 4 W beam focused to a minimum waist

w0 = 13 µm (Figure 4.4 with the retro-reflection beam blocked). This setup is very
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Figure 4.4: Diagram of the optical lattice setup. The trapping laser is focused
through lens L1 (f = 300 mm) onto the center of the MOT (w0 = 13 µm). The laser
is collimated by lens L2 (f = 300 mm) and then retro-reflected by mirror M1. When
creating a single focus trap, the retro-reflection is blocked.
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simple, but has several drawbacks. The atoms are not very tightly trapped, and there

is no easy way to limit the trap to a single atom. Furthermore, a single focus trap

produces only a single trapping site. It is used primarily for diagnostic purposes and

as an initial step toward creating an optical lattice. For the optical lattice setup, the

beam power is lowered to 2 W or less in order to prevent a misaligned retro-reflected

beam from damaging the optical fiber.
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CHAPTER V

HEATING AND COOLING OF SINGLE ATOMS

In early work with optical dipole traps, trap lifetimes were limited primarily by heat-

ing due to off-resonant absorption of trap light [42]. However, even with the advent

of far off-resonance trapping beams, significant heating rates remained [100]. It was

later suggested that fluctuations in the trap potential due to laser intensity noise and

pointing instabilities can cause significant heating, which can reduce the lifetime of

optically trapped atoms [78]. However, only a few efforts have been made to quan-

titatively study this heating experimentally [101, 102]. It is particularly important

to study heating in optical lattices, since the heating rates scale strongly with the

trap frequencies [78], which are typically much higher in optical lattices. While trap

lifetimes exceeding 300 s have been observed in low frequency optical traps [51], the

longest previously reported lifetime in an optical lattice is around 60 s [63].

This chapter examines heating and cooling in an optical lattice and quantifies the

effects on the trap lifetime. First, the trap lifetime is measured in the absence of cool-

ing, revealing a nonexponential decay of the population with an asymptotic lifetime

of 62 s. Next, heating due to trapping laser fluctuations is examined experimentally,

producing good quantitative agreement with a numerical simulation. In order to

counteract this heating, continuous cooling is applied to the atoms, extending the

lifetime dramatically. Finally, a lattice lifetime of >300 s is demonstrated by using a

pulsed cooling technique, with a cooling pulse applied once every 20 s. A variation

on this scheme is proposed for use with qubits.
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Figure 5.1: Fluorescence level of the MOT over time. Distinct jumps in the fluo-
rescence can be seen as atoms enter and leave the trap. Exposure time is 0.2 s. Each
atom produces a signal of 1700 counts (8500 cts/s), with a background level of 3570
counts, primarily due to light scattering off of the glass cell.

Figure 5.2: CCD camera images of a low atom number MOT. From left to right,
the images show zero, one, two, three, and four atoms loaded. Exposure time is 0.7
s. The yellow box shows the 25 pixel area of interest.

49



5.1 Single Atom MOT

First, a small number of atoms are loaded into the MOT using 3 mm trapping beams, a

400 G/cm magnetic field gradient, and trapping beam detunings of −20 MHz. These

parameters yield a loading rate of approximately one atom every 60 s. Figure 5.1

shows the fluorescence level in the trap with respect to time, over a period of 500

seconds. The exact number of atoms in the trap can be ascertained up to at least five

by the discreet levels of fluorescence. Figure 5.2 shows images of different numbers of

atoms taken with the CCD camera. These pictures were taken at a 700 ms exposure

time, and give a signal per atom of about 6000 counts (8500 cts/s). This is about

25% lower than our predicted signal of 11,000 cts/s.

5.2 Optical Lattice

The optical lattice is formed by a single 1 W, 1064 nm, retro-reflected beam, focused

to 13 µm. This produces a trap with individual lattice sites separated by 532 nm.

Because the resolution of the imaging system is 2 µm, the individual lattice sites

cannot be resolved. Loading into any given lattice site is entirely probabilistic, and

the location of each atom can only be determined within a few sites.

Atoms are loaded into the optical lattice from the MOT. The lattice beams are

aligned such that the focus is at the center of the MOT. Once the lattice beams are

turned on, the atoms in the MOT are pulled toward the maxima of the light field and

become trapped. After a short wait (less than 1 s), the magnetic gradient coils and

the MOT light are turned off, leaving the atoms confined in the optical lattice.

The transfer efficiency between the MOT and the lattice is measured by repeatedly

transferring the same atoms from the MOT to the lattice and back. Assuming that

the transfers happen much faster than the loading rate of the MOT, the chance of

loading additional atoms during the measurement is small. For small numbers of

atoms (∼1-3), our trap exhibited an overall transfer efficiency of approximately 97%.
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Figure 5.3: Several thousand atoms in an optical lattice. The atoms were imaged
destructively, using the horizontal MOT beam as an on-resonance probe, with a 1 ms
probe time.

As the number of atoms increased, the transfer efficiency dropped, possibly due to

light assisted inelastic collisions or mismatched overlap of the traps.

5.3 Continuous Observation

Atoms in optical traps are typically detected through a destructive imaging process

(see Figure 5.3) [103]. The trap is turned off, and an on-resonance probe beam excites

the atoms, causing them to fluoresce. This fluorescence is captured by the camera.

This method has several advantages. It is fairly straightforward to implement, and the

probe time is typically short enough (less than 1 ms) to effectively freeze the motion

of the atoms. It can therefore be used to measure the temperature of the atoms in

the trap via measurements of the expansion of the atom cloud. Unfortunately, this

method also has a few drawbacks. Most obviously, it causes all of the atoms to leave

the trap. Also, the short exposure time limits the maximum fluorescence that can be

emitted by each atom. This is not a problem when dealing with tens of thousands of

atoms (or more), but for small numbers of atoms the resulting signal may not exceed

the readout noise of the camera.

An alternate detection system, which works well for individually separated atoms,
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Figure 5.4: Several hundred atoms in an optical lattice. The lattice was imaged by
using the molasses beams to continuously cool the atoms, with an exposure time of
0.7 s.

is continuous observation [61]. In this scheme, the MOT beams are used to continu-

ously cool the atoms in the trap, and the fluorescence from the atoms is observed con-

tinuously by the camera. This allows camera exposures of (nearly) arbitrary length,

which makes it comparatively easy to detect single atoms. Furthermore, for a suf-

ficiently deep trap, the cooling from the MOT beams will counteract any heating

sources in the trap, thereby extending the trap lifetime to the limit imposed by colli-

sions, either with background gases or with other atoms in the same lattice site. This

technique works best if there is no more than one atom per lattice site. In lattice

sites with many atoms, the loss rate due to inelastic light-assisted collisions becomes

very high [104]. A sample image using continuous observation is shown in Figure 5.4.

This detection scheme produces accurate measurements of the trap population even

in the limit of single atoms and is used for measuring the lifetime for a small initial

population.

5.4 Single Atom Lattice

We use continuous observation to detect individual atoms in the optical lattice. First,

a small number of atoms are loaded into the trap, as described previously. The

magnetic gradient is turned off, and the trap is imaged for a 700 ms exposure time.

The resulting picture is used to count the number of atoms in the trap. By taking
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Figure 5.5: Individual atoms escaping from the lattice, one at a time. (a) Number
of remaining atoms as a function of time. The red dotted line is an exponential fit to
the data, with a lifetime of 270 s. (b) Images of the atoms remaining in the trap, for
an exposure time of 1.7 s. Each atom produces about 3000 counts on the camera. The
first image shows seven atoms, and each subsequent image has one fewer. Initially,
two of the atoms are too close to distinguish.
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repeated exposures, one can watch as the atoms leave the trap, one by one. A

typical evolution of the trap population versus time is shown in Figure 5.5(a). For

these data, the atoms were continuously cooled and monitored. Note that one of the

atoms remains trapped for more than 600 s. Figure 5.5(b) shows successive pictures

of the remaining atoms in the trap, starting with seven and ending with zero. An

exponential fit to this limited data set indicates a 1/e lifetime of 270 s.

Loading into the lattice is probabilistic, meaning it is not possible to control which

lattice sites are occupied. This makes it difficult to produce a well organized, indi-

vidually addressable string of atoms. Active reorganization of atoms in an lattice has

been demonstrated by others [63], but it is not within this experiment’s current ca-

pabilities. Instead, a probabilistic method to redistribute and spread out the trapped

atoms is employed. By briefly blocking the reflected dipole trap beam, the lattice is

converted to a single focus trap. The atoms are then free to spread out along the

axis of the trap. When the reflected beam is unblocked, the atoms are recaptured

in the lattice sites, and rearranged probabilistically along the length of the trap. By

repeating this procedure, a string of distinguishable atoms is eventually obtained.

Typical results from this technique are shown in Figure 5.6.

5.5 Trap Lifetime

Continuous cooling has been shown to work well in the single atom limit, producing

lifetimes in excess of 200 s. Next we examine the heating effects which limit the

lifetime in the absence of cooling, beginning with a measurement of the trap lifetime.

Atoms are loaded into the MOT for 15 seconds and then transferred into the lattice.

This produces an initial population of about 100 atoms distributed across 500 lattice

sites. Once the magnetic field gradient is turned off, a 700 ms exposure is taken using

continuous observation. The population is measured by integrating the fluorescence

over the trap area. Next, the MOT light is turned off, and the atoms are left in the
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Figure 5.6: Probabilistic redistribution of atoms in an optical lattice. Atoms are
redistributed by briefly blocking the reflected dipole trap beam, temporarily changing
the lattice into a single focus trap. Each pair of images shows the atoms in the trap
before and after the redistribution.
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Figure 5.7: Graph of trap population over time with no cooling. The blue circles
show the experimental results. The black line is an exponential fit to all of the data,
and gives a lifetime of 103 s. The red line is an exponential fit only to data points
beyond 50 s, and gives a lifetime of 62 s.

trap for some wait time, ∆t. After that time has passed, a second image is taken

using continuous observation. The remaining atoms are then emptied from the trap

to prepare for the next run. The trap is reloaded for each run because some fraction

of the atoms has been lost, and each run needs to begin with a similar number of

atoms.

This procedure is repeated for a variety of different wait times (∆t). Decay of

the trap population versus time is shown in Figure 5.7, with the remaining number

of atoms normalized to the initial population loaded for each run. Each data point

is the average of 5 runs. A simple exponential fit to the data gives a lifetime of

103 s, however, the data do not fit well to a standard exponential decay. Following

loading, there is an initial period of about 20 s during which the atom loss is minimal.

Subsequently, the population decays exponentially with a 62 s time constant. This

behavior is consistent with a heating source which continuously increases the total

energy of the atoms. The initial delay in the atom loss occurs because the thermal
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Figure 5.8: Trap lifetime with continuous cooling. (a) Graph of trap population
over time, averaged over four runs. Initial population is about 100 atoms distributed
over 500 lattice sites. The red circles show the experimental results. The blue line is
an exponential fit to the data, and gives a lifetime of 343 s. (b) Images of the trap
each 100 s after loading, for a single run. One atom remains in the trap after 1200 s.

energy of the atoms immediately after loading is considerably below the trap depth.

Thus, there is a time delay before atoms gain enough energy to leave the trap. This

behavior will be examined more closely later.

For comparison, lifetime data are taken while using the cooling light to contin-

uously cool the atoms. A sample lifetime graph is shown in Figure 5.8, along with

several sample pictures taken at various points throughout the data. An exponen-

tial fit to the data gives a trap lifetime of 343 ±27 s, which is consistent with a

vacuum-limited lifetime at a pressure of around 10−11 Torr [105].
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Figure 5.9: Trap lifetime versus trap depth and versus detuning. (a) Average
lifetime versus trap depth. Each data point is the result of an exponential fit to the
average of three runs. (b) Average lifetime versus cooling light detuning. Each data
point is the result of an exponential fit to the average of three runs.
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The continuously cooled trap lifetime was measured for a variety of different trap

settings in order to better understand the parameters affecting cooling and trap loss.

Figure 5.9(a) shows the trap lifetime as a function of trap depth. For small trap

depths (<1 mK), the lifetime depends strongly on the trap depth. In this regime,

the primary loss mechanism is evaporative, due to random fluctuations in the energy

of the atom as it is perturbed by the cooling light. As the trap depth increases well

above the average temperature of the atoms, these evaporative losses become rare

and the lifetime is limited instead by collisions with background gas.

Figure 5.9(b) shows the effect of the cooling light detuning on the trap lifetime.

For large detunings (∆ < −20 MHz), the trap lifetime is fairly constant. However,

as the detuning becomes small, the lifetime starts to degrade rapidly.

There was no convenient way to precisely measure the magnetic field at the center

of the trap. The optimal settings for the applied bias fields were determined by

maximizing the observed trap lifetime. It was found that the trap lifetime remains

nearly constant within 50 mG of the chosen settings, but outside of that range the

trap lifetime drops quickly. At 100 mG, the continuous cooling lifetime is less than

10 s.

The effects of beam imbalance on the lifetime are shown in Figure 5.10. Changing

the beam balance had no significant effect on the lifetime. This effect was further

examined by physically blocking one or more of the cooling beams. Continuous cooling

was found to be remarkably resilient against the effects of blocking any one beam.

Nevertheless, blocking both counter-propagating beams on any single axis prevented

continuous cooling from working correctly.

The trap lifetime is ultimately limited by collisions. Continuous cooling is effective

against gradual heating sources, but collisions can impart enough energy to cause an

atom to leave the trap. In our case, two types of collisions are important. When
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Figure 5.10: Graph showing trap lifetime versus beam imbalance. One beam in
each of the three pairs of cooling beams was set to a higher intensity than the other.
Each data point is the result of a fit to the average of two lifetime graphs.

Figure 5.11: Graph of trap population over time, with continuous cooling. Initial
population is about 700 atoms distributed over 500 lattice sites. The red circles
show the experimental results. The blue lines show an initial exponential fit with a
91 s lifetime, transitioning to an exponential curve with a 276 s lifetime. The fast
initial loss is caused by light-assisted collisions in lattice sites containing more than
one atom. Once these atoms have left the trap, the lifetime is limited primarily by
collisions with background gas particles.
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there is more than one atom per lattice site, the lifetime is primarily limited by light-

assisted collisions between trapped atoms. The resulting collisional loss rate is given

by R = βρ, where β is the loss rate constant and ρ is the two-atom density in a single

lattice site [104]. We estimate our loss rate constant at β ≈ 10−11 cm3/s [106], and

our density is approximately ρ = 2× 1010 cm−3 for two atoms in a lattice site. This

leads to a collision rate R ≈ 0.02 s−1. When the number of atoms is much less than

the number of lattice sites, then the lifetime is limited by collisions with background

gas. In a typical lifetime graph, there is an initial, fast exponential decay (due to

light assisted collisions) gradually transforming into a slower exponential decay (due

to background collisions). This is illustrated by the data in Figure 5.11. If there were

only a small number of atoms to begin, light assisted collisions would not apply, and

there would be only a pure exponential due to background collisions.

5.6 Heating Mechanisms

A quantitative comparison between the measured results and possible heating sources

can help reveal which heating processes are most pertinent to this experiment. Ran-

dom fluctuations in the trapping laser intensity and position are known to cause

heating in trapped atoms. The expected heating rate in the trap is derived from

measurements of the intensity noise power spectra of the trap beam and the noise

power spectra for fluctuations of the trap equilibrium position using a theoretical

model developed by Thomas’ group in 1997 [78]. Laser intensity fluctuations cause

parametric heating of the atoms due to a modulation of the trapping potential. This

leads to an exponential energy growth of the atoms with a time constant Γ given by

[78],

Γ =
1

TI
= π2ν2

trSεI (2νtr), (5.1)

where TI is the energy e-folding time, νtr is the trap frequency, εI = [I(t)− I0]/I0 is

the fractional fluctuation in the laser intensity, and SεI (2νtr) is the relative intensity
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noise power spectrum defined as

SεI (ν) ≡ 2

π

∫ ∞
0

dτ cos(ντ) 〈εI(t)εI(t+ τ)〉 . (5.2)

The other dominant heating mechanism results from fluctuations in the trap position

(e.g., due to laser beam pointing or phase instabilities). In this case, the energy grows

linearly with a heating rate Q̇ given by

Q̇ = 4π4ν4
trmSεx(νtr), (5.3)

where εx is the fluctuation in the location of the trap center and Sεx(νtr) is the trap

position noise power spectrum, which can be calculated using Eq. (5.2), with εx

substituted for εI .

The intensity noise and the position fluctuation in the radial direction of the

trapping beam are measured using a balanced detection method [107] in which the

laser beam is separated by a 50-50 beam splitter and each beam is focused onto a

different detector (see Figure 5.12). One of the beams is half blocked by a razor blade,

and the other is 50% attenuated to equalize the power received by each detector. The

output of the first detector measures the power fluctuations, while the difference

between the two detectors measures the position fluctuations. Figure 5.13(b) shows

the relative intensity noise power spectrum averaged over 50 runs. An example of

observed voltage noise due to intensity fluctuations is also shown in Figure 5.13(a),

where 1 mV fluctuation corresponds to 10−4 relative fluctuation in laser intensity.

These measurements were performed separately for two different Ytterbium doped

fiber lasers, both operating at 1064 nm, but with different maximum output powers

(10 W and 20 W respectively). They were also performed both with and without an

AOM controlling the beam power. In measurements including an AOM, the intensity

noise was dominated by noise introduced by the AOM driving electronics. Without

the AOM, the 20 W laser was found to have approximately 100 times higher intrinsic

intensity noise compared to the 10 W laser. The 10 W laser was used without an

62



Figure 5.12: Diagram of the setup used for measuring intensity noise and radial
position fluctuation. Light from the trapping laser is focused by lens L1 (f = 300
mm) and re-collimated by lens L2 (f = 300 mm) just as when creating a lattice. The
light is then split on a 50:50 beamsplitter (BS1). The beams are then focused by
lenses L3 and L4 (f3 = f4 = 300 mm), and detected by two photodiodes (D1 and
D2). One of the beams is half-blocked at its focus by a razor blade.
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Figure 5.13: Measurement of the intensity noise on the optical trapping laser. (Left)
A typical measurement of the intensity noise, as detected on a photodiode. (Right)
The resulting intensity noise power spectrum, averaged over 50 runs.

AOM for the noise measurements shown in Figure 5.13 and Figure 5.15, and for all

other measurements except where noted.

The position instability in the axial direction is measured using an interferometric

technique. A beam splitter is placed in the path of the optical lattice laser before

the focusing lens L1 (see Figure 5.14). A mirror is glued directly to one side of the

beam splitter to form one arm of an interferometer. The beam passing through the

beam splitter retro-reflects from the mirror (M1 in Figure 5.14) in the lattice setup,

forming the second arm of the interferometer. These two beams interfere and are

focused onto a detector. Once properly aligned, the phase fluctuations between the

two arms are measured by monitoring the intensity fluctuation on the detector. Laser

power fluctuations are simultaneously monitored on a separate detector. Subtracting

these two signals isolates the phase fluctuations, which can then be used to calculate

the position noise in the axial direction. Figure 5.15 shows the resulting position

noise power spectrum averaged over 50 runs, along with an example of the observed

voltage noise due to axial position fluctuations, where 1 mV fluctuation corresponds

to 2.4 × 10−5 relative fluctuation in laser intensity. The corresponding heating rate
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Figure 5.14: Diagram of the setup used for measuring axial position fluctuation.
Light from the trapping laser is first split by a 50:50 beamsplitter (BS1). One beam
is focused onto detector D1, to measure the intensity noise. The other beam passes
through another 50:50 beamsplitter (BS2), splitting the beam once more. One of
these beams immediately reflects off of a mirror (M1), while the other passes through
the standard optical lattice setup. After retro-reflecting off of mirror M2, this beam
returns and interferes with the beam that was reflected from M1. The resulting beam
is focused onto detector D2.
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Figure 5.15: Measurement of the axial position fluctuation on the optical trapping
laser. (Left) A typical measurement of the fluctuation of the interference between
the two beams, as detected on a photodiode. The corresponding intensity noise has
been subtracted from the signal. (Right) The resulting position fluctuation power
spectrum, averaged over 50 runs.

Figure 5.16: Predicted heating versus trap frequency. (top) Heating rate versus
trap frequency, based on the measured axial position fluctuation power spectrum.
(bottom) Energy doubling time versus trap frequency, based on the measured inten-
sity noise power spectrum. The relevant frequency is the trap frequency in the axial
direction, which is measured to be 250 kHz.
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Q̇ and heating time constant Γ calculated from Eqs. (5.1) and (5.3) are shown in

Figure 5.16. In order to use these results to determine the heating rate, it is necessary

to know the trap frequencies.

5.7 Trap Frequency Measurement

Trap frequencies can be calculated based on the trap parameters, however, our expe-

rience is that the measured frequency is usually substantially less than the calculated

frequency [108]. The trap depth and trap frequency calculations assume perfect Gaus-

sian beams, aberration-free focusing, harmonic trap potentials, and perfect overlap

and focusing of the retro-reflected beam. In order to determine the axial and radial

trapping frequencies of the optical lattice, we use parametric excitation to measure

them directly [109].

Parametric excitation is a technique in which intensity modulation at a controlled

frequency is intentionally added to the trapping laser for a short period of time. We

use an AOM to modulate the trapping laser beam power. The AOM is driven by a

function generator, which is amplitude modulated at the desired excitation frequency.

Atoms are loaded into the trap as usual, and the initial population is measured. A

noise component at a frequency ν is added to the laser for 5 s, and then the final

population is measured. This procedure is repeated for frequencies ranging from 0.5

to 1500 kHz. The results are shown in Figure 5.17. The dips in the graph show

frequencies at which atoms were lost due to parametric heating. Losses are expected

at all frequencies for which ν = 2νtr/n for n = 1, 2, 3 . . ., with the largest heating

at n = 1 [108]. A smaller and broader heating effect is expected at ν = 4νtr, due

to the anharmonicity of the trap. Based on this data, the axial trap frequency is

determined to be approximately νaxial = 250 kHz. The radial trap frequency was

separately measured to be νradial = 2.8 kHz.

These trap frequencies are used to calculate the expected heating rates in the trap.
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Figure 5.17: Trap frequency measurement using parametric excitation. A pertur-
bation is added to the trapping laser at a range of different frequencies, and the effect
on the atoms is measured for each frequency. (a) Graph of perturbation frequency
versus surviving population over the range from 25 to 1500 kHz, for a strong pertur-
bation. Some relevant resonance frequencies are labeled. (b) Graph of perturbation
frequency versus surviving population over the range from 5 kHz to 400 kHz. Some
relevant resonance frequencies are labeled.

68



Figure 5.18: Graph of trap population over time with no cooling. The red line
represents a numerical simulation, using heating parameters Q̇ = 4.5 µK/s and Γ =
0.002 s−1.

Referring to Figure 5.16, Q̇ and Γ for the axial direction are 4 µK/s and 0.002 s−1,

respectively. The heating rates in the radial directions are negligible compared to the

heating in the axial direction because the trap frequency in the radial direction is 90

times smaller, and Γ and Q̇ scale as ν2
tr and ν4

tr respectively.

These heating rates suggest that the trap lifetime is primarily limited by axial

position fluctuations. For Q̇ = 4 µK/s and an initial temperature around 100 µK, it

will take about 275 s for the atoms to reach an energy equal to the trap depth. In

contrast, for Γ = 0.002 s−1, it will take over 1500 s to gain an equivalent amount of

energy due to intensity fluctuations.

5.8 Heating Model

The time evolution of the trap population can be modeled with a Fokker-Planck

equation for the energy distribution n(E, t) given by [110],

δn

δt
= (

Γ

4
E2 + Q̇E)

δ2n

δE2
− Q̇ δn

δE
− Γ

2
n. (5.4)
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Figure 5.19: Graph of trap population over time with no cooling (red triangles),
and with a single 5 ms cooling pulse (blue circles). The cooling pulse re-cools the
atoms to the bottom of the trap, significantly increasing the effective lifetime.

Numerical solutions of Eq. (5.4) are obtained assuming an initial Maxwell-Boltzmann

distribution with a temperature of the trapped atoms of 100 µK. The results, shown as

a solid curve in Figure 5.18 for the parameters Q̇= 4.5 µK/s and Γ = 0.002 s−1, closely

reproduce the observed trap population, and in particular, show the 20 s delay before

the onset of appreciable trap loss. Heating is primarily due to Q̇ (due to fluctuations

in the trap position), but Γ (due to intensity fluctuations) was also included in the

numerical solution because it subtly affects the shape of the tail of the curve. It is

worth noting that this model is only strictly valid assuming a harmonic potential. In

reality, the effective trap frequency becomes smaller as an atom approaches the top

of the trap. It is therefore likely that the model slightly overestimates the heating in

the trap.

5.9 Pulsed Cooling

The most notable feature of the lifetime measurements shown in Figure 5.7, which is

supported by the simulation, is that it takes a finite amount of time for the atoms to
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Figure 5.20: Graph of trap lifetime versus cooling pulse length. A cooling pulse is
applied every two seconds, for different pulse lengths. Each data point is the result
of an exponential fit to the average of three lifetime runs.

heat up sufficiently to be ejected from the trap. It follows that it should be possible

to extend the lifetime of the trapped atoms by occasionally re-cooling them to the

bottom of the trap. This principle was demonstrated by applying a short 5 ms pulse

of laser-cooling light to the atoms at t = 15 s. The cooling light is provided by the

laser beams used to form the MOT, detuned for optimal continuous observation. As

is evident from the data shown in Figure 5.19, the loss of atoms is halted for a time

comparable to the delay in atom loss following initial loading. Note that for these

data, the overall lifetime is shorter than in Figure 5.7. This is because the 20 W Yb

fiber laser with 100× higher intensity noise was used as the trapping laser for this

measurements, and an AOM was present in the beam path.

The effect of cooling pulses was further explored by applying a short cooling pulse

to the atoms at even intervals of two seconds. This was repeated for several different

pulse lengths (see Figure 5.20). It was found that the lifetime increases with the

pulse length, up to about 4 ms, where it levels off. This suggests that a 4 ms pulse

is sufficient to cool the atoms to near their minimum temperature. This is consistent
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Figure 5.21: Remaining population versus time, for different cooling regimes. For
the pulsed cooling data (red diamonds), cooling light was pulsed on for 1 s after each
19 s gap. For the continuous cooling data (green squares), the cooling light remained
on at all times. For the no cooling data (blue crosses), the cooling light remained off
at all times.

with the cooling rate expected due to Doppler cooling, which is calculated at around

200 µK/s.

The results in Figure 5.19 and Figure 5.20 suggest that it should be possible to

minimize atom loss caused by heating almost entirely by providing cooling pulses at

time intervals shorter than the initial heating time. The data in Figure 5.21 demon-

strate that this is indeed possible and show a dramatic increase in the lifetime by

application of a periodic cooling pulse to the atoms. For each cooling cycle, the atoms

are held in the dark for 19 s, followed by a one second cooling pulse. The length of the

cooling pulse was chosen such that it exceeds the camera exposure length, allowing

a picture of the atoms to be taken during each cooling pulse. As discussed earlier,

only a 4 ms pulse is actually necessary for cooling. The trap population for this

cooling method shows a simple exponential decay with a 310 s lifetime. Figure 5.21

also shows a comparison between the lifetime of the pulsed cooling method and the
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case where the atoms are continuously exposed to the cooling light. The continuously

cooled atoms exhibit approximately the same decay rate as in the pulsed cooling case.

As discussed earlier, the trap lifetime in the absence of cooling is limited by fluctu-

ations in the axial trap position. These fluctuations are most likely due to vibrations

in the mount for the mirror used to form the lattice standing wave. Although the

measured fluctuations of the lattice standing wave are very small (∆xrms ∼ 10−4λ

in the frequency range from 10 kHz to 2 MHz), they provide the dominant heating

source. In the current setup, it is necessary to have an adjustable mirror mount to

achieve the required alignment of the lattice. It should be straightforward to reduce

these vibrations by moving to a fixed mount in the future. The heating due to the

laser intensity noise is expected to limit the lifetime to >1000 s, which is much longer

than the background-limited lifetime.

5.10 Optical Conveyor

Another important atom trapping tool is the optical conveyor, which can be used

to reposition and reorganize atoms within the trap [58, 61]. It is particularly useful

for moving qubits into or out of a probe beam or area of interest [63]. In our lab,

this method has been used to deterministically deliver individual atoms to a high

finesse optical cavity [49], which is a crucial step toward cavity-assisted entanglement

generation.

An optical conveyor is created when the two counter-propagating beams in an

optical lattice have slightly different frequencies [58]. This requires using two inde-

pendent beams rather than retro-reflecting the first one. However, in exchange for

the increased complexity, the atoms can be translated along the axis of the trap.

The optical conveyor is constructed using two 1064 nm beams, each with a power

of 1 W. The beams are created by the same laser, using a polarizing beam splitter

cube, and each is passed through a different 40 MHz AOM. By slightly changing the
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Figure 5.22: Series of images showing atoms being translated in an optical conveyor.
The images are taken 1 s apart.

frequency of one of the AOMs, the velocity of the trapped atoms in the axial trap

direction can be precisely manipulated.

Atoms were trapped and observed in an optical conveyor using continuous obser-

vation. A velocity was imparted to the atoms in the trap, causing them to move along

the trap axis. Using this method, the atoms can be moved to whichever location in

the trap is desired. In particular, for loading single atoms, it allows any arbitrary

trapped atom to be positioned at the center of the area of interest.

Continuous observation of the optical conveyor was comparable to observing the

simple lattice. Atoms could be moved within the continuous observation area with

only moderate loss. If the atoms were moved outside of the continuous observation

area, they were immediately lost from the trap. This is most likely due to edge effects

of the light field. At the boundary of the molasses area, the beams are not properly

aligned and balanced, producing uneven radiation pressure. Sample manipulations of

atomic position are shown in Figure 5.22.

An alternate method for creating an optical conveyor was also tested. This method
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uses the simple lattice setup with a translation stage underneath the retro-reflection

mirror. Physically moving this mirror a distance along the trap axis causes the trap

itself to move by the same amount. Although this method was successful in moving

the atoms, it also caused significant loss from the trap. This loss is probably due

to slight misalignment in the retro-reflection beam, introduced as the mirror moves

along the axis, or to heating caused by vibrations of the mirror.

5.11 Dual Lattices

We also demonstrate two closely spaced, parallel lattices with resolvable trapped

atoms. This could be useful for a number of different entanglement schemes. In

particular, two atoms in parallel lattices passing through a high finesse optical cavity

could be entangled using a single photon [49]. Using conveyor techniques, this could

be extended to any pair composed of one atom from each lattice.

A dual lattice can be created by adding an additional trapping beam, nearly co-

propagating with the first. The second beam is identical to the first, except with

orthogonal polarization. The two beams are combined on a polarizing beam splitter

cube, with the two traps separated slightly in the radial direction. Both beams are

retro-reflected, creating two parallel lattices. The beams are aligned to produce a

spacing of 35 µm, with the MOT halfway between the two traps.

Figure 5.23 shows individual atoms in two parallel lattices. Comparable loading

of the two traps is not difficult to obtain, although it still remains probabilistic. For

separation distances closer than 2.5 times the trap waist (32 µm), the lattices began

stealing atoms from each other occasionally, and at a separation distance of about

1.5 times the trap waist (19 µm), the lattices merged into a single lattice positioned

halfway between the two beams. This effectively sets a limit on the minimum sepa-

ration distance between the lattices.
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Figure 5.23: Image of individual atoms in two parallel lattices.
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CHAPTER VI

NONDESTRUCTIVE STATE DETECTION

The development of techniques to trap individual laser cooled atoms and ions have

paved the way for precision metrology of unprecedented accuracy and have enabled

many pioneering experiments in the field of quantum information processing. The

success of these systems is due to the isolation of the atom from external environmen-

tal perturbations and to the facility with which the quantum states of the atom can be

initialized, manipulated and detected using external lasers and other electromagnetic

fields.

In ion traps, quantum state readout has largely been done by direct detection of

state-selective fluorescence [111, 112, 113], first used to observe quantum jumps in

atomic systems [114, 115, 116]. Efficient state detection requires scattering 100s of

photons from the atom for typical fluorescence collection efficiencies of ∼1%. Each

scattering event heats the atom by an amount comparable to the recoil temperature.

For ion traps, this heating is negligible compared with the large depth (>1000 K) of

the traps and hence quantum state readout using direct detection of state-selective

fluorescence can be achieved with no loss of the ions.

Neutral atom traps are much shallower, typically ∼1 mK, and hence the heating

induced by state detection can be comparable to or exceed the depth of the trap.

For this reason, state-selective ejection of atoms was developed for accurate quantum

state measurement of individually trapped neutral atom qubits [20, 62, 65, 86, 87, 88].

In this technique, rather than trying to minimize the atom heating, the atoms in

one quantum state are deliberately heated out of the trap with strong, unbalanced

radiation pressure. Subsequently, the remaining atoms in the quantum register (which
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are now known to be in the other quantum state) are detected using radiation that

is not state selective and is detuned to provide simultaneous cooling of the atoms.

While state-selective ejection of atoms is a very powerful technique, the neutral

atom traps must be loaded after every readout operation, which limits the experi-

ments to a ∼1 s−1 repetition rate. These limitations will need to be overcome to

significantly advance the field of neutral atom quantum information processing. One

solution that has been demonstrated is to use a cavity QED system to increase the

collection efficiency of the scattered photons [56, 89, 90, 91]. The quantum state

can then be determined with fewer scattering events, resulting in lower heating. A

drawback of this approach is that cavity QED systems significantly complicate the

experimental setup and each atom to be detected needs be localized within the small

cavity mode. There is therefore a need for an accurate and robust system to read

out qubits without ejecting them from the trap, while maintaining the simplicity of

a free space system. This chapter will describe a procedure for directly detecting the

state of a qubit in free space, with low loss and fairly high accuracy. First, the system

will be modeled to roughly ascertain the likelihood of success and to find suitable

experimental parameters. This will be followed by an outline of the experimental

setup, an explanation of the results, and finally a discussion on how this could be

improved and extended to quantum information experiments in general.

6.1 Proposed System

The following system will be used to achieve nondestructive state detection. First,

a single 87Rb atom is trapped in a MOT and transferred to an optical lattice. This

atom will be used as a qubit, with the two hyperfine ground states F = 1 and F = 2

representing |0〉 and |1〉 respectively. The qubit is prepared in an initial state using

either optical pumping or microwaves.

The state of the qubit is detected using fluorescence imaging. The qubit is probed
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by a short laser pulse (t < 1 ms) tuned near the F = 2→ F ′ = 3 cycling transition,

causing it to fluoresce if it is in the F = 2 state. The resulting fluorescence is captured

by a single photon counting module. After detection is complete, the atom is cooled

briefly using the MOT cooling light, after which it can again be used as a qubit.

The biggest challenges involved in this scheme are heating and depumping caused

by the probe laser. Assuming a balanced probe beam, the atom is expected to gain

energy equal to twice the recoil temperature (Tr = 362 nK) each time a photon is

absorbed (see section 2.1). For a 2 mK trap, this means roughly 2800 photons can

be scattered before the atom leaves the trap. For a detection efficiency of 1.5%, this

gives an average of 41 photons detected.

The error level due to accidental depumping depends critically on the detuning

of the probe beam. If the probe beam is exactly on resonance, then off-resonant

excitation is suppressed by a factor of around 8000 (≈120 photons detected). However,

at a probe detuning equal to the linewidth of the transition, this value drops to 1600

(≈24 photons detected), and at two linewidths it drops to only 450 (≈7 photons

detected). Tuning the probe laser exactly on resonance is not difficult; however, the

differential AC Stark shift of the transition due to the optical trapping fields can

result in effective detunings comparable to the transition linewidth and hence must

be considered.

6.2 Numerical Simulation

In order to better quantify the model above and optimize the experimental param-

eter choices, we have performed semi-classical Monte Carlo simulations of the ex-

periment. The simulations consider classical motion of the atoms in realistic optical

lattice potentials, subject to random initial conditions determined by an average

atom temperature of 100 µK and random recoil kicks equally distributed between

two counter-propagating probe beams. The axial and radial profiles of the trap are
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Figure 6.1: Trap profile of the simulated dipole trap in the axial (z) and radial (x,y)
directions. For each time period (10 ns), the force on the atom is calculated from the
potential at its location, and the atom’s velocity is updated accordingly.

shown in Figure 6.1. For each calculation time-step (typically 10 ns), the probability

of excitation is determined by the probe intensity, the probe detuning, the AC Stark

shift of the transition (at the atom’s current position in the trap), and the velocity of

the atom (via the Doppler shift). For each excitation and emission cycle, the resulting

change in the atom’s velocity is determined (randomly). For each time period, there

is also a small chance of an off-resonant excitation to the F ′ = 2 level. No attempt is

made to model mF states, nor any effects of photon polarization, magnetic fields, or

sub-Doppler cooling.

It is assumed that two counts are required to detect an atom. The single photon

counting module has a dark current of about 100 counts per second. The minimum

probability of receiving a false count even during a short (300 µs) pulse is 3%. How-

ever, the probability of receiving two false counts during the same period is much

lower, around 0.1%. Therefore, if the photon counter receives two counts within the

pulse time, this should be sufficient to reliably report a detected atom. In an ac-

tual experiment, counts from background scatter become relevant as well, as will be

discussed later.

The simulation was performed for a number of experimental parameters including
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Figure 6.2: Sample graphs of simulation results. Red circles and blue diamonds
indicate 1 mK and 2 mK trap depth, respectively. (a) Probability of successfully
detecting at least two photons, versus probe intensity, for a -5 MHz probe detuning.
(b) Probability of losing the atom from the trap before detecting two photons, versus
probe intensity, for a -5 MHz probe detuning. (c) Probability of successfully detecting
at least two photons, versus detuning, for a probe with s0 = 0.2 (for the 1 mK trap)
or s0 = 0.4 (for the 2 mK trap). (d) Probability of losing the atom from the trap
before detecting two photons, versus detuning, for a probe with s0 = 0.2 (for the 1
mK trap) or s0 = 0.4 (for the 2 mK trap).
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Figure 6.3: Histogram of detected counts, obtained by running the simulation
100,000 times. Red circles and blue diamonds indicate 1 mK and 2 mK trap depth,
respectively. Dotted lines show the predicted distribution, assuming Poissonian statis-
tics with a constant depump probability.

probe power, probe length, probe detuning, and trap depth. It was found that chang-

ing probe power vs. changing probe length produces equivalent results over a large

range of values. Based on this finding, the probe length was held constant at t =

300 µs. This value was chosen because it allows us to collect sufficient photons using

a probe well below saturation intensity, while still keeping predicted errors due to

dark counts below 0.1%. The other three parameters interact in a more complex way.

A thorough three parameter search was performed in order to determine the ideal

theoretical values for each parameter. A sample of the results is shown in Figure 6.2.

After choosing specific values for probe power and detuning (for U0 = 1 mK, s0 = 0.2

and δ = −5 MHz; for U0 = 2 mK, s0 = 0.4 and δ = −5 MHz), the simulation was

run for a much larger number of cycles, producing a histogram (Figure 6.3) of the

number of counts before the atom either leaves the trap or falls into the dark state.

The numerical results indicated that, for the chosen experimental parameters, it

should be possible to obtain error rates lower than 5% for a 2 mK trap depth, with

negligible loss rates. Out of 1,000,000 runs, the atom was detected successfully 959,719
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Figure 6.4: Success and loss rate versus saturation parameter for three different
beam configurations. Red circles indicate a balanced probe beam in the x (radial)
direction. Blue diamonds indicate a balance probe in the z (axial) direction. Purple
squares indicate probe beams in both directions. For these data, the trap depth was
set to 1 mK, with -5MHz detuning.

times, and the atom was lost from the trap only 2 times. The errors are primarily due

to atoms becoming off-resonantly depumped into the F = 1 state before sufficient

photons are detected. In order to further understand the system, a balanced probe

beam was also added along the z (axial) direction, either instead of or in addition

to the probe along the x direction. There was no significant effect due to switching

the probe axis (see Figure 6.4). No probe beam was added along the y (radial) axis

because constraints in the experimental apparatus make such a beam impractical.

6.3 Experimental Setup

We now turn to a description of the experimental setup and results. The system

uses a modified version of the experimental setup used for pulsed cooling. First, the

diameters of the MOT beams are reduced to <2 mm to minimize scattered light.

Although the MOT lasers are off during state detection, low background scatter is

nevertheless desirable in order to reliably determine the number and position of atoms

in the trap. This also reduces the loading rate substantially. A balanced probe beam

with linear polarization is added along one direction, focused to 125 µm at the center

of the MOT. A beam sampler is added between the microscope objective and the
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CCD camera, such that only 5% of the fluorescence goes to the camera. The rest of

the light is directed to a PerkinElmer single photon counting module (model SPCM-

AQR-14) with an efficiency of around 45%. The total detection efficiency η (of the

single photon counting module) is given by

η =

(
NA

2

)2

× ηPBS × ηfilter × ηdetector = 0.04× 0.95× 0.9× 0.45 = 0.015 = 1.5%.

The magnification of the image on the photon counter is 2.5x, and the photon counter

has an active radius of 85 µm. This produces a total field of view of radius 34 µm.

The photon counter’s field of view is centered on the high gradient MOT.

6.4 Loading a Single Atom

A timeline of the experimental procedure is shown in Figure 6.5. To begin, the MOT

lasers (detuning =−10 MHz), a 110 G/cm magnetic field gradient, and a 2 mK optical

lattice are all turned on simultaneously. The high gradient MOT is loaded for about

2 s, capturing an average of one atom, which is transferred to the optical lattice. At

the end of the loading time, the magnetic gradient is turned off and the MOT lasers

are shifted 10 MHz further from resonance to maximize continuous cooling. The trap

is then imaged by the CCD camera for an exposure time of 1 s to determine if a single

atom has been successfully loaded.

Figure 6.6 shows typical pictures of the loading. The number of atoms in the trap

is determined using an algorithm which scans the CCD image for signals significantly

above the noise. The resulting data show a background noise level (standard devia-

tion) of 125 counts, and a single atom signal of about 1000 ±200 counts. Figure 6.7

shows the probability of detecting a signal at a given number of counts. Based on

these data, a cutoff is applied at 500 counts. Anything below the cutoff is assumed

to be noise, and anything above the cutoff is assumed to be an atomic signal. Any

signal above 1400 counts is not used, due to the likelihood of having more than one

atom in approximately the same location. The cutoff is 4 standard deviations above
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Figure 6.5: A timeline of the experiment. Atoms are loaded into the MOT for 2
s, trapping an average of one atom. The magnetic gradient is turned off, leaving the
atom trapped in the lattice. 100 ms later, the trap is imaged by the camera, with an
exposure time of 1 s. This determines whether there is exactly one atom in the trap.
Then the MOT repump laser is turned off, followed 5 ms later by the trapping laser.
This transfers the atoms into the (F = 1) dark state. Next, the state of the atoms is
prepared using either optical pumping or a microwave pulse. The state of the atom
is detected non-destructively using a photon counter and a weak probe beam. The
atom is then re-cooled for 5 ms using the MOT lasers. This preparation-detection
cycle can be repeated as many times as desired. Once all cycles are complete, the
trap is imaged once more by the camera to determine whether the atom survived all
of the detection cycles. Finally, the trap is emptied in preparation for the next run.
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Figure 6.6: Images of different loading configurations. The top image shows a single
atom loaded into the area of interest. The middle image shows an atom loaded outside
of the area of interest. The bottom image shows two atoms loaded, one of which is in
the area of interest. Of these, only the top image is considered to be successful trap
loading.

Figure 6.7: Distribution of detected counts from potential single atom signals. Any
signal below 500 counts is treated as noise and ignored. Any signal above 1400 counts
is assumed to be caused by multiple nearby atoms, and is discarded. Signals between
500 and 1400 counts are treated as single atoms.
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Figure 6.8: Spatial distribution of single atoms loaded into the trap. The dotted
lines denote the area of interest.

the noise and 2.5 standard deviations below the average signal, yielding a probability

of erroneously identifying a single atom of around 0.6%. Figure 6.8 shows the proba-

bility distribution for where the atoms load in the trap. If exactly one atom is loaded

within the area of interest, and none outside of it, loading is considered successful.

The area of interest is defined as the center half of the field of view, or the portion

of the trap within 17 µm of the center of the MOT, and contains approximately 68

lattice sites.

The measured probabilities for loading a given number of atoms are shown in

Figure 6.9. The probability of loading exactly one atom is 39%. Combined with a

10% probability of the atom appearing outside of the area of interest, the total success

probability is measured to be 35%. These values vary slightly from day to day.

6.5 State Preparation and Detection

Once a single atom is successfully loaded into the region of interest, optical pumping

is used to prepare it in the desired quantum state. For initial experiments, we ignore
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Figure 6.9: Probability of loading N atoms. The dotted line shows the expected
Poisson distribution. The measured probability of loading exactly one atom is 38.9%.

the Zeeman structure and consider the qubit states to be the F = 1 and F = 2

hyperfine levels separated in energy by 6.8 GHz. The atom is prepared in either the

F = 1 or F = 2 state by applying a 10 ms pulse of either the MOT cooling lasers or

the repump laser.

Quantum state readout is performed using two 6 µW counter-propagating probe

beams, focused to 125 µm and detuned +5 MHz from F = 2 → F ′ = 3 transition.

This produces an on-resonance saturation parameter s0 = 4, although the effective

saturation is much lower due to the differential Stark shift. The fluorescence is de-

tected by the photon counter, and the resulting number of counts is recorded.

The detuning of +5 MHz was chosen empirically. According to our calculations,

the Stark shift should be +155 MHz, which means our simulation predicts an optimal

detuning of +150 MHz. However, we found that detunings larger than about +10

MHz caused significant heating and loss from the trap. Experimentally, we found

that a detuning of +5 MHz maximized the total number of counts obtained from the

atoms. This suggests that the Stark shift may be significantly smaller than expected.

This discrepancy will be discussed at the end of this section.

Once the state of the atom has been determined, the MOT cooling lasers are
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Figure 6.10: Histogram of counts per atom. (a) Atoms were prepared in the F = 1
hyperfine ground state and detected on the F = 2 → F ′ = 3 transition. The dotted
red line is a Poisson distribution with an average of 0.32 counts. The dotted black line
shows the cutoff between one and two counts. Any signal above one count represents
an error. (b) Atoms were prepared in the F = 2 hyperfine ground state and detected
on the F = 2 → F ′ = 3 transition. The dotted red line is a modified Poisson
distribution, with an average of 21.5 counts, and with a uniform probability (total
p = .35) of depumping into the dark state. The dotted black line shows the cutoff
between one and two counts. Any signal below two counts represents an error.
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turned back on, and the CCD camera takes another picture of the trap. This image

is used to determine whether the atom has remained trapped. This process was

repeated over 1600 times for each of the two initial states. Figure 6.10 shows the

distribution of total counts on the single photon counter for atoms prepared in the

F = 1 and F = 2 states respectively. For a fixed probe time of 300 µs, the average

number of collected photons from the F = 2 state was measured to be m̄ = 21 and

from the F = 1 state is m̄ = 0.3.

The histogram is used to select a cutoff at 2 counts, as in the simulation described

previously. A signal of less than two counts is considered to be noise, while a signal

of 2 or more counts is assumed to be a legitimate detection. Two types of errors are

possible. The F = 1 error rate is defined as the probability of falsely detecting the

atom in the F = 2 state when it was prepared in the F = 1 state. The F = 2 error

rate is the probability of failing to detect an atom that was prepared in the F = 2

state. The data in the histogram gives error rates of 4.5% and 5.7% for F = 1 and

F = 2 respectively. Naively, one might expect both graphs to approximate a Poisson

distribution. However, the F = 2 graph deviates significantly. In particular, there is

an additional peak at zero counts. This is due partially to failed state preparation

and partially to the possibility of depumping into the F = 1 state before the end of

the pulse. Also, the main peak is somewhat wider than expected. We believe this is

because some atoms leave the trap before the end of the cooling pulse.

Since the cutoff for detecting a single atom has been set to two counts, this means

that any additional counts received by the photon counter beyond the first two have

no effect on the outcome. Our system monitors the output of the photon counter in

real time, as the atom is being probed. As soon as two counts have been received,

the atom is considered to be in the F = 2 state. At this point, no further counts are

necessary to determine the state of the atom, and the probe beam can be shut off

without losing any information. This minimizes the extent to which the probe beam
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Figure 6.11: Histogram of counts per atom, where the probe was extinguished after
the photon counter had reported two counts. (a) Atoms were prepared in the F = 1
hyperfine ground state and detected on the F = 2 → F ′ = 3 transition. The dotted
black line shows the cutoff between one and two counts. Any signal above one count
represents an error. (b) Atoms were prepared in the F = 2 hyperfine ground state
and detected on the F = 2 → F ′ = 3 transition. The dotted black line shows the
cutoff between one and two counts. Any signal below two counts represents an error.

disturbs the atom, while having no effect on the final outcome of the measurement.

This two-photon shutoff is implemented by monitoring the output of the photon

counting module. Once two pulses are received, an RF switch is triggered, which

shuts off RF power to the AOM controlling the probe beam. The shutoff time is

primarily limited by the response of the AOM, which is less than 1 µs.

Similar data to Figure 6.10, but with the two photon shutoff, is shown in Figure 6.11.

As expected, the F = 1 histogram is not significantly different, while the F = 2 his-

togram shows a huge peak at two counts, followed by a steep cutoff. The instances in

which three counts are detected are due either to dark counts on the photon counter

or to background scatter from sources other than the probe beam. The data in

Figure 6.11 gives error rates of 4% and 5.5% for F = 1 and F = 2 respectively. The

measured atom loss rates were 0.9% for F = 1 and 1.05% for F = 2. These results
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Figure 6.12: Accuracy and loss rate for detection of the hyperfine ground states.
For the F = 1 initial state (n = 1684 data points), the accuracy was 96% and the
loss rate was 0.9%. For the F = 2 initial state (n = 2127 data points), the accuracy
was 94.5% and the loss rate was 1.05%.

are shown graphically in Figure 6.12.

The F = 1 error rate is almost entirely due to the probe beam scattering off of the

sides of the glass cell. If that source of noise could be eliminated (for example, by using

an AR-coated cell), only the dark counts of the photon counter would remain, giving

a predicted error rate of ≈0.1%. The F = 2 error rate is due primarily to depumping

into the F = 1 state, which is more difficult to address. Methods of reducing these

errors will be discussed later. The F = 1 loss rate is due to a combination of losses

from background collisions (p ≈ 0.35% for a 300 s lifetime) and single atom detection

errors (p ≈ 0.6%, as discussed previously). The F = 2 loss rate is slightly larger,

presumably due to the perturbation from the probe beam. This loss rate is much

higher than the loss rate predicted by the simulation. Several possible reasons exist

for this discrepency. If the two probe beams have slightly different intensities, the

resulting force imbalance would tend to push atoms out of the trap. Also, any slight

misalignment of the lattice could result in a trap depth lower than the calculated
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value.

The F = 2 error and loss rates can be further examined by observing their de-

pendence on the various experimental parameters. F = 2 errors can be caused by

depumping, insufficient scattering events, or loss of the atom. The first two types of

errors should be affected directly by the probe detuning and probe power and indi-

rectly by the trap depth, due to the effects of the differential Stark shift. The F = 2

loss rate should depend on trap depth and probe detuning, but should be mostly

independent of probe power, because the probe beam is shut off after the atom has

scattered enough photons to detect two counts.

The experiment was repeated for different values of trap depth, probe detuning

and probe power. The results can be seen in Figure 6.13. As shown in Figure 6.13(a),

reducing the probe power reduced the chance of detecting two photons before the pulse

ended, and thus increased the F = 2 error rate. It had no significant effect on the

loss rate. Figure 6.13(b) shows the effect of changing trap depth. For a shallow trap

depth, the loss rate was extremely high. As the trap became deeper, the loss rate

dropped quickly at first, and then appeared to asymptote towards about 1%. The

F = 2 error rate followed a similar curve. Figure 6.13(c) shows the effect of changing

the probe detuning. Detuning the probe further to the red of resonance increased the

cooling effect of the beam, decreased the scattering rate, and increased the chance of

depumping into the F = 1 state. This reduced the F = 2 loss rate, but increased the

F = 2 error rate. If the probe was tuned too far blue, the F = 2 loss rate increased

dramatically.

All relevant detunings have been reported with respect to the bare atomic reso-

nance, ignoring the effects of the differential Stark shift. As mentioned earlier, the

simulation predicted an ideal detuning of +150 MHz, due to the effects of the Stark

shift, whereas the best detuning experimentally was +5 MHz. In order to reconcile

these values, an attempt was made to measure the differential Stark shift. A single
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Figure 6.13: Error rates and loss rates for different experimental settings. (a) Error
and loss rate versus probe power, for 2.5 mK trap depth and 5 MHz probe detuning.
(b) Error and loss rate versus trap depth, for 12 µW probe power and 5 MHz probe
detuning. (c) Error and loss rate versus probe detuning, for 12 µW probe power and
2.5 mK trap depth.
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Figure 6.14: Single photon fluorescence versus trap depth. The differential Stark
shift increases linearly with the trap depth, leading to a larger effective detuning of
the cooling light from resonance. As the effective detuning increases, the fluorescence
rate decreases. The solid blue line shows a theoretical fit to the data, which gives a
differential Stark shift of 11.1 MHz per 1 mK trap depth.

atom was trapped and cooled for a variety of different trap depths ranging from 1.5

mK to 2.5 mK. The resulting fluorescence signals under continuous cooling are shown

in Figure 6.14. The relationship between the number of counts detected and the trap

depth is given by [34],

Ncts(U0) = A
s0

1 + s0 + 4(U0δ′+δ)2

Γ2

, (6.1)

where s0 = 10 is the on resonance saturation parameter, δ = 20 MHz is the detuning

from the unshifted resonance, U0 is the trap depth, δ′ is the differential Stark shift

per unit trap depth, and A depends on the atomic linewidth and detection efficiency.

A fit to these data points gives an average differential Stark shift of 11.1 ± 2.8 MHz

per 1 mK trap depth.

The measured value of the Stark shift is averaged over the atom’s movement in the

trap and should therefore be somewhat smaller than the calculated value. However,

this is far too small an effect to account for the factor of seven discrepancy between

the calculated and measured values. Our assumption, therefore, is that the trap depth

95



must actually be significantly smaller than the calculated value, perhaps by as much

as a factor of four. This conclusion is also supported by the discrepancy between

the calculated and measured values of the trap frequency, reported in Chapter 5. A

smaller trap depth would also explain why the qubit loss rates tend to be much higher

than in the simulation.

There are a few reasons why the trap depth might be smaller than the calculated

value. The calculations assume an ideal focusing lens and perfect alignment, which

are difficult to achieve. Furthermore, the trapping laser is focused through a glass cell,

which might affect the quality of the focus. Future improvements to the alignment

and focus of the optical lattice might improve the accuracy and repeatability of these

detection techniques.

6.6 Repeated Measurements

The measured loss rates are low enough to enable preparation and detection of each

atom many times before losing it from the trap. In order to test this, the experimental

procedure was modified. After loading an atom and detecting it with the camera,

the atom was prepared in the F = 1 or F = 2 state, and measured as before.

Directly following state detection, the atom was cooled for 5 ms to counter the heating

associated with the detection process. The atom was then immediately prepared in

the desired state and the state measured again. This was repeated fifty times with

each atom, before taking a final picture with the camera, to confirm whether the atom

had survived all fifty cycles. The total time per cycle was 20 ms. The error rates for

these measurements were 5.9% for F = 2 and 6.6% for F = 1, which roughly agreed

with the earlier results.

The F = 1 loss rate was not significantly affected by the number of cycles, as

expected. The F = 2 loss rate was 31.4% for fifty cycles. Figure 6.15(a) shows

the probability of detecting an atom in F = 2 versus the cycle number. The curve
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Figure 6.15: Probability of a single atom being detected during the Nth preparation
and detection cycle. (a) Each atom is prepared and detected fifty times in the F = 2
state. The red circles show the probability of the atom being detected in the trap
for each cycle. An exponential fit (solid line) gives a decay lifetime of 137 cycles,
suggesting a loss probability of 0.73% per cycle. The blue triangles show detection
probabilities if the atom is instead prepared in the F = 1 state. (b) Each atom is
prepared and detected one hundred times in the F = 2 state. An exponential fit (solid
line) gives a decay lifetime of 77 cycles, suggesting a loss probability of 1.3% per cycle.
The blue triangles show detection probabilities if the atom is instead prepared in the
F = 1 state.

97



Figure 6.16: 308 individual atom runs. For each run, a single atom is prepared in
the F = 2 state and then detected, repeated for 100 cycles. The dots correspond to
a positive detection of the atom in the F = 2 state. The runs are numbered in order
by how long the atom remained in the trap.
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closely fits an exponential with a time constant of 137 cycles, giving a loss per cycle

of 0.73%. In order to obtain a more complete exponential curve, the experiment was

later repeated with 100 cycles per trapped atom. The corresponding graph is shown

in Figure 6.15(b). Note that these data were taken on a different day, resulting in

a small variation of the error and loss rates. A fit to the 100 cycle data indicated a

77 cycle lifetime, corresponding to a 1.3% loss per cycle. In Figure 6.16, each row

corresponds to the series of state measurements of a single atom prepared in the

F = 2 state and the dots correspond to a positive detection of the atom in the F = 2

state. The individual atom runs are sorted in order by how long the atom remained

in the trap in order to illustrate the atom loss probability. The missing dots on the

lower part of the graph indicate F = 2 errors, while the stray dots on the upper part

of the graph indicate F = 1 errors. The shape of the data envelope reveals the atom

loss probability.

6.7 Microwave State Preparation

State preparation to the F = 1 or F = 2 quantum states as used above provides

a technically expedient method to assess the performance of quantum state detec-

tion. Of course, for useful applications to quantum information, we are interested in

measuring qubits of arbitrary superpositions of the two states. Unfortunately, such

methods are also generally more complicated to achieve. As a first demonstration, we

will apply our technique to measure qubits created using microwave rotations between

the two hyperfine states.

The experimental sequence is very similar to the previous section except that

the atom is initialized to the F = 1 state and then excited to a superposition of

the F = 1 and F = 2 states using a pulse of microwave radiation tuned to the

F = 1→ F = 2 hyperfine transition. The apparatus used to generate the microwaves

is shown in Figure 6.17. A 3.417 GHz signal is supplied by a high-frequency function
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Figure 6.17: Experimental apparatus used to generate microwave pulses. A 3.417
GHz signal is supplied by a high-frequency function generator phase-locked to a GPS
frequency reference. An RF switch is used to toggle the signal on and off. The signal
passes through a frequency doubler, a microwave isolator, and then a 20 W power
amplifier. The output is broadcast using a microwave horn.

generator (model HP E4422B), which is phase-locked to a 10 MHz GPS-synchronized

frequency reference. An RF switch is used to toggle the signal on and off. The signal

passes through a frequency doubler, which changes the frequency to 6.835 GHz. A

microwave isolator prevents reflection back into the frequency doubler. Finally, the

signal is fed into a 20 W power amplifier, and the output of the amplifier goes to

a microwave horn directed toward the atom trap. The resulting microwaves excite

the F = 1,mF = 0 → F = 2,mF = 0 magnetic dipole transition, resulting in a

population inversion which is dependent on the pulse length, as was discussed in

Chapter 3.

In this experiment, the maximum probability of transferring the atom to the F = 2

state should be approximately 1/3, due to the multiplicity of the Zeeman states that

we have so far ignored. The state preparation to the F = 1 initial state should equally

populate the three F = 1,mF = 0 Zeeman states. On the other hand, the microwave

radiation is tuned to the F = 1,mF = 0→ F = 2,mF = 0 clock transition, which is

insensitive to magnetic fields to first order. The microwave radiation is not resonant

with transitions from the F = 1,mF = ±1 Zeeman states to the F = 2 states, due to

Zeeman shifts, so these states are not excited.

For each atom loaded, fifty preparation and detection cycles were run, with a

variable microwave pulse length proportional to the cycle number. After running this

on a large number of atoms, an average result was calculated for all of the atoms that
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Figure 6.18: Graphs showing Rabi flopping. (a) Probability of detecting an atom
in the F = 2 state as a function of the microwave pulse length. The graph shows
most of one Rabi flop. The solid line is a fit to a sine wave. (b) Six Rabi flops. The
solid line is a fit to an exponentially decaying sine wave. The fit gives a Rabi rate of
2.95 kHz and a decoherence time of 2.2 ms.
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had remained in the trap until the end of their respective runs. Figure 6.18(a) shows

the resulting Rabi flopping for microwave pulse lengths ranging from 10 µs to 250

µs. As predicted, the maximum probability of finding the atom in the F = 2 state is

approximately 1/3. In order to estimate both the Rabi rate and the decoherence time,

this measurement was repeated with a maximum microwave pulse length of 2000 µs

(Figure 6.18(b)). A fit to the data matches a damped Rabi oscillation with a Rabi

rate of 2.95 kHz and a decoherence time of 2.2 ms. For comparison, the differential

Stark shift between the F = 1 and F = 2 hyperfine states is expected to cause a

decoherence time of 1.5 ms for atoms at the Doppler temperature [65].

Thus far, we have discounted any off-resonant coupling from the mF = ±1 states.

For this experiment, we have minimized the magnetic bias field only so far as to

ensure effective continuous observation. As discussed in the last chapter, continuous

observation works well over a range of roughly ± 100 mG. It is therefore unlikely

that the magnetic field at the trapping site is less than 10-30 mG. A 10 mG bias field

would produce a Zeeman shift of 7 kHz, resulting in a generalized Rabi rate of 7.6

kHz for the mF = ±1 states. This would add an additional sinusoidal term to the

Rabi flopping graph with a frequency of 7.6 kHz and an amplitude about 6.5 times

smaller than the mF = 0 term. Such an effect is not visible in Figure 6.18, suggesting

that the bias field is probably larger than 10 mG.

The versatility of this system is further demonstrated by obtaining a graph of two

Rabi flops using only a single atom. For the first two graphs in Figure 6.19, a single

atom was captured. The initial state was prepared using microwaves, and was then

measured. This was repeated for fifty different microwave pulse lengths ranging from

10 to 500 µs, all with the same atom. Figure 6.19(c) shows the average of 312 such

graphs.

Microwave transfer rates were limited to 1/3 in this experiment due to the ex-

tra Zeeman levels, but this limitation would be straightforward to address in future
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Figure 6.19: Rabi flops with single atoms. (a,b) An individual atom is prepared
and detected fifty times, for fifty different microwave pulse lengths. (c) An average
of 312 individual atom runs. The solid line is a sinusoidal fit to the data.
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studies. A number of methods exist for preparing atoms in a specific mF state,

with optical pumping being perhaps the easiest. This is accomplished by applying

a circularly polarized pump beam tuned to the F = 1 → F ′ = 0 transition aligned

along the magnetic field axis of the atoms. By conservation of angular momentum,

any transition from the F = 1,mF = 0 state becomes forbidden, causing the atom

to (sooner or later) be pumped into that state. Once the atom is prepared in the

F = 1,mF = 0 state, microwaves could be used to transfer atoms to the F = 2 state

(or any superposition of the two) with arbitrarily high efficiency.

6.8 Future Goals

One possible improvement to this experimental setup would be to add an additional

microscope objective below the glass cell. Increasing the light to the camera by a

factor of twenty could allow the exposure time to be reduced to 50 ms, which would

significantly increase the repetition rate of the experiment. Several other methods

would also work to improve the signal to noise ratio. Most obviously, switching to

an AR coated glass cell would reduce the scattered light from the MOT lasers, thus

reducing the background noise. Alternatively, a separate set of smaller (or focused)

lasers could be used for continuous cooling. This would also allow the use of larger

MOT beams, which would increase the loading rate for a single atom, and therefore

also the repetition rate of the experiment.

Another possible option would be to remove the camera entirely and use the

photon counter to confirm the presence of a single atom. Since the signal to the

photon counter is twenty times larger than the signal to the camera, this seems like

it might work well. In practice, it was found that this method introduced too much

error into the process. As was seen in Figure 6.6, each atom appears only on a small

number of pixels. The photon counter, however, sums over a much larger area, which

significantly increases the background noise. The resulting signal to noise ratio is not
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significantly better than is produced by the camera, given the same exposure time.

Furthermore, the camera has the advantage of giving the approximate location of the

atom in the trap, rather than just the number of atoms.

Much of the current error rate is due to accidental depumping of the atom to the

F = 1 state via off-resonant excitation to the F ′ = 2 level. The results from the

simulations show that this error is difficult to suppress due to the spatial variation of

the AC Stark shift of the F = 2→ F ′ = 3 transition. There are several strategies that

we can pursue to address this issue that range in complexity. The most promising

tactic is to employ a circularly polarized probe beam coaligned with a magnetic field

to excite the F = 2,mF = 2 → F ′ = 3,mF = 3 transition. This is a true closed

(cycling) transition that should completely suppress off-resonant excitation to the

F ′ = 2 level. Other possibilities include cooling the atoms to reduce the spatial

variation of the shifts, minimizing shifts with compensating fields, and switching to

a different trapping wavelength where the shifts are minimized [117, 118].

The current version of this experiment is limited to a single qubit, but there is

no reason, in principle, that it couldn’t be applied to a quantum register of arbitrary

length. The first step would be to build a uniform quantum register. Although this

could be done probabilistically, a uniform quantum register would require an amount

of time to load that is exponential with register length. More reasonable strategies

have been implemented by Miroshnychenko et al. [63], and have been discussed

by others [76]. Once a quantum register is loaded into the lattice, the atoms can

be moved along the trap axis using optical conveyor techniques [58]. By focusing

the probe beam more tightly, it should be possible to read out only one atom at a

time. Furthermore, if the atoms are prepared in an mF = ±1 state, a magnetic field

can be used to allow the microwaves to address only one atom at a time. Using a

combination of these techniques, it should be straightforward to construct a robust,

re-usable quantum register.
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CHAPTER VII

PROGRESS ON A BLUE DETUNED 1-D OPTICAL

LATTICE

The differential Stark shift between the 5S1/2 and 5P3/2 states creates a time vary-

ing frequency shift of the optical transition, which is large compared to the natural

linewidth of the transition. Besides changing the effective detuning of the lasers,

this can cause depumping and interfere with cooling, as discussed in the previous

few chapters. Furthermore, differential Stark shifts between the two 5S1/2 hyperfine

states produce decoherence, which is extremely undesirable in quantum information

systems. Several methods exist for dealing with these problems, but each has its own

limitations. Direct Stark shift cancellation is possible, but it requires an additional

laser and very careful alignment [119]. Trapping at the magic wavelength is possible

for some atoms, such as cesium, but it severely limits the choice of trapping lasers

available [66]. A partial solution is to turn off the trapping laser briefly while address-

ing the atoms. Although this may help in some cases, it does not sufficiently address

the problem, and can cause other issues such as atom loss.

A very promising solution to the differential Stark shift is to switch to a blue

detuned dipole trap [120]. Blue detuned lasers repel atoms instead of attracting

them, so the trapping geometry is typically more complicated. The atoms are held at

the minimum of the light field, and must be enclosed on all sides in order to remain

trapped. However, because the atoms are trapped in the area of minimum light, the

Stark shift is zero at the center of the trap. 3-D blue detuned optical lattice traps

have been demonstrated by several groups, and have been shown to reduce both the

average Stark shift and the off-resonant scattering rate substantially [121]. Other trap
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Figure 7.1: Experimental setup for a one dimensional blue detuned optical lattice.
A blue detuned laser beam passes through a spiral phase plate, forming a ring beam
at its focus. This beam is combined with a separate Gaussian beam on a polarizing
beamsplitter cube (BS1), and both are focused onto the MOT. After exiting the
chamber, the beams are split by a second polarizing beamsplitter cube (BS2). The
ring beam is blocked, while the Gaussian beam is retro-reflected to form the lattice.

configurations, which produce only a single large trap site, have also been used [122].

In this chapter, we describe work aimed at developing a blue detuned 1-D lattice trap.

7.1 Experimental Setup

The proposed setup is shown in Figure 7.1. It uses a 1 W tapered amplifier pumped

by a 776 nm diode laser to create two trapping beams, one with P =50 mW and

the second with P =300 mW. The 50 mW trapping beam is oriented just like the

red detuned lattice beam discussed previously. It is retro-reflected to produce an

interference pattern. This provides tight confinement in the axial direction.

Radial confinement is more difficult to achieve. Accomplishing this using trap

lasers in only one dimension will require a beam with a ring-shaped cross-section

near the focus. Superimposing this beam on a standard retro-reflected lattice beam

will produce a series of dark traps, as shown in Figure 7.2. There are a few established

methods of producing such beams, including forked diffraction gratings [123], spiral
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Figure 7.2: Simulated profile of a one dimensional blue detuned optical lattice. A
retro-reflected Gaussian beam creates the lattice structure, while a co-propagating
ring beam confines the atoms in the radial directions. Atoms are trapped in each of
the dark locations.

Fresnel zone plates [124], and spiral phase plates [125]. Traditionally, these beams

are primarily used for creating optical vortices [126]. For many applications, a non-

uniform ring is sufficient, as long as it carries orbital angular momentum. For atom

trapping, however, the ring must be as uniform as possible, since the trap depth is

determined by the weakest point in the trap. The ring must also be created with as

high an efficiency as possible, in order to produce a sufficiently deep trap. We use

a spiral phase plate to create the ring beam, because it produces a near-ideal beam

profile with high efficiency and low complexity.

7.2 Spiral Phase Plate

A spiral phase plate is a clear optic with varying thickness T (φ), given by

T (φ) = T0 +
nλ

2π
φ, (7.1)

where n is the order of the phase plate, λ is the design wavelength of the phase plate,

and φ is the radial angle measured in the plane of the phase plate. A beam passing

through the center of the phase plate, orthogonal to the plane of the optic, experiences

a phase shift proportional to φ. Taking a Fourier transform of the beam profile gives
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Figure 7.3: Simulation of an ideal spiral phase plate. (left) Thickness profile of a
spiral phase plate. The thickness increases linearly with respect to the angle φ. (right)
Predicted cross-section of a beam that has passed through a spiral phase plate, near
its focus.

the expected beam shape at the focus, for an ideal spiral phase plate. For n = 1, this

is a very close approximation of a LG01 (Laguerre-Gaussian) beam. The thickness

profile of a spiral phase plate, as well as the expected cross-section of the resulting

beam at its focus, are shown in Figure 7.3.

One of the simplest ways to construct a spiral phase plate is to cut a slit in a piece

of flexible plastic and bend one of the resulting flaps [127]. On the bent side of the

slit, the light propagates slightly farther through the plastic than on the unbent side.

To first order, the resulting change in thickness is linear with the angle. One possible

design uses a small piece of a blank transparency sheet, mounted on an optical mount,

with set screws to determine the bend angle. While this does produce a ring beam,

it was not sufficiently uniform for the current purposes. In particular, it contained

a weak spot, due primarily to the poorly controlled discontinuity at φ = 2π. The

resulting beam is shown in Figure 7.4, as well as the simulated profile assuming a 0.5

mm discontinuity.

Several types of plastic were tried, with even less success. Finally, a professional

spiral phase plate was commissioned, made step-wise using a diamond carving process.
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Figure 7.4: Predicted and measured results for a spiral phase plate made out of
a blank transparency sheet. (left) Predicted beam cross-section, at the focus, for a
beam that has passed through the phase plate. This assumes a 0.5 mm discontinuity
at the point where the transparency is cut. (right) Measured beam cross-section, for
a beam that has passed through the phase plate. The beam was measured at its focus
using a webcam.

Figure 7.5: Beam profile of a ring beam made using a custom fabricated spiral phase
plate. The pictures were taken (from left to right) 10 mm before the focus, 5 mm
before the focus, at the focus, 5 mm after the focus, and 10 mm after the focus.
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Figure 7.6: Relevant ground and excited state transitions for 87Rb. Atoms in the
5P3/2 excited state can be further excited to either of the 5D states.

In theory, sixteen phase steps are enough to produce an efficiency of greater than 90%

of the light in the LG01 mode. Experimentally, an efficiency of approximately 80%

was observed, with the profile through the focus shown in Figure 7.5. Extremely

precise alignment was necessary, not only through the phase plate, but through all

subsequent optics. Even small deviations could prevent a ring from forming at the

focus of the trap. Taking into account all of the efficiencies and losses, and using all

of the power available, the resulting calculated trap depth is 660 µK. This is lower

than would be ideal, but should be sufficient to achieve continuous observation of

single atoms.

7.3 Initial Attempts

A hybrid trap was constructed as a first step towards a 1-D blue-detuned lattice.

This system used the 1064 nm laser to first produce a single focus trap, as in previous
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sections. A 50 mW co-propagating beam at 776 nm was then added, focused to 25

µm, which was retro-reflected to create a lattice. The expected result would be a trap

similar to the 1-D optical lattice, but instead, when the blue-detuned light was turned

on, all of the atoms immediately left the trap. After some investigation, it was found

that the 5P3/2 → 5D3/2 and 5P3/2 → 5D5/2 transitions were being unintentionally

excited. These transitions are located at 776.15 nm and 775.98 nm respectively,

as shown in Figure 7.6. In order to remove the undesired wavelengths from the

trapping laser, the trapping wavelength was changed to 777 nm and a diffraction

grating (efficiency = 40%) was added after the tapered amplifier. Another attempt

to produce a hybrid trap was performed, and this time it worked as expected. The

atoms were continuously observed, with lifetimes greater than 20 s.

Unfortunately, while the diffraction grating allowed the successful construction of

a hybrid trap, it significantly reduced the maximum power available for generating

the trap. This reduced the maximum achievable trap depth to 270 µK. For the

current system, this is probably not sufficient to perform continuous cooling. Several

attempts were made to form a blue-detuned trap at this lower trap depth, but they

were unsuccessful.

7.4 Possible Improvements

Ultimately, these attempts at making a blue-detuned trap were limited by the maxi-

mum power of the trapping laser. Several methods exist to deal with this issue. First,

one could obtain a higher power laser. Tapered amplifiers with a maximum power of

2 W now exist at the desired wavelength and could probably produce enough power.

Alternatively, a titanium sapphire laser could produce a high power beam without

the amplified spontaneous emission pedestal characteristic of diode lasers.
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CHAPTER VIII

CONCLUSION

This thesis has presented experimental work toward developing robust, reusable neu-

tral atom qubits. The work examined the factors involved in trap heating, achieved

optical lattice lifetimes far beyond previous records, and demonstrated non-destructive

state detection of a neutral atom qubit. The work on non-destructive state detection

is especially valuable because of its potential to advance quantum information science.

To begin, heating and cooling were thoroughly examined and optimized in an

optical lattice. Single atoms were trapped in a MOT, and transferred to an optical

lattice. Heating rates from various sources were measured and calculated, and ul-

timately compared. By using a laser with low intensity noise, atoms were trapped

with lifetimes exceeding half a minute without any form of cooling. This lifetime was

shown to be limited by position fluctuations in the optical trap. With active cooling

to counteract this heating, a vacuum limited lifetime of over 300 s was achieved, which

is five times longer than has been previously reported in a lattice.

These results were then replicated using pulsed cooling. Pulsing the cooling light

as infrequently as once every 20 s was shown to give a lifetime almost indistinguishable

from the lifetime with continuous cooling. This allows for a variety of state-sensitive

quantum operations to be performed between cooling pulses, while still maintaining

an extremely long lifetime.

A non-destructive state detection system was simulated by modeling a single atom

in an optical lattice, with trap parameters that are achievable in the lab. Based on the

promising outcome of the simulation, the system was constructed, and single atoms

were prepared and detected in the F = 1 and F = 2 hyperfine states, producing results
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that were only slightly worse than the simulation. This system attained an average

state detection error rate around 5% and an atom loss rate less than 1%. Following

this success, the experiment was reconfigured to prepare and detect each atom as

many as 100 times, with a short cooling pulse between each cycle. Loss rates were

slightly above 1% per cycle, while error rates remained around 5%. The resulting

ability to retain an atom through multiple detection cycles will allow much faster

repetition rates for quantum information experiments. Also, it could enable the use

of more complex register loading schemes, which might otherwise take prohibitively

long to conduct for every new quantum operation.

Next, individual atoms were prepared as qubits in quantum superposition states,

using microwaves. State detection was performed for a variety of different microwave

pulse lengths, producing Rabi oscillations. This represents the first demonstration of

non-destructive state detection of a neutral atom qubit.

Initial attempts were made to recreate the single atom lattice in a blue trapping

regime, in order to minimize the differential Stark shift and other disturbances caused

by the trapping light. Although these efforts were thus far unsuccessful, it is likely

that further effort, coupled with higher laser power, could produce more satisfactory

results.

8.1 Future Work

Future work will focus on extending these results to create a fully functional quantum

register. This process should be fairly straightforward. The first step is to improve

qubit creation through optical pumping. By pumping the atoms into the mF = 0

state before applying the microwaves, successful preparation rates approaching unity

should be achievable.

Optical pumping could also be used to reduce the error rate for successful state

detection. If the atoms are correctly oriented with respect to a magnetic field, then
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a circularly polarized probe beam should pump them into the mF = 2 state. From

that state, σ+ light cannot cause off-resonant depumping into the F = 1 state, due

to conservation of angular momentum. Currently, such depumping is the primary

source of errors. One other major source of error is due to probe light scattered

off of the walls of the glass cell. This could be minimized by switching to an anti-

reflection coated cell, or possibly by altering the probe configuration. If these two

sources of error could be rendered negligible, error rates less than 1% should be readily

achievable.

This system could be adapted to a multiple qubit register by changing the lattice

into an optical conveyor. For a small number of qubits, probabilistic loading would be

feasible. Each qubit could be moved into the region of interest and detected in turn.

Another possible implementation would leave the atoms stationary, while moving the

probe beam using an acousto-optical modulator or similar device. Alternatively, an

array of photon counters or a low noise camera might allow multiple qubits to be

detected at once.

Taken together, all of these improvements could result in a highly reliable multi-

qubit detection system, with extremely low error and loss rates. Such a breakthrough

would remove the bottleneck from neutral atom quantum information experiments,

allowing greatly increased repetition rates, without sacrificing accuracy or reliability.

Faster repetition would, in turn, allow more complex experiments.

By demonstrating extremely long storage times and non-destructive state detec-

tion of a neutral atom qubit, the work in this thesis will facilitate the development

of faster and more complex quantum operations. These accomplishments provide

foundations for exciting new developments in the field of quantum information.
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