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3.9 Fabry–Pérot cavity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
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SUMMARY

An important frontier of research in metrology is the development of techniques to

surpass the standard quantum limit using quantum squeezed states or other entangled states.

In this thesis, we report the first observation of squeezed ground states generation in a

87Rb spinor condensate. The measurement of squeezed ground states builds on previous

experiments of spin-nematic squeezing. A spin-1 Bose-Einstein condensate is tuned near

the quantum critical point between the polar and ferromagnetic quantum phases to create

a ground state with squeezing properties. In contrast to typical non-equilibrium methods

for preparing atomic squeezed states by quenching through a quantum phase transition,

squeezed ground states are time-stationary and remain squeezed for the lifetime of the

condensate. A squeezed ground state with a metrological improvement up to 6− 8 dB and

a constant squeezing angle maintained over 2 s is demonstrated.

A protocol consisting of a pair of controlled quenches of an external magnetic field is

applied, which allows fast tuning of the system Hamiltonian in the vicinity of a phase tran-

sition. Our protocol effectively shortcuts the adiabatic technique, overcoming the challenge

of maintaining adiabaticity in the neighborhood of the quantum critical point where the fre-

quency scale of the final Hamiltonian evolution tends to zero. This protocol is indicative of

creating eigenstates of the system through the non-adiabatic method and lay the foundation

for future experiments involving entangled eigenstates generation.

In addition, we extend our studies to further improve the control of a quantum system

and the Hamiltonian engineering of a many-body system. In this thesis, we present our

proposals and preliminary results.

xvii



CHAPTER 1

INTRODUCTION AND BACKGROUND

1.1 A Brief History of Bose-Einstein Condensate

The idea of Bose-Einstein condensation (BEC) was formulated about 100 years ago by

Satyendra Nath Bose and Albert Einstein in 1924-1925 [1, 2]. With the breakthroughs

in laser cooling developed by 1997 Nobel laureates Chu, Cohen-Tannoudji, Phillips, and

others [3], lasers quickly became a workhorse in the BEC quest. The achievement of BEC

was recognized by the Nobel prizes for Cornell, Ketterle, and Wieman in 2001 [4, 5].

1.2 Spinor BEC

In the early condensate systems using magnetic traps, only atoms in a weak-field seeking

state were magnetically trapped, and therefore, their spin degrees of freedom were frozen.

A spinor Bose-Einstein condensate, namely a BEC with spin internal degrees of freedom,

was first realized in a gas of spin-1 anti-ferromagnetic 23Na atoms confined in an optical

dipole trap in 1998 [6].

The first condensates with ferromagnetic ordering were realized by our group using

87Rb condensates created directly in optical traps [7]. The focus of these initial investiga-

tions was on verifying the sign of the spinor dynamical energy for the F = 1 87Rb which

had been predicted to be negative [8] . In the subsequent work, our group demonstrated for

the first time the coherent oscillation of the spinor system [9], which provided the first con-

vincing validation of the mean-field theoretical treatment of the system dynamics. Number

squeezing (as known as sub-Poissonian fluctuations) [10] is observed with the spin-mixing

procedure and later the spin-nematic squeezing (as known as quadrature squeezing) [11] is

observed with the spinor phase shifted by microwave pulses. Those breakthroughs widen
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the research topic from the mean values of observables to the uncertainties. Afterward,

our group studied the important physics related to the energy gaps, such as the parametric

excitation [12], the adiabatic state preparation [13], and the quantum Kibble-Zurek mecha-

nism [14]. At the same time, the experimental advance leads us further improve the way to

control the system thus studying novel problems including dynamic stabilization theories

[15] and singular loops in Bloch spheres [16].

1.3 Thesis Contribution and Organization

This thesis describes the theory [17] along with the experimental results [18] for squeezed

ground states in the spin-1 ferromagnetic condensate. This work draws heavily on the work

of previous doctoral students.

The thesis is organized as follows. Chapter 2 gives detailed derivation for the basic

spinor BEC theory. Here quantum and semi-classical theoretical approaches are discussed.

In Chapter 3, the experimental apparatus is discussed in detail. This has been covered ex-

tensively before and this thesis contains the detailed measurement of the all-optical BEC

technique on the latest apparatus for future reference. The tools used to manipulate and ob-

serve the BEC will be expounded in more detail. In Chapter 4, the theory of time-stationary

squeezed states is studied through a discussion of harmonic oscillator approximation, op-

timal quantum control, and finite system size effect. These ideas are applied to the ground

states of spinor BEC along with a comparison to the highest excited states. In Chapter 5,

the theoretical predictions are compared to the measured results. Using the theory and sim-

ulation result from Chapter 4, a measurement protocol is developed to access the squeezed

ground states. Several details of the measurement protocol and calibration for data anal-

ysis are discussed. Chapter 6 describes the extra theoretical projects that are possible to

be implemented into the experimental platforms and Chapter 7 contains the experimental

projects that are conducted as a future improvement to the apparatus. Finally, Chapter 8

contains some concluding remarks and possible future directions.
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The information necessary for the explorations described in this thesis more resembles

a manual rather than a linear narrative. Because of this, the topics are more categorized for

the convenience to look up.
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CHAPTER 2

BASIC SPINOR BEC THEORY

2.1 Gross-Pitaevskii Equation

The Hamiltonian of the condensate includes the kinetic energy, potential energy of the

confined trap VT , and the two-body interaction energy.

H =
N∑
i

(−∇
2

2m
+ VT ) +

N∑
i,j,i<j

V (~ri− ~rj) =
N∑
i

(−∇
2

2m
+ VT ) +

1

2

N∑
i,j,i6=j

V (~ri− ~rj). (2.1)

Equation 2.1 is called the Gross-Pitaevskii equation (or nonlinear Schrödinger equation)

[19, 20, 21]. For the low-temperature limit where there is only s-wave scattering, the spin-

mixing interaction is modeled as a contact pseudo-potential in two-body collisions. During

the collision, the total spin of two-body is the sum of individual spin ~F = ~f1 + ~f2, F =

2f, 2f − 1, · · · 0. The interaction between two atoms in a collision is given by

V (~r1 − ~r2) = δ(~r1 − ~r2)

2f∑
F=0

gFPF , (2.2)

with projection operator in the form PF =
∑F

mF=−F |F,mF >< F,mF | and the coupling

strength gF = 4π~2aF
m

. aF is the s-wave scattering length for total spin-F channel, and m

is the atomic mass. Since for 87Rb the total spin equals nuclear spin 3
2

add electron spin 1
2
,

we have f = 1 or 2, which are both bosons. The scattering channels for f = 1 is written in
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the form |F,mF >= |mf1 > |mf2 > as the following:



|2, 2 >= |1 > |1 >

|2, 1 >= 1√
2
(|0 > |1 > +|1 > |0 >)

|2, 0 >= 1√
6
(| − 1 > |1 > +2|0 > |0 > +|1 > | − 1 >)

|2,−1 >= 1√
2
(|0 > | − 1 > +| − 1 > |0 >)

|2,−2 >= | − 1 > | − 1 >

, (2.3)


|1, 1 >= 1√

2
(|0 > |1 > −|1 > |0 >)

|1, 0 >= 1√
2
(| − 1 > |1 > −|1 > | − 1 >)

|1,−1 >= 1√
2
(| − 1 > |0 > −|0 > | − 1 >)

, (2.4)

and

|0, 0 >=
1√
3

(| − 1 > |1 > −|0 > |0 > +|1 > | − 1 >). (2.5)

When we consider the f = 1 atoms collide, the state has to be symmetric which leads the

scattering channel to only be F = 0 or F = 2.

The spin-spin coupling of two spin-f bosons can be found using the identity

~f1 · ~f2 =
F̂ 2 − f̂1

2
− f̂2

2

2
=
F (F + 1)− 2f(f + 1)

2
. (2.6)

Applying the identity operator leads to

~f1 · ~f2 = ~f1 · ~f2

2f∑
F=0,even

PF =

2f∑
F=0,even

λFPF , (2.7)

where λF = F (F+1)−2f(f+1)
2

. Here the closure relationship is used since the sum of projec-
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tion operators equals identity operator. For f = 1 condensates,

1 = P0 + P2, ~f1 · ~f2 = P2 − 2P0. (2.8)

Thus,

V (~r1 − ~r2) = δ(~r1 − ~r2)

2f∑
F=0

gFPF

= δ(~r1 − ~r2)(g0P0 + g2P2)

= δ(~r1 − ~r2)(c0(P0 + P2) + c2(P2 − 2P0))

= δ(~r1 − ~r2)(c0 + c2
~f1 · ~f2),

(2.9)

where c0 := g0+2g2
3

and c2 := g2−g0
3

. The continuous integration of the total Hamiltonian is

used instead of the discrete sum hereafter:

H =
∑

i=−1,0,1

∫
d3~rψ†i (−

∇2

2m
+ VT )ψj

+
1

2

∫
d3~r(

∑
i,j=±1,0

c0ψ
†
iψ
†
jψjψi +

∑
i,j,k,l=±1,0

c2ψ
†
iψ
†
j(
~fjk · ~fil)ψkψl),

(2.10)

where i = ±1, 0 denotes the different Zeeman states. The identity operator makes the

c0 channel represent as ψ†iψ
†
jψjψi. The entire Hamiltonian can be decompose into spin-

independent symmetry part and asymmetry part:

Hs =
∑

i=−1,0,1

∫
d3~rψ†i (−

∇2

2m
+ VT )ψi +

c0

2

∫
d3~r

∑
i,j=±1,0

ψ†iψ
†
jψjψi, (2.11)

and

Ha =
c2

2

∫
d3~rψ†1ψ

†
1ψ1ψ1 + ψ†−1ψ

†
−1ψ−1ψ−1 + 2ψ†1ψ

†
0ψ0ψ1

− 2ψ†1ψ
†
−1ψ−1ψ1 + 2ψ†0ψ

†
−1ψ−1ψ0 + 2ψ†−1ψ

†
1ψ0ψ0 + 2ψ†0ψ

†
0ψ−1ψ1.

(2.12)

6



The asymmetry part is calculated based on the spin-1 Pauli operators:

fx =
1√
2


0 1 0

1 0 1

0 1 0

 , fy =
i√
2


0 −1 0

1 0 −1

0 1 0

 , fz =


1 0 0

0 0 0

0 0 −1

 . (2.13)

Each element of the sum has the detailed form as the following:

( ~ψ†fx ~ψ)2 =
1

2
(ψ†1ψ0 + ψ†0ψ−1 + (ψ†0ψ1 + ψ†−1ψ0))2, (2.14)

( ~ψ†fy ~ψ)2 = (−1

2
(ψ†1ψ0 + ψ†0ψ−1 − (ψ†0ψ1 + ψ†−1ψ0)))2, (2.15)

( ~ψ†fz ~ψ)2 = (ψ†1ψ1 − ψ†−1ψ−1)2, (2.16)

and

ψ†iψ
†
j(
~fjk · ~fil)ψkψl = 2(ψ†1ψ0 + ψ†0ψ−1)2 + 2(ψ†0ψ1 + ψ†−1ψ0)2

+ (ψ†1ψ1 − ψ†−1ψ−1)2. (2.17)

2.2 Single Mode Approximation

When the size of the condensate is smaller than the spin healing length ξs = h/
√

2m|c2|n,

where n is atom number density, the spin components have the same spatial wave function

which leads to the single mode approximation (SMA):

ψi ≈ ai
√
Nφ(r),

∫
|φ(r)|2 = 1. (2.18)
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Here φ(r) is renormalized. For 87Rb and 23Na, c0 � |c2|, the symmetric Hamiltonian is

the dominant term and determines the partial wave function φ(r) with

(−∇
2

2m
+ VT +

c0

2
N |φ|2)φ = µφ. (2.19)

As a result, the symmetric part of the Hamiltonian

Hs =
∑

i=−1,0,1

∫
d3~rψ†i (µ−

c0

2
N |φ|2)ψi +

c0

2

∫
d3~r

∑
i,j=±1,0

ψ†iψ
†
jψjψi

=
∑

i=−1,0,1

a†iN(µ− c′0N)ai + c′0N
2
∑

i,j=±1,0

a†ia
†
jajai

=µN̂ + c′0N̂(N̂ − 1),

(2.20)

where c′0 := c0
2

∫
|φ(r)|4. With the same derivation, the asymmetric part has the following

formula:

Ha = c′2(Ŝ2 − 2N̂), (2.21)

where Ŝ2 = Ŝ2
x + Ŝ2

y + Ŝ2
z and c′2 := c2

2

∫
|φ(r)|4. c2 < 0 means ferromagnetic, while

c2 > 0 is anti-ferromagnetic. Each operator has the form as shown in Table 2.1. Because

Hs is spin-independent, the dynamics of spinor state is decided by Ha.
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Table 2.1: Spin-1 dipole operators. Matrices in spherical polar basis |f,mf〉.

Sx = 1√
2


0 1 0

1 0 1

0 1 0

 Sx = 1√
2
(a†1a0 + a†0a−1 + a†0a1 + a†−1a0)

Sy = i√
2


0 −1 0

1 0 −1

0 1 0

 Sy = i√
2
(−a†1a0 − a†0a−1 + a†0a1 + a†−1a0)

Sz =


1 0 0

0 0 0

0 0 −1

 Sz = (a†1a1 − a†−1a−1)

2.3 Magnetic fields

The magnetic field introduces energy shifts to the Zeeman sub-levels of the hyperfine state.

The Zeeman energy for total atoms in each spinor state becomes

E1 = pN1 + qN1 +N1E0

E0 = N0E0

E−1 = −pN−1 + qN−1 +N−1E0,

(2.22)

where p = −µBBzgf , q = µ2
BB

2
z/(~2Ehfs) are the linear and quadratic Zeeman effect

accordingly [22]. gf is the Landé g factor and EHFS is the ground state hyperfine splitting.

The total magnetic field energy is given by

EB = p(N1 −N−1) + q(N1 +N−1) +NE0. (2.23)
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Now the system with external magnetic fields in the z direction has the Hamiltonian

Ha = c′2(S2 − 2N) + EB

= c′2(S2 − 2N) + pSz +
q

2
Qzz,

(2.24)

where the quadrupole operator Qi,j = SiSj + SjSi − 4
3
δi,j (see Table 2.2). Since N is a

constant, N can be neglected in Ha.

Table 2.2: Spin-1 quadrapole operators. Matrices in spherical polar basis |f,mf〉.

Qxx =


−1

3
0 1

0 2
3

0

1 0 −1
3

 Qxx = −1
3
a†1a1 + 2

3
a†0a0 − 1

3
a†−1a−1 + a†1a−1 + a†−1a1

Qyy =


−1

3
0 −1

0 2
3

0

−1 0 −1
3

 Qyy = −1
3
a†1a1 + 2

3
a†0a0 − 1

3
a†−1a−1 − a†1a−1 − a†−1a1

Qzz =


2
3

0 0

0 −4
3

0

0 0 2
3

 Qzz = 2
3
a†1a1 − 4

3
a†0a0 + 2

3
a†−1a−1

Qxy = i


0 0 −1

0 0 0

1 0 0

 Qxy = i(−a†1a−1 + a†−1a1)

Qxz = 1√
2


0 1 0

1 0 −1

0 −1 0

 Qxz = 1√
2
(a†1a0 − a†0a−1 + a†0a1 − a†−1a0)

Qyz = i√
2


0 −1 0

1 0 1

0 −1 0

 Qyz = i√
2
(−a†1a0 + a†0a−1 + a†0a1 − a†−1a0)
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2.4 Semi-classical Approach

The spinor dynamics of the condensate can be derived using the Heisenberg equation of

motion

i~
∂ai
∂t

= [ai, Ha]. (2.25)

To simplify the notation, c := 2c′2N is used hereafter. For each spin component we can

get

i~
∂a1

∂t
=c(a†1a1a1 + a†0a0a1 − a†−1a−1a1 + a†−1a0a0)

i~
∂a0

∂t
=c(a†1a0a1 + a†−1a−1a0 + 2a†0a−1a1)

i~
∂a−1

∂t
=c(a†−1a−1a−1 − a†1a−1a1 + a†0a−1a0 + a†1a0a0).

(2.26)

Under the mean-field description ai = e−iµtξi and by neglecting the global phase e−iµt

[23], Equation 2.26 can be simplified as

i~
∂ξ1

∂t
=E1ξ1 + c(ξ†1ξ1ξ1 + ξ†0ξ0ξ1 − ξ†−1ξ−1ξ1 + ξ†−1ξ0ξ0)

i~
∂ξ0

∂t
=E0ξ0 + c(ξ†1ξ0ξ1 + ξ†−1ξ−1ξ0 + 2ξ†0ξ−1ξ1)

i~
∂ξ−1

∂t
=E−1ξ−1 + c(ξ†−1ξ−1ξ−1 − ξ†1ξ−1ξ1 + ξ†0ξ−1ξ0 + ξ†1ξ0ξ0),

(2.27)

which can be further simplified as

i~
∂ξ1

∂t
=E1ξ1 + c((ρ1 + ρ0 − ρ−1)ξ1 + ξ†−1ξ0ξ0)

i~
∂ξ0

∂t
=E0ξ0 + c((ρ1 + ρ−1)ξ0 + 2ξ†0ξ−1ξ1)

i~
∂ξ−1

∂t
=E−1ξ−1 + c((ρ−1 + ρ0 − ρ1)ξ−1 + ξ†1ξ0ξ0).

(2.28)

Here ρi = Ni/N is the relative population and Ei = pi + qi2. The wave function ψ =

(ξ1, ξ0, ξ−1) is under the constraint that |ξ1|2 + |ξ0|2 + |ξ−1|2 = 1. The number of real
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variables can be further reduced to 4 under the constraint:

ξ1 =

√
1− ρ0 +m

2
expiχ+ , ξ0 =

√
ρ0, ξ−1 =

√
1− ρ0 −m

2
expiχ− , (2.29)

with χ± = θs±θm
2

,m = N1−N−1

N
. θs and θm are called the spinor phase and magnetization

phase, which are the relative phase between N0 and N±1 and the relative phase between

N+1 and N−1 accordingly. Using this parametreization and changing to a rotating frame to

remove the magnetization phase (ξ′±1 → e∓iθm/2ξ±1), the equations can be further simpli-

fied to just two dynamical variables, ρ0 and θs [23].

ρ̇0 =
2c

~
ρ0

√
(1− ρ0)2 −m2 sin(θs)

θ̇s = −2q

~
+

2c

~
(1− 2ρ0) +

2c

~
(1− ρ0)(1− 2ρ0)−m2√

(1− ρ0)2 −m2
cos(θs)

(2.30)

The energy per atom equals to

E =
c

2
m2 + cρ0[(1− ρ0) +

√
(1− ρ0)2 −m2cosθs] + pm+ q(1− ρ0). (2.31)

A given set of relative spin operators (sx, sy, qyz, qxz) := (Sx/N, Sy/N,Qyz/N,Qxz/N)

is generated from Gaussian distributions satisfying the uncertainty relationships (see Ta-

ble 2.4) for spin-1 operators ∆Sx∆Qyz = N and ∆Sy∆Qxz = N with all atoms in

mF = 0. One set of relative spin operators is used to compute one set of the mean-field
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variables based on Table 2.3 which gives the following relationships:

χ+ = arctan(−sy + qyz
sx − qxz

)

χ− = arctan(
sy − qyz
sx − qxz

)

θs = χ+ + χ−

ρ0 =
1

2
+

√
1

4
− 1

8

(
(
sx + qxz
cosχ+

)2 + (
sx − qxz
cosχ−

)2
)

m =
1

8ρ0

(
(
sx + qxz
cosχ+

)2 − (
sx − qxz
cosχ−

)2
)
.

(2.32)

In the limitN � 1, the uncertainty relationships for the relative spin operators ∆sx∆qyz =

1/N and ∆sy∆qxz = 1/N indicate a distribution with ρ0 → 1, m → 0 and uniform

θs in [0, 4π]. This set sampling process is repeated for N times to simulate the quantum

dynamics with the mean-field equations [24].

The spinor phase shift ∆θs can be added by applying a small change directly to θs →

θs + ∆θs or applying the operation ξ0 → ξ0e
−i∆θs/2. This operation is important in search-

ing the maximum squeezing angles.

Table 2.3: Spin-1 observables in mean-field parameters.

sx =
√
ρ0(
√

1− ρ0 +m cos(χ+) +
√

1− ρ0 −m cos(χ−))

sy = −√ρ0(
√

1− ρ0 +m sin(χ+)−
√

1− ρ0 −m sin(χ−))

sz = 1
2
m

qyz −√ρ0(
√

1− ρ0 +m sin(χ+) +
√

1− ρ0 −m sin(χ−))

qxz =
√
ρ0(
√

1− ρ0 +m cos(χ+)−
√

1− ρ0 −m cos(χ−))

s2
z = 1− ρ0

s2
x + s2

y = 2ρ0(1− ρ0) + 2ρ0

√
(1− ρ0)2 −m2 cos θs

q2
yz + q2

xz = 2ρ0(1− ρ0)− 2ρ0

√
(1− ρ0)2 −m2 cos θs

x = 2ρ0 − 1

x2 + s2
x + s2

y + q2
yz + q2

xz = 1
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Figure 2.1: The phase transition energy gap and spin-nematic sphere for different magnetic
fields. The energy gap between the ground state and the first excited-state shows the phase
transition happens at q = 2|c|. When q � 2|c|, the dominance of the quadratic Zeeman
energy indicate the ground state near the Qz pole with the energy gap ∆ = 2

√
q(q + 2c)

[13], as known as the Polar phase. When 0 < q < 2|c|, the ground state splits into two
distributions with the energy gap ∆ = 2

√
c2 − q2/4, as know as the Broken-axis symmetry

(BA) phase. This is the regime where the spin-nematic squeezing happens. The two special
cases are q = 0, where the ground state is the maximum angular momentum Dicke state,
and q → 2|c|+, where the ground state is an equilibrium squeezed state. The later one is the
core of the research in this thesis. The black curve represents the separatrix (zero energy
contour). Negative energy contours (blue) are inside the separatrix and positive energy
contours (red) are outside.
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Table 2.4: Commutation relationship for spin-1 operators.

[↓,→] Sx Sy Sz Qxz Qyz Qxy Qzz Qxx Qyy

Sx 0 iSz −iSy −iQxy i(Qzz −Qyy) iQxz −2iQyz 0 2iQyz

Sy 0 iSx −i(Qzz −Qxx) iQxy −iQyz 2iQxz −2iQxz 0
Sz 0 iQyz −iQxz i(Qyy −Qxx) 0 2iQxy −2iQxy

Qxz 0 iSz −iSx −2iSy 2iSy 0
Qyz 0 iSy 2iSx 0 −2iSx
Qxy 0 0 −2iSz 2iSz
Qzz 0 0 0
Qxx 0 0
Qyy 0
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2.5 Quantum Approach

In this thesis, we consider the dynamics of a spin-1 condensate in a magnetic field oriented

along the z direction and satisfying the single spatial mode approximation to be described

by the Hamiltonian [11],

Ĥ =
c

2N
Ŝ2 +

q

2
Q̂zz, (2.33)

where Ŝ2 = Ŝ2
x + Ŝ2

y + Ŝ2
z and Ŝν =

∑N
i=1 ŝ

i
ν is a collective spin operator with ŝν the cor-

responding single particle spin-ν component, and N is the total number of atoms. Q̂νµ =∑N
i=1 q̂

i
νµ is a collective nematic operator, where q̂νµ ≡ ŝν ŝµ + ŝµŝν − (4/3)δνµ is a sym-

metric and traceless rank-2 tensor. The coefficient c/(2N) is the collisional spin interaction

energy per particle, with c < 0 for 87Rb dictating a preferred ferromagnetic ordering (in this

thesis c = −|c| always), while q = qzB
2 is the quadratic Zeeman energy per particle with

qz/h = 71.6 Hz/G2. The QCP between the polar and the BA phases occurs at qc = 2|c|.

This is a second-order (continuous) quantum phase transition according to Ehrenfest’s clas-

sification, which is akin to the phase transition in the Landau-Ginzburg model [25]. The

corresponding polar phase (q > qc) energy gap ∆(q) = ω(q) =
√
q(q − qc) between the

ground state and the first excited state vanishes at the QCP in N → +∞ case.

We will consider the spin system to be prepared in an eigenstate of Ŝz with quantum

number zero. Since the Hamiltonian commutes with Ŝz, we may restrict Ĥ to the subspace

of zero net magnetization. A suitable basis consists of the Fock states |N1, N0, N−1〉 =

|k,N − 2k, k〉 =: |k〉, 0 ≤ k ≤ N
2

[26].

In this basis, the relevant matrix elements needed to construct the Hamiltonian matrix

are

Hk′,k = 〈k′|Ĥ|k〉 =
c

2N
〈k′|Ŝ2|k〉+

q

2
〈k′|Q̂zz|k〉. (2.34)

〈k′|Ŝ2|k〉 can be derived with the following relationship:

S2 = S+S− − Sz + S2
z , (2.35)
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where S+ = Sx+ iSy, S− = Sx− iSy, [Sx, Sy] = iSz, and S+S− = S2
x +S2

y +Sz. Because

〈k′|S2
z |k〉 and 〈k′|Sz|k〉 equal zero,

< k′|S2|k >=< k′|S+S−|k >= (S−|k′ >)†(S−|k >). (2.36)

The equation inside the brackets has the form:

S−|k >=
√

2(a†0a1 + a†−1a0)|k >

=
√

2(
√
k
√
N − 2k + 1|k − 1, N − 2k + 1, k >

+
√
k + 1

√
N − 2k|k,N − 2k − 1, k + 1 >)

(2.37)

following Table 2.1. Because the Fock states are orthogonal to each other,

(S−|k′ >)†(S−|k >) = 2

[(
2(N − 2k)k + (N − k)

)
δk′,k+

(k + 1)
√
N − 2k

√
N − 2k − 1δk′,k+1+

(k)
√
N − 2k + 2

√
N − 2k + 1δk′,k−1

]
.

(2.38)

The nematic operator matrix element is

< k′|Qzz|k >= (4k − 4

3
N)δk′,k. (2.39)

The dynamical evolution can be solved by the Schrödinger equation

i~∂t|Ψ(t)〉 = Ĥ(q(t))|Ψ(t)〉

with the initial condition |Ψ(t = 0)〉 = |0, N, 0〉. The eigenstate and energy spectrum can

be computed by directly diagnosing the matrix. Other observables can be also expressed in
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the matrix form

〈k′|S2
x|k〉 =((2(N − 2k)k + (N − k))δk′,k+

(k + 1)
√
N − 2k

√
N − 2k − 1δk′,k+1+

(k)
√
N − 2k + 2

√
N − 2k + 1δk′,k−1),

(2.40)

〈k′|S2
y |k〉 =((2(N − 2k)k + (N − k))δk′,k+

(k + 1)
√
N − 2k

√
N − 2k − 1δk′,k+1+

(k)
√
N − 2k + 2

√
N − 2k + 1δk′,k−1),

(2.41)

〈k′|Q2
xz|k〉 =((2(N − 2k)k + (N − k))δk′,k−

(k + 1)
√
N − 2k

√
N − 2k − 1δk′,k+1−

(k)
√
N − 2k + 2

√
N − 2k + 1δk′,k−1),

(2.42)

〈k′|Q2
yz|k〉 =((2(N − 2k)k + (N − k))δk′,k−

(k + 1)
√
N − 2k

√
N − 2k − 1δk′,k+1−

(k)
√
N − 2k + 2

√
N − 2k + 1δk′,k−1),

(2.43)

and

ρ0 =
N∑
k

N − 2k

N
ψ†kψk. (2.44)

The commutation relations for the subspace are 〈k′|[Ŝx, Q̂yz]|k〉 = i(6k− 2N)δk′,k and

〈k′|[Ŝy, Q̂xz]|k〉 = i(2N − 6k)δk′,k. At the condition where the initial state is |0, N, 0〉, the

commutation relationship gives the standard quantum limit −〈[Ŝx, Q̂yz]〉 = 〈[Ŝy, Q̂xz]〉 =

i2N .
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The spinor phase shift ∆θs is done by solving the equation

i~∂t|Ψ(t)〉 = Q̂zz|Ψ(t)〉,

which is equivalent to |Ψ〉 → e−iQzz∆θs/4|Ψ〉.

2.6 Entanglement

Entanglement is a very important quality for the many-body state. Here we mainly focus

on connecting the experimental measurable quantities to the entanglement.

2.6.1 Fisher Information

The formal definition of multiparticle entanglementand can be presented via the Fisher

information

FQ =
∑
i

4λ(∆G)2
i −

∑
i 6=j

8λiλj
λi + λi

〈λi|G|λj〉,

where |λi〉 is the eigenbasis with weight λi for the input state ρin =
∑

i λi|λi〉〈λi| [27]. In

the spin-1 condensate case, G = Sx is used to calculate the maximum FQ.

2.6.2 Hellinger Distance

Hellinger Distance, also known as Euclidean distance in the space of probability ampli-

tudes, is analyzed for extraction of the Fisher information [28]. Hellinger Distance is de-

fined as

d2
H(θ) =

1

2

∑
z

[
√
Pz(θ)−

√
Pz(0)]2,

where Pz(θ) is the experimental probability distribution at angle θ. In spin-1 case, θ is the

radiofrequency rotation angle (section 3.5). The observed quadratic behavior is expected

from the Taylor expansion

d2
H(θ) =

FQ
8
θ2 +O(θ3).
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This relationship is used to extract FQ from the curvature of d2
H(θ).

2.6.3 Entanglement Breadth

In the Bloch sphere operators [29, 30], the boundary of entangled atom number is labeled

by the number k with the state

|Ψ〉 = |ψk〉⊗n ⊗ |ψp〉, (2.45)

which is a product of n (= [N/k], integer part of N/k) copies of state |ψk〉 containing k

nonseparable spin-1 particles and state |ψp〉 composed of the remaining p (= N −nk) par-

ticles. The state |ψµ〉 (µ = k, p) represents the ground state of the µ particles Hamiltonian

Hµ = (Ŝ(µ)
z )2 − λŜ(µ)

x , (2.46)

where Ŝ(µ) =
∑µ

j=1 ŝ
j . The boundary points are obtained as

〈(Ŝ2
x + Ŝ2

y〉 = n〈Ŝ(k)2
x + Ŝ(k)2

y 〉|ψk〉 + n(n− 1)〈Ŝ(k)
x 〉2|ψk〉

+ 〈Ŝ(p)2
x + Ŝ(p)2

y 〉|ψp〉 + 2n〈Ŝ(k)
x 〉|ψk〉〈Ŝ

(p)
x 〉|ψp〉

(∆Ŝx)
2 = n(∆Ŝ(k)

x )2
|ψk〉 + (∆Ŝ(p)

x )2
|ψp〉.

(2.47)

The spin-nematic sphere operators are extended based on the result here and plotted in

Figure 5.8.
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CHAPTER 3

EXPERIMENTAL APPARATUS

An all-optical approach to making condensates was first pioneered in our laboratory in 2001

[7] and provided an alternative, simple and fast approach for preparing atomic condensates.

Optical traps can provide tighter confinement for the atoms than a magnetic trap, and this

can lead to higher density and efficient, fast evaporation in the trap. Our BEC machine

consists of a simple vapor cell magneto-optical trap (MOT) [31, 32] and tightly focused

CO2 lasers. This chapter briefly describes our BEC experimental setup.

Figure 3.1: (a) An illustration of our apparatus. The optical trap is formed by a CO2 laser
(λ = 10.6 µm) in horizontal direction and a λ = 850 nm laser in vertical direction. (b)
The control of states is performed using the radiofrequency (RF) pulses and the detuned
microwaves (µwave) pulses as shown in the figure.

3.1 External Cavity Diode Laser

One advantage of working with rubidium is that one can find inexpensive, high-power

single-mode laser diodes and diode amplifier chips at 780 nm. Furthermore, the laser

linewidth can be easily reduced to below 1 MHz and locked to atomic transitions following

well-established external cavity diode laser (ECDL) techniques. The external cavity is
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formed by the internal cavity controlled by the temperature and current of laser diodes and

the external cavity formed by the grating reduces the linewidth of the laser below 1 MHz

[33]. The cavity length is controlled by a piezoelectric actuator (PZT) (150V, Thorlabs)

to change the output wavelength. The aspheric lens is used to collimate the output beam.

The proportional gain from the laser locking feedback will be input into the current of laser

diodes while the integral gain will be added to the PZT.

Figure 3.2: The laser diode is mounted in an electrostatic discharge (ESD) protection and
strain relief cables (Thorlabs SR9B). The grating is 1800 lines/mm from Edmund optics.
The 1st order diffraction is retro-reflected to the diode to form the external cavity. The
grating is aligned at a low current with the lasing beam showing the bright central oval
distribution.

The temperature controller of laser diodes uses 10 kΩ thermistors (Thorlabs) and 100

kΩ thermistors (home-built) with thermoelectric coolers (TEC) ofR = 4.27 Ω. This allows

the temperature to be stabilized to an accuracy of 3 mK level.
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3.1.1 λ = 780 nm laser: frequency stabilization and tuning

Figure 3.3: 87Rb D2 transition hyperfine structure [22, 34].

Doppler laser cooling requires the cooling lasers to be frequency stabilized to the red of

the cycling transition (F = 2 → F ′ = 3). In the experiment, the master laser frequency
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is locked to the cross over of F = 2 → F ′ = 3 and F = 2 → F ′ = 1 transitions (see

Figure 3.5), which is −211.8 MHz below the cycling transition. The master laser is locked

to a Doppler-free atomic absorption signal obtained from a standard saturated absorption

spectrum setup (satspec) as illustrated in Figure 3.4. To change the detuning of the locked

master laser, a frequency tunable acoustic optical modulator (AOM) is configured in a

double-pass configuration and the output laser beam of the AOM is then injected to lock a

slave laser. The slave laser is then inputted into a taped amplifier (TA) to solve the power-

inefficiency and then coupled into three fibers that contribute to the three orthogonal beams

for laser cooling. The typical beam waist for optimal fiber coupling is 350 µm.

Figure 3.4: The master laser is input into the output beam cube of an optical isolator with
the polarization perpendicular to the slave laser. The cat-eye structure for the double-pass
AOM is used to minimize the beam walking during the frequency change stage so that
the slave laser follows the master laser constantly [35]. The shutters (UNBLITZ) are used
together with the AOM power control to fully turn off beams.

The tunable frequency range relative to the cycling transition can be calculated as be-

low. fdetuning = [−226.6,−5] MHz = −211.8 MHz (Master lock 3,1 cross over) −160

MHz (AOM before satspec) +[127.6, 238.4] MHz (Double pass AOM range measured with

counter) −110 MHz (AOM isomet 233A-1 after TA). This detuning range allows us to
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achieve sub-Doppler cooling in the final stage of MOT.

Figure 3.5: Cycling transition spectra: the blue trace is the error signal for the master laser
and the yellow trace is the satspec for the slave laser. The master and slave laser is detuned
by [−116.5, 105] MHz which is the reason of a displacement between two traces.

Although the lasers are tuned close to the cycling transition, there is a small probability

that the atoms can be excited to the F ′ = 2 state, which can spontaneously decay to the

F = 1 ground state. Due to the large ground-state hyperfine splitting, atoms in the F = 1

states are decoupled from the cycling light. To repump these atoms, a second resonant laser

of the F = 1→ F ′ = 2 transition is added to optically pump the atoms back to the F = 2

state - this is referred to as the repump laser.

The repump laser does not need to change frequency; it is locked to the crossover of

F = 1 → F ′ = 2 and F = 1 → F ′ = 1 transitions (see Figure 3.7) and then shifted to

resonant frequency of F = 1 → F ′ = 2 transition using an AOM that also controls the

power.
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Figure 3.6: The slave laser has a flip mirror to send the light through a multi-mode fiber.
This is used to check the injection lock of the slave laser to the master laser.

Figure 3.7: Repump transition spectra: the blue trace is the error signal for the master laser
and the yellow trace is the satspec for the slave laser. The master and slave laser is not
detuned.

The experiment requires three beams of cycling laser. After existing the fiber, each

laser beam is expanded, collimated, and then circularly polarized to favor σ± transitions

(∆m = ±1) through retro-reflection. The beam power of each fiber output is an important

indicator to solve the experimental issues, which is detailed in Table 3.1. The repump beam

power is very sensitive to the small change since it’s strongly attenuated by the AOM during
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the dark MOT cooling stage.

Table 3.1: The beam power for cycling and repump lasers of each fiber output.

Fiber output Cycling TA (mW) Repump slave (mW)

MOT1 39.3 7.4

MOT2 41.2 2.1

MOT3 41.8 2.7

Steps of checking laser

1. Check the grating feedback at low current.

2. Check the wavelength with the optical spectrometer (HP 86142A) to adjust grating

to the correct angle.

3. Adjust to the current of typically used laser power, use the (infrared) IR scope to

observe fluorescence.

4. Use the satspec for fine tuning.

3.1.2 Laser lock characterization

The laser frequency is stabilized to an absorption peak using frequency modulation (FM)

spectroscopy by locking it to a zero-crossing point of the error signal using a proportional

(P) and integral (I) circuit. The setup for the FM spectroscopy using current modulation is

shown in Figure 3.8. There are also other configurations such as the AOM modulation.
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Figure 3.8: The current modulation signal from the signal generator (HP 8647A) is split
into two paths. One path is further attenuated and sent into the laser current controller for
current modulation. The other path is mixed with the high frequency (AC) part from the
detector. Thus the high-frequency signal is demodulated into the low frequency (DC) error
signal which goes into the home-built locker box. The piezo scan modulation comes from
the ramp channel. P and I channels are connected to the current modulation and piezo
modulation as a feedback loop.

The first step to check if the laser is locked is by using the wavemeter (High Finesse

WS-7L) to see if the frequency is changed before and after the lock. The more precise

measurement of the lock quality is studied below.

Fabry–Pérot interferometer [36]

The laser beam is aligned through the cavity with single-mode, which is verified by a

webcam [37]. The cavity length is scanned through the piezo which allows finding the

resonance length. Multiple beams are coupled into the same fiber so the alignment only

needs to be done once.
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Figure 3.9: Fabry–Pérot cavity (Etalon) is formed by a partially reflecting flat mirror pair.
The transmission will be maximum when λ = 2L/n, where L is the length of the cavity
and n is an integer.

Figure 3.10: The transmission of different lasers (unused AOM 0th order) is studied on the
same cavity.

The frequency width of the transmission peaks is known as the linewidth of the cavity:

∆ν/2 ≈
cπ

2LT
,

where T is the transmitted fraction. Unfortunately, the product of LT for the cavity is

only large enough for us to observe at 10 MHz resolution. As a result, we move to the

heterodyne measurement to further detect at 1 MHz stability.
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Heterodyne

The heterodyne measurement [37] involves two locked lasers to form an interferometer

[38]. One laser is side locked by the satspec without frequency modulation as the reference,

the other one is with modulation and locked by the error signal. Those two lasers are

different by center frequency thus the interference between them generates a beat note.

The linewidth of the beat note depends on the laser locking quality.

Figure 3.11: Heterodyne setup. The two lasers are maximally overlapped by coupling to
the same fiber. The flip mirror will reflect the interference into a high bandwidth (1GHz)
detector. The half-wave plate and non-polarized beam splitter are used to maximized the
interference signal by having the electromagnetic wave vectors in the same direction. The
signal out of the detector is sent into a spectrum analyzer to look at the linewidth of the
beat note.

The result from the heterodyne measurement indicates that the current modulation

needs to be strongly attenuated to have a narrow linewidth lock, while the error signal

gets smaller at the same time.

As discussed earlier, if the FM spectroscopy is done by modulating the AOM, the mod-

ulation strength will play a significantly less role.

3.1.3 λ = 850 nm laser

In order to create the tightly confined optical dipole trap to confine the condensate smaller

than the spin-healing length, a laser with a wavelength of 850 nm is applied in the vertical
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direction during the last stage of the experiment. The light is in the regime of the far-off-

resonant trap and the power is controlled by the AOM. There is no need to lock the laser

frequency in this case.

Figure 3.12: The λ = 850 nm laser light is fiber-coupled to a fixed focus setup aligned as a
cross with the main trapping beam. This beam requires delicate alignment since its 40 µm
waist must intersect the 20 µm waist of the main dipole trapping beam.

3.2 Vacuum systems

The experiments are performed inside of an ultra-high vacuum (UHV) chamber of an oc-

tagonal design from Kimball physics. The chamber has two large glass windows on 6”

flanges and five smaller glass windows on 2.75” ports. These glass windows are all broad-

band anti-reflection coated for the near-infra-red wavelengths. There are two zinc selenide

(ZnSe) 2.75” windows to pass the 10.6 µm of the main optical trapping laser. On the final

2.75” port there is a connection to the dispenser feed-through and vacuum pumps which

has another glass window on the far side of the apparatus.
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Figure 3.13: Diagram of the experimental setup. An ion pump and a titanium sublimation
(Ti-sub) pump are used to maintain the chamber at UHV pressure. The detail of the optical
components inside the chamber is discussed in section 3.4 and section 3.7.

3.2.1 Dispenser

The source of rubidium comes from dispensers (SAES) mounted on an electrical feed-

through. The electrical feed-through is used to run current (between 4.5 A and 7.5 A)

through the dispenser which heats them (500 C◦) causing the release of rubidium into the

chamber. Also, the rubidium already in the chamber is recycled by using light intensity

assisted de-adsorption which is accomplished by shining bright blue (455 nm wavelength)

LEDs onto the windows of the chamber.
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Figure 3.14: The dispenser control circuit. The current amplitude passing through the dis-
penser is remotely controlled and the switch of dispenser current and blue LEDs are corre-
lated by a solid-state relay. The switch-off is important during the experimental sequence
since the dispenser itself generates a non-negligible magnetic field.

3.2.2 Water cooling

Water cooling is essential to the apparatus to avoid overheating and potential fire hazards.

The high-power coils used to generate magnetic gradients are cooled by room-temperature

water while the CO2 laser components and microwave amplifiers are cooled by chilled

water. To prevent incorrect steps of operation, a couple of in-line flow switches (Gems

FS-380P) are installed and connected to the interlocks of devices.

Table 3.2: Water-cooled devices. The tap water requires a regularly changed filter to be
used as a cooling source. The Chiller (HASKRIS WW2) input pressure is 35 psi and the
output pressure is 30 psi. The temperature is set to 17 C◦. The tank is filled with a 10% so-
lution of laboratory-grade (99%) propylene glycol with distilled water to prevent biological
growth. The detail about each components is discussed in section 3.3 and section 3.4.

Method Tap water Chiller water

Application MOT and SG coils CO2 laser, AOM, beam blocker, microwave amplifier

pressure (psi) 70 30
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3.2.3 Air control

The high-pressure (70 psi) air is used to float the optical table and control pneumatic de-

vices. The aperture (Clippard SSR-05-4, PQ-CC08N, EV-3-6VDC) for imaging is con-

trolled by the airflow. The purpose of pneumatic devices is stated in section 3.7.

3.3 Magnetic Coils

Several sets of magnetic coils are employed to control the magnetic field and field gradi-

ent in the experiment. The MOT coils (anti-Helmholtz) are used to provide a gradient to

trap atoms at the beginning of experiments. In addition to the MOT coils, there are three

orthogonal pairs of Helmholtz coils (trim coils) used to cancel the Earth’s magnetic field

and other stray magnetic fields. However, since the coils are not all in perfect Helmholtz

configuration due to the geometry and relative position change of condensates, the field

produced by the trim coils is not necessarily uniform. A pair of weaker anti-Helmholtz

coils (Aux coils) is used to add or compensate a field gradient along the horizontal trap (z)

direction. This pair of Aux coils proved to be important in our spinor studies. During the

imaging and the state preparation process, Stern-Gerlach (SG) coils are used to purify the

spin component of the condensate and spatially separate spin components.
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Figure 3.15: The layout of the magnetic coils (top view).

3.3.1 Trim coils

The polynomial expansion for the field of Helmholtz coils at the origin is [39]

Bz = B0 + az2 + · · · ,

where

B0 = n
µ0IR

2

(R2 + A2)3/2
(3.1)

a = n
3(4A2 −R2)

2(R2 + A2)2
B0. (3.2)

R is the coil radius, A is half of the spacing of the coils, and n is the number of turns. For

optimum uniformity, the spacing of the coils must be equal to the radius R = 2A. The

dimension of the trim coils in the experiments is stated in Table 3.3.
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Table 3.3: The geometry of the trim coils. The calculated B0/I agrees with the experimen-
tal (Exp) measured result through the radiofrequency spectrum of BECs.

Trim X (imaging axis) Trim Y (vertical axis) Trim Z (CO2 axis)

Power supply Newport 525 Newport 5060 The boss bipolar 20-20-1

R (”) 1.35 3 1.75

A (”) 3 2.5 7

n 15 15 90

B0/I (mG/A) 379.88 1121.51 363.00

Exp (mG/A) 301.89 1178.63 298.40

a/B0 (1/cm2) 0.0678 0.0160 0.0165

The field zeroing is important to the spinor experiments since the magnetic field deter-

mines the quadratic Zeeman energy which competes with the spin-spin collision term. The

number of points of field measurements can be reduced to 7 points to calibrate the field

accurately. The trim coil current is controlled by the voltage from the computer, the field

measured in the Larmor precession frequency will be fitted to the model:

f = 70.24( kHz/100 mG) ·

√
(
Vx − Vx0

Vxprop
)2 + (

Vy − Vy0

Vyprop
)2 + (

Vz − Vz0
Vzprop

)2,

where Vi0 is the zero-field voltage and Viprop is the linear coefficient between voltage and

field. If the microwave transition is used to measure the field, the coefficient needs to be

changed from 70.24 into 69.96 ( kHz/100 mG).

3.3.2 Gradient coils

The magnetic field gradient is provided by a pair of anti-Helmholtz coils. Near the center

of between coils, the field can be expanded into polynomial series of z [39],

Bz(z) = bz + cz3 + · · · ,
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where

b =
µ0IR

2

2

6A

(A2 +R2)5/2
(3.3)

c =
5(4A2 − 3R2)

6(A2 +R2)2
b. (3.4)

The gradient in all three directions generated by the anti-Helmholtz coils are related by

Gauss’s law for magnetism:

∂Bx

∂x
=
∂By

∂y
= −1

2

∂Bz

∂z
.

Table 3.4: The geometry of the gradient coils. MOT coils and SG coils use a large current
to generate sufficient gradients that are required. As a result, they are water-cooled to
avoid being overheated. For MOT coils, we also use 1/4” copper tubing for tap water
cooling, the resistance R = Rcoil + Rleads = 20 + 6.7 = 26.7 mΩ. The total power cost is
P = 600 W. For SG coils, we use 1/4” copper tubing for tap water cooling, The resistance
is R = Rcoil + Rleads + RIGBT + Rshunt = 28 + 1.5 + 11 + 0.5 = 41 mΩ. Aux coils are
used to zero the gradient during the spin mixing dynamics.

Aux Gradient (CO2 axis) MOT (vertical axis) SG (CO2 axis)

Power supply Newport 525 EMS ESS 15-1000-2

I (A) 1.025 112.6 300

R (”) 1.35 3.25 1.5

A (”) 4 2.5 4.5

n 9 9 21

∂Bz/∂z (mG/cm) 29.3 13491.8 15521.83

∂Bx/∂x (mG/cm) 14.7 6745.9 7760.9

Aux coils calibration

Empirically, we have found that in order to observe well-characterized spin dynamical

evolution, it is necessary to zero the magnetic field gradient along the z axis (CO2 laser
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axis). To measure the gradient, we perform magnetic field measurements using the con-

densate carefully translated to different z positions. The cloud is displaced spatially by

changing the lens mover position, which will change the focus point of the CO2 laser (see

section 3.4). The range of translation is 150 µm measured via absorption imaging.

Figure 3.16: The spatial movement of BECs. By changing the final moving distance of
the lens mover, the optical trap focus position is changed accordingly which is measured
precisely using the absorption imaging method.

At each spatial location, an RF spectroscopy is performed to measure the local z direc-

tion magnetic field.

38



Figure 3.17: Local Bz is measured for the condensate carefully translated to different z
positions and ∂Bz/∂z is determined through a linear fit to the data. The estimated error of
the magnetic field from RF spectroscopy is smaller than the size of markers.

The magnetic field gradient is measured at different Aux coil currents. By linear inter-

polating the data, a zero gradient point can be found within 10 mG/cm precision.

Figure 3.18: Measurement of ∂Bz/∂z versus the current I in Aux coils. We use those coils
to cancel the ambient gradient to < 10 mG/cm.

Another way to see the effect of the gradient is to look at the geometric shapes of

mF = ±1 atoms after holding the condensate inside the trap for a relatively long time (200

ms). This method does not have a very quantitative indication of the zero gradients so it is

not the major method used in this thesis.
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Figure 3.19: An RF rotation is done to have an equal population of atoms in all three
Zeeman components. If the existing gradient is in opposition to the direction of the SG
gradient, then the ±1 atoms will have the partial lunar eclipse structure facing inward.
When the gradient direction is the same as the SG gradient, the shape faces outward. At
zero gradient, domains will be observed.

3.3.3 IGBT circuits

The SG coils are connected with an insulated-gate bipolar transistor (IGBT) for fast switch-

ing on and off. The entire circuit is redesigned compared to the previous version for better
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protection of the newly purchased power supply (TDK-Lambda 20-500) and faster turning

off time. The maximum power setting is in constant voltage mode with V = 20V and

I = 460A. The switching on time is about 1 to 2 ms and the switching off time is about 1

ms at the max power setting.

Figure 3.20: IGBT circuit. The ground is connected next to the shunt resistor so that the
current passing through the coils can be directly measured using the voltage across the
shunt resistor. Another way to measure the current is to use the inductive probe. The main
component that absorbs the current from immediately switching off is the varistor, which
requires a monthly replacement.
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Figure 3.21: The input switch signal from the computer passes an inverting buffer circuit
to control the IGBT on and off.

3.4 Optical dipole trap

The key to reaching Bose condensation in an all-optical dipole trap (ODT) is efficient load-

ing in a tight confining potential for subsequent evaporative cooling. The tight confinement

in the optical trap can lead to high densities and high collision rates, however, the tight con-

finement will also cause a small trap volume. Therefore, a large trap volume is desired for

creating larger stable condensates. As a result, a motorized translation stage (lens mover)

is implemented into the optical path to achieve the large trap volume at the beginning of the

experiment and a high density at the last stage of the experiment as shown in Figure 3.22.
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Figure 3.22: The CO2 laser we are using is Coherent CX-10L 10.6 laser system with RF
module assembly. For this model, we only need to connect it to a DC power supply. The
mirror we are using is Si/Ge total reflector d = 1.5′′ and t = 0.160′′ from II-VI company.
The beam splitter/combiner and lens are made with ZeSe. The IntraAction AOM has the
following specs: G=germanium, 40=40 MHz, 10=10 mm aperture, 1=10.6 µm coating. A
165 W optical power with a 7 mm optical beam diameter (3.5 mm beam waist) works for
the AOM. From the Diamond laser manual, a 7 mm beam diameter is at about 80 cm from
the laser (7.5 mrad 1/e2 full angle divergence). In the experimental setup, the important
distance is laser head to AOM 34.5”=87.63 cm, laser head to lens mover 94”=238.76 cm,
and lens mover to chamber 52”=132.08 cm. The helium-neon (HeNe) laser is used to assist
the alignment of the CO2 laser.

There is a power loss for the CO2 laser after each optical component, Table 3.5 is shown

for future reference.

Table 3.5: Power loss for the CO2 laser at the maximum power.

Location Power (W)

Before AOM 165

After AOM, RF off 145

After AOM, RF on, 1st order 120

After lens mover 118

After chamber 95

The laser power control is done by the RF power of the AOM. The initial RF signal
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(40 MHz, -17.4 dBm) is preamplified by ZFL-100GH (30 dB), where this preamplification

can be voltage-controlled by a computer. A switch (ZYSWA-2-50DR) is added afterward

before going to a 39 dB amplifier (LZY-1). The resonance of the AOM is at 40 MHz. The

sensitivity of RF frequency versus first-order diffraction power is plotted below.

Figure 3.23: The 1st order of diffraction power after AOM as a function of the RF fre-
quency.

The power of the CO2 laser is calibrated after the AOM using different detectors (Meletron

PM150, etc) for different power regimes and fitted with polynomials as listed in Table 3.6

and Table 3.7.

The lens mover is used to change the beam waist of the beam entering the chamber.

Here the origin of the position is based on the label on the translation stage (ESP300)

which is a relative 0. The beam waist is measured by a graphite razor blade while the CO2

laser is operated at low power.
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Table 3.6: CO2 laser power calibration table 1.

AOM control voltage (V) CO2 laser power first order (W)
300 W range, 150W detector

0 122.1
0.1 121.5
0.2 118.8
0.3 118.8
0.4 117.9
0.5 113.1
0.6 104.76
0.7 92.13
0.8 76.86

100W range
0.85 69.3
0.9 60.8

0.95 52
1 44

1.05 36.9
1.1 30.52

1.15 25
1.2 20.32

1.25 16.49
30W range

1.3 13.26
1.35 10.62
1.4 8.451

1.45 6.774
1.5 5.37

10W range
1.55 4.26
1.6 3.3383

1.65 2.7
1.7 2.186

1.75 1.77
1.8 1.45

3W range
1.85 1.176
1.9 0.975

1.95 0.813
2 0.681

2.05 0.5685
2.1 0.4926

45



Table 3.7: CO2 laser power calibration table 2.

AOM control voltage (V) CO2 laser power first order (W)
1W range

2.15 0.398
2.2 0.32
2.3 0.23
2.4 0.179
2.5 0.14

300mW range
2.6 0.0972
2.7 0.081

100mW range 3W detector
2.8 0.059
2.9 0.047
3 0.0379

3.1 0.0312
3.2 0.0258
3.3 0.0215
3.4 0.0181

Figure 3.24: The beam waist of the CO2 laser entering the chamber as a function of the
distance between the two lenses controlled by the lens mover. Using this measurement, the
beam waist of the focused Gaussian beam inside the chamber can be estimated [40].

We begin by collecting up to 15 M cold atoms in a simple vapor cell 87Rb MOT, which

is overlapped with a large volume single focus trap. Up to 4 M atoms are loaded into the

optical trap. Once the atoms are loaded into the trap, the effectiveness of the evaporative

cooling is determined by the ratio of elastic collision within trapped atoms versus other bad
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collisions with untrapped background residual gas molecules. It is therefore important to

achieve a high elastic collision rate in a short time. In order to accomplish that, the trap is

compressed immediately after loading. The lens mover is programmed with the following

parameters in Table 3.8 and takes T = 1.0417 s to finish the entire ramp. The input beam

waistwin is modeled as a function of time based on the linear fit from Figure 3.24 as plotted

in Figure 3.25.

Table 3.8: The controlling parameters for the lens mover.

Start time 400 ms

Start position 0mm

Acceleration 40 mm/s2

Deceleration 40 mm/s2

Velocity 15mm/s

Travel for 10mm

The waist of the focus point is related to the input beam waist bywmin = λdipolef/(πwin).

Here f is the focus of the lens. The maximum intensity of a Gaussian beam is a function of

both power P and wmin: Imax = 2P
πw2

min
. The CO2 power ramp is a piece-wise linear func-

tion. The Rayleigh range, low trap frequency, high trap frequency and mean trap frequency

are defined as zr =
πw2

0

λ
, ωL =

√
2U0

mz2r
, ωH =

√
4U0

mw2
0
, and ω̄ = (ωLω

2
H)1/3 accordingly [40].

The trap potential is calculated by

U(r) = −3πc2

2ω3
0

Γ

∆
I(r),

where |∆| = |ω − ω0| is the detuning. ω and ω0 are the angular frequency of the dipole

trap laser and the cycling laser. The potential is converted into temperature units using

U = kBT by assuming it is a 2D harmonic trap. The elastic two-body collision rate is

computed as γel = N(8
√

2a
2m
πkB

) ω̄
3

T
, where a = 100.4a0.
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Figure 3.25: Dipole trap parameters as a function of time.
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To simultaneously force evaporation, the laser power is ramped down during the com-

pression. A typical chosen ramp of laser power is shown in Figure 3.26 along with the

temperature and atom number measured at each power step using fluorescence imaging

and absorption imaging.

Figure 3.26: The temperature and atom number are measured at each CO2 laser power
step. The length of each power ramp step is optimized to achieve high atom number and
low temperature. The last couple of steps is optimized by the condensate fraction. There
is a discrepancy in the atom number measured by the fluorescence (flr) imaging and the
absorption imaging (abs) but the temperature measurement agrees with each other. The
atom number is the max during the time of flight (TOF) and the temperature is measured
with 0.1 to 5 ms TOF (see subsection 3.8.1).

Steps of checking CO2 laser

1. Check the AOM RF source is turned on.
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2. Check switch power + pre-amplifier power supply is turned on. The pre-amplifier is

sensitive to the supply voltage change.

3. Check the chiller to see if water is still running.

3.5 Radiofrequency systems

Whereas the lasers primarily interact with the electric dipole moment of the valence elec-

tron, oscillating magnetic fields can be used to interact with the magnetic dipole moment

of the valence electron and to a much lesser extent with the nuclear magnetic moment. The

radiofrequency (RF) pulses transfer atoms between Zeeman sub-levels of given hyperfine

states. Atoms are coupled by a simple coil placed on top of the chamber centered on the

large window. A new RF coil is made with a larger diameter to reduce the interference with

the microwave antenna.

Table 3.9: RF coil diameter d and the number of turns for both the old coil and the new
coil.

Old coil New coil

d = 3”, 9 turns d = 5”, 20 turns

The RF coil is directly driven by the Sigelent function generator which is controlled by

the pulse generator to switch on for precision of µs using its built-in function. The typically

required frequency varies with the magnetic field but is around 100 kHz order. The voltage

across the resistor is used as a method to measure the current across the coil. The previous

version of the RF system has a switch and a capacitor in the circuit. The reason to get away

from the switch is that it clamps the pulse at high voltage input. The capacitor is no longer

needed because we do not need the extra resonant LC circuit to achieve enough power for

the RF operation.
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Figure 3.27: The circuit of the RF system. A 47 Ω resistor in the circuit is for the 50 Ω
impedance matching.

For the RF transitions, we will look at the simple three-level system in the F = 1

manifold. The initial Hamiltonian is:

H0 = ~


−∆ + δ 0 0

0 0 0

0 0 ∆ + δ

 , (3.5)

where ∆ is the linear Zeeman shift and δ is the quadratic Zeeman shift. RF transitions

only occur through the transverse component and so the perturbing Hamiltonian is the Bx

portion of the oscillating magnetic field:

HB = ~Ω cos(ωBt)
1√
2


0 1 0

1 0 1

0 1 0

 , (3.6)

where Ω is the strength of the field and ωB is the frequency of the oscillating magnetic field.

Under the interaction picture,

H ′B = ~Ω cos(ωBt)
1√
2


0 ei(−∆+δ) 0

e−i(−∆+δ) 0 e−i(∆+δ)

0 ei(∆+δ) 0

 . (3.7)
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If we expand the cosine and make the rotating wave approximation (RWA)

H ′B ≈ ~Ω
1√
2


0 eiδ+t 0

e−iδ+t 0 e−iδ−t

0 eiδ−t 0

 , (3.8)

where δ± = ωB − ∆ ± δ. In the case that the quadratic Zeeman energy can be neglected

(δ = 0) and no detuning ωB = ∆, the solution of the Schrödinger equation is [24]

ψ(t) =


1
2
(1 + cos(Ωt)) i√

2
sin(Ωt) −1

2
(1− cos(Ωt)

i
2

sin(Ωt) cos(Ωt) i
2

sin(Ωt)

−1
2
(1− cos(Ωt) i√

2
sin(Ωt) 1

2
(1 + cos(Ωt))

ψ(0). (3.9)

With the initial population of atom all in |F = 1,mF = 0〉 (ρ0 = N0/N = 1), a

resonant RF pulse will transfer all atoms from |mF = 0〉 to |mF = ±1〉 as shown in

Figure 3.28. The data is fitted by

ρ0(t) = A(cos(2πt/T + φ))2 + b

to extract the Rabi rate T .
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Figure 3.28: RF Rabi. The on-resonance RF pulse transfer all atoms from |mF = 0〉 to
|mF = ±1〉 at π/2 period. After π period, all atoms are transferred back to |mF = 0〉.
Here ρ0,±1 = N0,±1/N .

To detect the resonant transition frequency, the interaction time is held at the estimated

π pulse time and a frequency scan is performed. If the field is carefully calibrated, then

the resonance is around f = 702.4 Hz/mG · B. In reality, the resonance is measured to

calibrate the field. The resonance is measured by fitting the data with

ρ0(f) = [1− Ω2

Ω2 + (f0 − f)2
(1− cos(T

√
Ω2 − (f0 − f)2))] + b,

where Ω is the strength of the field and T is the pulse length.
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Figure 3.29: RF spectrum. The pulse length uses the estimated π period to determine the
resonance. The spectrum and the Rabi rate may need to be iterated alternatively to get the
precise result.

3.6 Microwave system

A microwave transition transfers atoms between sub-levels of the hyperfine structure of

F = 1 and F = 2. The microwave transition can be approximated as a 2-level system,

for instance, the microwave transition between |F = 1,mF = 0〉 and |F = 2,mF = 0〉,

which shifts the spinor phase of the condensate quantum states. Moreover, the microwave

spectroscopy of ±∆ transition can be used to measure the magnetic field.
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Figure 3.30: The circuit of the microwave system. The microwave system no longer uses
the switch to further simplify the circuit. The turning on/off is controlled by the internal
function of SRS SG384. Because the internal switch only works for the 2 to 4 GHz range
(SRS SG384 is capable of generating up to 8 GHz wave), a frequency doubler needs to be
in place. The circulator works as an isolator while at the same time monitoring the power
reflected from the amplifier. The microwave source needs to be locked by the remote
clock from GPS 10 MHz sources. The extra relay setup is for the safety of the high-power
amplifier. The amplifier will not be powered until the required −5 V is on. All cables and
components have their own insertion loss, the power measured with the spectrometer is
around 37 dBm out of the amplifier and close to saturation.

Here we will solve the two-level system between the states |F = 1,mF = 0〉 and |F =

2,mF = 0〉 as a general example of the microwave transitions. The initial unperturbed

Hamiltonian is

H0 = ~

ω1 0

0 ω0

 , (3.10)

where ω1 − ω0 = ωhfs. ωhfs is the 6.8 GHz hyperfine splitting. B is assumed in the z

direction for simplicity and the interaction picture is used

H ′B = eiH0t/~HBe
−iH0t/~ = ~Ω cosωBt

 0 −ei(ω1−ω0)t

−ei(ω0−ω1)t 0

 . (3.11)
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Expanding the cosine into exponential and making the RWA give

H ′B ≈ ~
Ω

2

 0 −eiδt

−e−iδt 0

 . (3.12)

A second interaction picture transfers the Hamiltonian into a static matrix:

H ′′B = e
iH′0t
~ H ′Be

−iH′0t
~ = −~Ω

2

0 1

1 0

 , (3.13)

where

H ′0 = ~

− δ
2

0

0 δ
2

 . (3.14)

By applying the Euler formula of Pauli matrix exponential eiα(~n·~σ) = cosα+ i(~n · ~σ) sinα,

the solution of the Schödinger equation gives

ψ′ =e−iH
′
0/~te−i(H

′′
B−H

′
0)t/~ψ′(0)

=eiδσzt/2ei(Ωσx−δσz)t/2ψ′(0)

=eiδσzt/2[cos(α) + i sin(α))(~n · ~σ)]ψ′(0),

(3.15)

where α =
√

Ω2 + δ2t/2, ~n = (Ω/
√

Ω2 + δ2, 0,−δ/
√

Ω2 + δ2). With the initial popula-

tion in the |F = 1,mF = 0〉 state, the solution becomes

ψ1,0 = (cos(α) + i sin(α)
δ√

Ω2 + δ2
)e−iδt/2.

For a π rotation, t = 2π/
√

Ω2 + δ2 and the phase shift is ∆θ1,0 = −(1 + δ√
Ω2+δ2

)π.

Experimentally, the parameter we measured is the Rabi rate T from the fitting to the

resonant clock transition in Figure 3.31. The relative parameters can be calculated based

56



on Ω = 2/T (in Hz unit), ∆θs = −2∆θ1,0,

δ =
Ω√

1− (−θs/2π − 1)2
(− θs

2π
− 1), (3.16)

and the new Rabi rate T (δ) = 2/
√

Ω2 + δ2.

Figure 3.31: Microwave clock transition Rabi rate |F = 1,mF = 0〉 ↔ |F = 2,mF = 0〉.
The repump laser needs to be off for the clock transition. The absolute atom number is
used instead of the relative atom number to show the population in |F = 2,mF = 0〉.

To be able to shift the spinor phase θs precisely, the quadratic Zeeman effect needs to be

accounted for. The hyperfine splitting is calculated using the Breit-Rabi formula [22]. The

clock transition between |F = 1,mF = 0〉 and |F = 2,mF = 0〉 has the energy difference

∆E = E20 − E10 ≈ Ehfs +
1

2

(gJµB)2

Ehfs
B2

= 6834682610.9 Hz + 572.8 Hz/G2 ·B2.

(3.17)

The resonance of the clock transition needs to be adjusted depending on the magnetic field

B.
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Figure 3.32: Microwave clock transition spectrum. The horizontal axis is the detuning from
the clock transition 6.8 GHz plus the quadratic Zeeman shift correction (q = 72 Hz/G2) at
Bz =550 mG.

There is a way to verify the spinor phase θs shift besides doing the noise measurement.

By observing the coherent oscillation (subsection 3.8.8) and measuring the phase shift from

the sinusoidal fitting model, the phase difference measured agrees with Equation 3.16, as

shown in Figure 3.33.

Figure 3.33: The spinor phase shift measured with the coherent oscillation.

As discussed earlier, the magnetic field B can be determined by measuring the fre-

quency difference between the +∆ transition from |F = 1,mF = 0〉 ↔ |F = 2,mF = 1〉,

which uses the circularly polarized portion from the microwave.
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Figure 3.34: Microwave +∆ transition atBz =200 mG. The repump laser can be on during
the measurement since the SG separates the levels that are involved. The horizontal axis is
the detuning from the clock resonance.

3.7 Imaging

The atomic cloud is measured using either fluorescence or absorption imaging techniques.

There are three imaging systems that view from the side and the top of the trap. A 1:4

imaging system is used to view from the side and the image is recorded by a surveillance

charge-coupled device (CCD) camera (Andor iKon M). This is the major imaging system

for the data taken in this thesis due to its high numerical aperture (NA=0.52) with the 26

mm aspheric lens (AL3026-B) inside the chamber. A 3:1 imaging system (iXon) is used to

view from the top, which is used to measure the overlap between ODT and dark MOT in

the horizontal plane.
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Figure 3.35: The 150 mm lens before the FLIR camera (BFS-U3-16S2) is 2′′ in diameter.
The other lens are 1′′ in diameter. For the FLIR camera, o = 15′′ and i = 9.73′′.

A 2:1 imaging system (FLIR) is used to view from the side, which is used to constantly

monitor the MOT atom number and to measure the overlap between ODT and dark MOT in

the vertical plane. For fluorescence probing, we pulse on two near-resonant MOT beams at

the maximum power for 200 µs. The average intensity 7.9 mW/cm2 is above the saturation

intensity. To avoid the non-fluorescent light scattering into the imaging path, two pneumatic

apertures (see subsection 3.2.3) are added to trim the beam size.
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Figure 3.36: The 500 mm lens and 150 mm lens before the iXon camera (Top camera) are
2′′ in diameter.

For absorption imaging, a horizontal and weak probe laser beam is sent through the

trapped atoms and directed through the imaging optics to the cooled (-40 ◦C) CCD camera.

This beam is roughly aligned through the center of two view ports and then fine-tuned with

micrometers. To image the atoms in the F = 1 state, the repump laser is also pulsed during

imaging. The F = 2 atoms can be imaged by leaving the repump beam off.

Table 3.10: The iKon camera is half blocked for faster electron transfer so the active pixels
is only half of the whole frame. There is an extra 780 nm line filter before the iKon camera
which provide the extra 77% attenuation to the CPA. The FLIR camera collects half of the
light due to the PBS so the CPA has an attenuation of 50%.

iKon iKon iXon FLIR

Imaging type absorption fluorescence fluorescence fluorescence

Pixel size (µm2) 13× 13 16× 16 3.45× 3.45

Active pixels 512× 1024 512× 512 1440× 1080

Magnification 3.8462 0.3 0.65

Quantum efficiency 90% 70% 30%

κ 1 23 1

Ω 0.0676 0.000645 0.0011

CPA · 200 µs (counts/atom) 0.025 178.5 0.0748 0.63

The magnification is calculated by M = i/o. The counts per atom per time (CPA/τ )
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for fluorescence imaging is calculated by the following

CPA/τ =
npix
Nτ

=
γpΩη

κ
,

where Ω = (D/2)2/(4f 2) is the solid angle divided by 4π, γp = π · 6.065 MHz is the

saturated on-resonance photon scattering rate for D2 line [22], η is the quantum efficiency,

κ is the electron to camera count conversion rate (1/gain), and τ is the exposure time. The

numerical aperture (NA) is connected by Ω = (NA)2/4.

With a cloud probed absorptively, the number of atoms is given by

N =
−Apix
σeg

∑
pix

lnTpix,

where Apix is the magnified area of each pixel, σeg = 2.907 × 10−9 cm2 is the absorption

cross section of the σ±-polarized cycling transition [22], and Tpix is the transmission pro-

file. The transmission profile is calculated by dividing the image with condensate cloud

shadow by the image without the shadow. If we assume the counts from the camera is

− lnTpix, then the CPA for absorption imaging is

CPA =
σeg
Apix

.

3.8 Experimental sequence

The experimental sequence begins with loading the MOT for 15 s directly from thermal

vapor. The magnetic field and gradient are optimized for max atom loading. After loading

the MOT, the cooling configuration is changed to achieve sub-Doppler cooling (dark MOT)

in order to maximize the transfer of atoms to the optical trap. The repump intensity is

lowered and the MOT beam is first detuned by −93 MHz then further detuned by −182

MHz. The MOT coil gradient is turned off during the second detuning. After holding for

62



40 ms, all the beams are turned off. The dark MOT has the lowest temperature at 0 bais

field, so the MOT coils’ spatial center is adjusted to match the best location of the dipole

trap. A finer adjustment is by changing the trim coil field to maximize the loading into the

ODT. The CO2 laser beam is turned on after the MOT loading.

Figure 3.37: Basic experimental sequence.

Now with the ODT loaded, all resonant laser light is extinguished and evaporative cool-

ing begins. Evaporation is accomplished in two ways. Foremost the trap power is simply
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lowered adiabatically allowing the hotter atoms to escape. At the same time, the geome-

try of the trap is changed to maintain the radial trap frequency and re-thermalization rate

(section 3.4). During evaporation, we typically apply magnetic bias and gradient to create

a mF = 0 condensate. This pulls the mF = ±1 towards more weakly trapped regions

causing them to be lost preferentially. After the gradient is ramped down, the 850 nm laser

is ramped up to confine the condensate satisfying the single-mode approximation. For the

typical experiment, we prepare a condensate ofN = 5×104 atoms in a cross optical dipole

trap and in a B0 = 1.1 G magnetic bias field. After the dynamical evolution of the spin

states, the microwaves and RF pulses are used to rotate the state for measurement purposes.

At this point, all trapping lasers are shut off and the atoms are allowed to fall and expand

for 5-20 ms. During this time of flight (TOF) a magnetic gradient is turned on again to

spatially separate the final mF projections. At the end of this expansion, beams are turned

on for the imaging (section 3.7).

Steps of checking BEC

1. Check the MOT atom number.

2. Check the slave cycling laser is following the master during the dark MOT detuning.

3. Scan the repump power during dark MOT.

4. Check the overlap between ODT and dark MOT.

3.8.1 Time of flight measurement

The time of flight (TOF) for MOT, dark MOT, dipole trap loading are measured with the

top camera and the FLIR camera.
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Table 3.11: Atom number and temperature measurement for each experimental stage.

MOT Dark MOT Dipole trap loading

Atom number (106) 15 12 4

Temperature (µK) 74 18

Density (109/cm3) 5 4

The temperature of the thermal atoms can be determined by measuring the momentum

distribution of the cloud. When a cloud is released from the trap, the momentum distribu-

tion of the atoms will be converted to a spatial density distribution. By collapsing a cloud

image to a 1D profile as shown in Figure 3.38, the Gaussian waist σ can be found with a

fitting. With the measured Gaussian waist, the temperature can be readily found as

T =
m

kB
(
σ

t
)2.

In addition, one can also measure the cloud size for various drop times, and then fit the

cloud expansion rate with a quadratic equation: σ2 = σ2
0 + kBT

m
t2 [40].
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Figure 3.38: TOF measurement for MOT. The temperature is measured by fitting to the 1D
Gaussian waist for different drop time.

The dipole trap loading is measured with both the top camera and the FLIR camera.

The atom number is measured with a long enough TOF (50 ms) to release all the atoms

from dark MOT that are not trapped. The location of the dipole trap in three-dimension can

be easily overlapped with dark MOT using images from two orthogonal directions.
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Figure 3.39: Dark MOT and ODT overlap measured with the top and FLIR camera.

3.8.2 BEC temperature and condensate fraction

When the temperature is very close to the critical temperature of a quantum phase transi-

tion, the properties of a cloud will deviate from that of a classical gas, and the treatments

in the last subsection based on Boltzmann statistics are insufficient. In this temperature

regime, image analysis based on Bose statistics is necessary. For T < Tc, the cloud has

both a thermal gas and condensate component. As a result, we fit the absorption image

with bimodal formula

n = Ag2(e−
x2+y2

2σ2 ) +Bmax(1− x2

R2
x

− y2

R2
y

, 0)3/2,

where A, σ, B, Rx,y are free fitting parameters [40].
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Figure 3.40: Bimodal fit to condensates. The Bose part gives the count of condensate
fraction while the enBose part gives the thermal fraction. The condensate fraction is higher
at lower CO2 power.

3.8.3 RF calibration

The atom detection is calibrated using a coherent RF π/2 rotation to measure the standard

quantum limit (SQL) [10]. The calibration is performed at the same final magnetic field

as the squeezing measurements 4 ms after a fast quench to minimize spin evolution [11].

The quantum projection noise σ2
QPN = ∆M2 − σ2

PSN − σ2
bkg is extracted by subtracting

the photon shot noise σ2
PSN and the background imaging noise σ2

bkg from the measured

magnetization variance ∆M2 [10]. The uncertainty of σ2
QPN is given by std(σ2

QPN) =

σ2
QPN

√
2

Ns−1
, where Ns is the number of measurements. The photon shot noise σ2

PSN =

Ne = N/(CPA/4), where Ne is the number of electrons. The extra factor of 4 comes from

the super-pixels by combing the electrons of multiple (adjacent) pixels into a large bin [41].

A 4 by 4 binning is used in the fluorescence imaging readout which means the readout noise

will be reduced by a factor of
√

16 = 4 at the expense of the spatial information provided

by the separate 16 pixels.
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Figure 3.41: The atom detection is calibrated to measure the SQL. The calibration is per-
formed t = 4 ms after a fast quench to minimize spin evolution at the same final magnetic
field. Theoretical prediction gives 0.87 dB (±1 dB) anti-squeezing. The count per atom
with 200 µs exposure time is 157.9 counts/atom which is close to the estimated value in
section 3.7.

3.8.4 Spin mixing

When q < 2|c|, the system starts to show the spin mixing phenomenon [8]. The measure-

ment is performed after a fast quench to the magnetic field below the critical point. The

mean value of ρ0 population shows the dynamical evolution suggest correlated pairs of

atoms in mF = ±1 are generated due to the dominance of spin-spin collision energy. The

behavior can be understood from the energy contour given by Equation 2.31.
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Figure 3.42: Spin dynamical evolution (spin-mixing) at Bz = 250 mG, 10 shots for each
point. Correlated pairs of mF = ±1 are generated, similar to the optical four-wave mixing.
The data agree with the mean-field simulation prediction only with a precisely canceled
∂Bz/∂z (red circles).

3.8.5 Number squeezing

Spin-mixing in Figure 3.42 generates correlated pairs of atoms in mF = ±1 that exhibit

number squeezing in the magnetization M = N+1 − N−1, similar to optical four-wave

mixing. The fluctuations in magnetization at the same dynamic evolution time (t=165 ms)

shows sub-Poissonian fluctuations. We therefore repeat the experiment 1000 times and ac-

quire data sets for different degrees of spin mixing [41]. In Figure 3.43, M is plotted versus

the number of atoms N± = N+1 + N−1. To quantify how much the magnetic fluctuations

are suppressed in comparison with a Poissonian distribution, we define a number squeezing

parameter ξ2
Sz

= (∆M)2/N± (see Figure 3.43). With the detection noise corrected, we see

a suppression of the magnetic fluctuations by up to−7 dB which sets up the detection limit

[10].
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Figure 3.43: The experiment is repeated 1000 times at 165 ms after the rapid quench, which
is the lowest ρ0 point during the dynamic evolution. This data is then binned into bins with
a width of ∆N± = 2000 atoms such that each data set contains a sufficiently large number
of data points (around 100) to determine the fluctuations of the magnetization. There is
a slight imbalance in the counting of N+ and N− atoms, which comes from the small
beam used in imaging does not shine the light evenly on the clouds. To solve that, the
aperture masks (see section 3.7) are fine-tuned using micrometers to carefully maximize
the counting while minimizing the imbalance.

Figure 3.44: To highlight the difference between fluctuations of magnetization generated
through spin-mixing compared to those of a Poissonian distribution, we contrast the data
with a coherent spin state generated through an RF rotation.
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3.8.6 Critical Bz field scan

The collisional spin interaction energy c is determined by careful measurement of the QCP

using a quenching technique [14]. Quenching the condensate to fields close to the QCP and

measuring the relative spin populations following 165 ms of evolution at the final field, it is

possible to determine qc with a precision of±0.1 Hz (see Figure 3.45). For the experiments,

c ranged from [−7.5,−8.7] Hz due to day-to-day variations of the experimental conditions.

The critical point measurement is very important in the quantum Kibble-Zurek mechanism

study [14] and also the squeezed ground state study in this thesis.

Figure 3.45: The critical point detection uses a sudden quench to Bz at t = 165 ms. ρ0 is
measured as a function of Bz. 1% pollution from λ = 850 nm laser is presented compared
to the simulation result as discussed in Figure 5.8. The black solid line c = −8.5 Hz,
dashed lines ±0.1 Hz, and dotted lines ±0.2 Hz are attached to the figure. By using the
simulation, c can be decided with precision about ±0.1 Hz.

3.8.7 Lifetime measurement

By holding the condensate inside the trap at a high magnetic field and measuring the atom

number decay, the lifetime of the condensate can be detected. The lifetime τ has a very

close relationship related to the vacuum and the density of the cloud. For typical measure-
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ment in the single focus trap, τ = 4 to 5 s, and in the cross trap τ = 2 to 3 s. Figure 3.46

shows a typical measurement inside the cross trap along with c measured using the method

in subsection 3.8.6. This verifies the relationship c ∝ N2/5.

Figure 3.46: Different atom number N generated by a finite lifetime decay of BECs versus
c is studied using the method in subsection 3.8.6. The measured |c| agrees well with the
analytic relationship c ∝ N2/5 (inset green line).

3.8.8 Coherent oscillation [9]

To investigate the coherent dynamics of the system, an initial coherent spin state superpo-

sition is created from the pure mF = 0 condensates by applying an RF pulse. Following

the pulse sequence, the magnetic field is ramped to either above or below the critical point

and the condensate is allowed to freely evolve in the optical trap. The oscillation of the

dynamics below the critical point has a bigger amplitude. A typical evolution is shown

in Figure 3.47 with different initially prepared states. These oscillations demonstrate the

coherence of the spin mixing process.
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Figure 3.47: Coherent spin mixing vs. initial state. Multiple initial non-equilibrium spin
populations are created and allowed to evolve in the same field above the critical point.
Subsequently, the system displays small amplitude oscillations due to the coherent spin
mixing. A larger initial rotation angle indicates faster oscillation frequency and larger
amplitude.

3.8.9 Spin-nematic squeezing [11]

During spin-mixing, spin-nematic squeezing develops. The fluctuations of the measured

magnetization and how they vary with spinor phase shift is the signal of spin-nematic

squeezing. The noise tomography is performed by first shifting the spinor phase with a

detuned microwave π pulse (see section 3.6) and then a π/2 RF pulse. For each combina-

tion of evolution time and phase shift, the experiment cycle is repeated 100 times to collect

statistics of measured magnetization. The measurement is limited by the detection which

is a combination of light scattered by the apparatus and the photo-electron shot noise. This

limit (gray area in Figure 3.48) is detected in subsection 3.8.5.
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Figure 3.48: Spin-noise tomography measurement for the deep quench method at Bz =
400 mG, t = 30 ms. The simulations (blue solid line) match well without any adjustments.
The maximum squeezing does not have a fixed θs,min because it is an asymptotic function
of parameters q/|c| and t.

Steps of checking spinor dynamics

1. Check the Aux coil to make sure the gradient is properly zeroed.

2. Check the imbalance between the ±1 atoms and optimize it by adjusting masks’

position.

3. Check the absorption image of the cross trap and single focus trap, make sure the 850

nm laser is well overlapped with the condensate.

4. Measure the critical Bz to make sure c is around −7 to −8 Hz.

5. Check the spreadsheet by using Igor Pro visualization, make sure all control se-

quences are logically correct.
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CHAPTER 4

SQUEEZED GROUND STATE THEORY

4.1 Introduction

Creation and characterization of quantum squeezed and entangled states in atomic Bose-

Einstein condensates (BECs) with internal spin degrees of freedom are frontier problems

in the field of quantum-enhanced measurement and in the investigations of quantum phase

transitions and non-equilibrium many-body dynamics [42, 43]. Condensates with ferro-

magnetic spin-dependent collisional interactions exhibit a second-order quantum phase

transition, which is tunable by using external fields and available to low-noise tomographic

quantum state measurement. Experimental studies of collisionally-induced spin squeezing

in condensates have mainly utilized time evolution following a magnetic field quench from

an initially uncorrelated state to below the quantum critical point (QCP). The squeezing is

a result of the quenching and subsequent dynamics generated by the the final Hamiltonian,

which is either of the one-axis twisting form [44, 45] or a close variant [11, 46]. Spin

squeezed states have also been generated without quenching through the QCP by paramet-

ric/Floquet excitation [12, 47].

In addition to these inherently non-equilibrium methods, there is much interest in utiliz-

ing adiabatic evolution in spin condensates to create non-trivially entangled ground states

such as Dicke states and twin-Fock states [48]. Towards this end, there have been ex-

periments using adiabatic [13] or quasi-adiabatic [49, 30] evolution across the symmetry

breaking phase transition to create these exotic entangled states. Although some of the in-

terest in these methods has been stimulated by potential applications to adiabatic quantum

computing, there are also compelling applications to quantum enhanced metrology [50]. A

key feature of these approaches is that the entanglement is created in the time-stationary
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states of the final Hamiltonian, at least in the limit of perfect adiabaticity.

Here, we focus on Gaussian spin squeezed states and consider methods to create time-

stationary spin squeezing in a spin-1 condensate by tuning the system Hamiltonian through

a pair of quenches of the external magnetic field. Similar squeezed states have previously

been discussed in the context of spin-1/2 systems [51, 52, 53, 54]. Our protocol effectively

shortcuts the adiabatic technique [55], overcoming the challenge of maintaining adiabatic-

ity in the neighborhood of the QCP where the frequency scale of the final Hamiltonian

evolution tends to zero. Although we focus our attention on spin-1 condensates because

of our experimental work, the protocol in our paper is general and can be applied to the

spin-1/2 systems [45, 56] as detailed in section 4.7. As the squeezing is time-stationary

it may be observed directly without the need for balanced homodyne [57] nor Fock states

population detection methods [58].

Effectively we propose to implement the quantum harmonic oscillator symplectic Heisen-

berg picture dynamics (X,P ) 7→ M(t)(X,P ), for times t greater than the squeezed state

preparation time T, where

M(t) =

 −xf sinωf (t− T ) xf cosωf (t− T )

−x−1
f cosωf (t− T ) −x−1

f sinωf (t− T )

 ,

satisfies detM(t) = 1, and (X,P ) is regarded as a column vector of initial Heisen-

berg/Schrödinger picture operators 1. Here ωf is the oscillator final frequency, i.e., at the

end of the protocol, while xf is the final oscillator dimensionless length scale, defined be-

low. The Heisenberg-limited squeezing of position and momentum variables, associated

with the reciprocal factors in the rows of matrix M(t), is independent of time for t > T

under this dynamics. Our shortcut protocol requires a preparation time T ∼ √η which

is
√
η faster than the lower limit of the adiabatic passage Tad ∼ η. Here 1/η is the de-

gree of squeezing of the position or momentum variance. The method solves the problem

1Or as classical Hamiltonian phase space coordinates
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connecting the time evolution between two quantum oscillator ground states, and its sim-

plicity renders optimal control considerations somewhat superfluous (section 4.6). We note

that optimal control between canonical thermal states of collections of oscillators has been

extensively investigated [59, 60, 61].

In this section, we consider the dynamics of a spin-1 condensate in a magnetic field

oriented along the z direction and satisfying the single spatial mode approximation to be

described by the Hamiltonian [11],

Ĥ =
c

2N
Ŝ2 − q

2
Q̂z, (4.1)

The operator Q̂z = −N̂/3 − Q̂zz is defined in terms of the nematic (quadrupole) tensor.

The classical phase space corresponds to intersecting unit spheres in the {Sx, Qyz, Qz} and

{Sy, Qxz, Qz} variables.

The classical phase-space orbits of constant energy per particle are shown in Figure 4.1.

For q � 2|c|, the ground state of the Hamiltonian is the polar state with all atoms having

Sz = 0, and which in the Fock basis can be written as |N+1, N0, N−1〉 = |0, N, 0〉, whereNi

labels the occupancy of the corresponding Zeeman state, i = −1, 0, 1. The polar state gives

a symmetric phase space distribution in {Sx, Qyz} and {Sy, Qxz} as shown in Figure 4.1(a)

[12]. This state is the starting point for many experiments in part because it is easily

initialized and stationary in the high q limit. In previous experimental work [11], we have

been able to generate a large degree of squeezing by suddenly quenching the magnetic

field from q =∞ into the interval q ∈ (0, 2|c|), such that the initial state evolves along the

separatix developed in the phase space shown in Figure 4.1(b). The time evolution stretches

the noise distribution along the separatrix and leads to a large degree of squeezing ξ2
min < 1

for short enough times, as shown in Figure 4.1(c).

In this section, we propose a method to create time-stationary minimum uncertainty

squeezed states of a spin-1 condensate. The squeezing is a response to the deformation of

78



the phase space as the system Hamiltonian is tuned close to the QCP. We consider princi-

pally the low-energy polar state (〈Q̂z〉 = 1), whose phase space is shown in Figure 4.2(a).

We also discuss the experimentally less accessible high-energy polar state (〈Q̂z〉 = −1)

whose phase space is shown in Figure 4.2(b). In both cases, Gaussian fluctuations can be

treated by means of quantum harmonic oscillator dynamics in the limit of large particle

number.

The remainder of the paper is organized as follows. In section 4.2 we discuss the pro-

tocol in the quantum harmonic approximation, proving that time-stationary spin squeezed

states are produced by presenting complementary arguments in the Heisenberg and Schrödinger

pictures. In subsection 4.2.2 we consider the validity of the harmonic approximation as a

function of system size N , by means of numerical solutions of the full dynamics. In sub-

section 4.2.3 we show how the harmonic approximation provides a practical method to

estimate the fidelity of state preparation in the experimentally relevant limit of large system

size. In section 4.3 we present our conclusions discussing the calculation of finite system-

size energy gaps, the residual noise fluctuations, squeezing in the high energy polar state,

and a brief comparison with the optimal control protocol for our problem.

4.2 Time-stationary squeezing: controlled double quench

We consider the condensate to be prepared in the low-energy polar state in the limit of large

magnetic field q → ∞. (Essential changes in the analysis needed to describe the high-

energy polar state are outlined in section 4.5.) A pair of quenches of the external magnetic

field is used to bring the system towards the critical point, where squeezing develops. The

procedure thereby avoids the critical slowing down experienced by adiabatic methods [14].
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Figure 4.1: Standard method of creating (non-stationary) squeezed states in a spin-1 BEC.
The phase spaces for (a) q � 2|c|, (b) 0 < q < 2|c|, respectively. Red/blue lines indicates
the energy higher/lower than the separatrix (black lines) across (〈Ŝx〉,〈Q̂z〉,〈Q̂yz〉)=(0,N ,0)
point. The red distribution is an exaggerated illustration of the polar state. The blue distri-
bution is the non-equilibrium evolution for the state initially prepared in (a), which stretches
along the seperatrix as observed in our previous work [11]. (c) The evolution of the maxi-
mum ξ2

max and the minimum squeezing parameter ξ2
min as a function of dimensionless time

t/tc. The squeezing is lost after a few characteristic times tc = 2π~/|c|.
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Figure 4.2: Squeezing in the low and high energy polar states. The phase spaces are shown
for the low-energy polar state in (a) as q → 2|c|+ (a one-sided limit from above) and in the
high-energy polar state in (b) as q → 0+. As q approaches the QCP, the states follow the
deformation of the constant-energy level sets and squeeze accordingly.

4.2.1 Harmonic approximation: N →∞

In Figure 4.2(a) near the pole at 〈Q̂z〉 = 1, Equation 4.1 can be approximated by

H =
2c+ q

4

Ŝ2
x + Ŝ2

y

N
+
q

4

Q̂2
yz + Q̂2

xz

N
+O(Ŝ4

µ, Q̂
4
µν) (4.2)

when q > 2|c|. We see from Equation 4.2 that the orbits near the polar axis are harmonic

oscillator-like to leading order. The starting point for a quantum harmonic description of

the noise fluctuations is the identification of canonically conjugate variables, in the Ŝz = 0

subspace formed by |N1, N0, N−1〉 = |k,N − 2k, k〉 =: |k〉, 0 ≤ k ≤ N
2

.

The commutation relations for the subspace are 〈k′|[Ŝx, Q̂yz]|k〉 = i(6k− 2N)δk′,k and

〈k′|[Ŝy, Q̂xz]|k〉 = i(2N−6k)δk′,k. Near the Q̂z pole where k � N , the commutation rela-

tionships are 〈k|[−Ŝx/
√

2N, Q̂yz/
√

2N ]|k〉 = i+O(k/N) and 〈k|[Ŝy/
√

2N, Q̂xz/
√

2N ]|k〉 =

i+O(k/N). Hence

X1 := −Ŝx/
√

2N, X2 := Ŝy/
√

2N,

P1 := Q̂yz/
√

2N, P2 := Q̂xz/
√

2N,
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also satisfy [X1, X2] = [P1, P2] = −iŜz/(2N) = 0, [X1, P2] = [X2, P1] = iQ̂xy/(2N) = 0

by neglecting terms of O(k/N) and are thus canonically conjugate variables analogous to

a pair of position and momenta. The predictions of the harmonic approximation will be

compared with numerical calculations of the full dynamics in subsection 4.2.2.

The system is accordingly described by two identical uncoupled quantum oscillators

with Hamiltonian

H =
2c+ q

2
(X2

1 +X2
2 ) +

q

2
(P 2

1 + P 2
2 ),

with [Xα, Pβ] = iδα,β . We can identify the effective mass m = q−1 and frequency ω =√
q(q − 2|c|). As the oscillators are identical and the initial conditions uncorrelated, we

treat a generic oscillator in the following discussion and omit the identifying subscript for

notational simplicity.

The dimensionless length scale
√
q/ω of the oscillator is reciprocal to its momentum

scale. The initial condition for the low-energy polar state of the spinor condensate corre-

sponds to the oscillator prepared in its ground state, in which the oscillator position and

momentum scales are both equal to unity, q/|c| >> 1. In this case the quantum fluctu-

ations are Heisenberg limited and equally shared between position and momentum vari-

ables, corresponding to a coherent vacuum state. Regarding the quadratic Zeeman energy

q as an external control variable, the target squeezed state is the ground state of a deformed

oscillator in which the dimensionless length xf =
√
qf/ωf and momentum x−1

f scales

are vastly different. This can be achieved by adjusting q to a final value qf near to the

QCP (qc := 2|c|), where ωf =
√
qf (qf − 2|c|) → 0 and xf diverges. In the following

we propose a procedure which implements the symplectic Heisenberg picture dynamics

(X,P ) 7→ M(t)(X,P ), for times t greater than the squeezed state preparation time T,

where

M(t) =

 −xf sinωf (t− T ) xf cosωf (t− T )

−x−1
f cosωf (t− T ) −x−1

f sinωf (t− T )

 (4.3)

satisfies detM(t) = 1, and (X,P ) is regarded as a column vector of Heisenberg picture
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operators corresponding to the initially prepared low-energy polar state. As shown in the

following subsection the Heisenberg-limited squeezing of position and momentum vari-

ables, associated with the reciprocal factors in the rows of matrix M(t), is independent of

time for t > T under this dynamics.

Heisenberg picture

The squeezing protocol may be analyzed in the Heisenberg picture as follows. We wish

to reduce the Zeeman energy q from large positive values towards 2|c|, and in order to

do this we consider a preparation time T which is bounded at its ends t = 0 and t = T

by a pair of instantaneous quenches in which q is successively reduced through piecewise

constant values in the intervals t < 0, 0 ≤ t < T and T ≤ t. We will refer to these

regimes as the (low-energy) polar condensate regime, the intermediate regime and the final

regime, respectively, and label the oscillator parameters appropriately. The initial value

of q = 103|c|, is used to represent the dominance of the quadratic Zeeman energy in the

prepared polar condensate q/|c| → ∞. The complete time dependence is given by

q(t) = 103|c|χ(−∞,0)(t) + qiχ[0,T )(t) + qfχ[T,∞)(t),

where the indicator function for a set A is defined by χA(t) = 1 for t ∈ A and χA(t) =

0 for t /∈ A, and qi is yet to be determined. We will choose T to be a quarter of the

oscillation period of the intermediate oscillator, as in previous discussions of harmonic

oscillator squeezing by instantaneous change of frequency [62, 63, 64].

Just prior to the first quench at t = 0, the initial Heisenberg picture position and mo-

mentum operators are written as (X,P ). During the first quench the Heisenberg position

and momentum operators are continuous [65, 66], and with ωi =
√
qi(qi − 2|c|), the length

scale of the intermediate oscillator is xi :=
√
qi/ωi. For 0 ≤ t < T , the time evolution of
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the Heisenberg operators is then

X(t) = X cosωit+ x2
iP sinωit

P (t) = P cosωit− x−2
i X sinωit.

Choosing T to correspond to a quarter period of oscillation ωiT = π/2, gives

X(T ) = x2
iP and P (T ) = −X/x2

i .

This single sudden quench results in a time-periodic oscillation of position/momentum

squeezing as observed previously [63, 67].

In the second quench at t = T, q is reduced from qi to a value qf closer to 2|c|, and the

operators (X(T ), P (T )) are continuous. For τ := t − T ≥ 0, the subsequent harmonic

motion is at the slow frequency ωf =
√
qf (qf − 2|c|), and

X(t) = xf
[
(x2

i /xf )P cosωfτ − (xf/x
2
i )X sinωfτ

]
P (t) = −x−1

f

[
(xf/x

2
i )X cosωfτ + (x2

i /xf )P sinωfτ
]
,

where xf :=
√
qf/ωf is the length scale of the final oscillator.

Now selecting the quadratic Zeeman energies qi and qf such that

xf = x2
i

gives,

X(t) = xf [P cosωfτ −X sinωfτ ]

P (t) = −x−1
f [X cosωfτ + P sinωfτ ] ,
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corresponding to the desired symplectic transformation (X,P ) 7→ M(t)(X,P ), discussed

above. In this case the quantum variances for the initially prepared vacuum state associated

with the polar condensate are squeezed, time-independent and Heisenberg limited for t ≥

T,

∆X2(t) =
1

2

1√
1− 2|c|/qf

=
1

2

1

1− 2|c|/qi

∆P 2(t) =
1

2

√
1− 2|c|/qf =

1

2
(1− 2|c|/qi).

Based on the above analysis, the spin-squeezing parameter in the original variables of the

condensate at qf → 2|c|+ can be described by

ξ2
Qyz =

∆Q2
yz

N
=
√

1− 2|c|/qf . (4.4)

We note that to achieve a squeezing variance of 1/η := 1− 2|c|/qi relative to the standard

quantum limit, we need to approach within 1/η2 of the critical point 1 − 2|c|/qf = 1/η2

and qi/qf = 1 + 1/η.

The sensitivity of the squeezing to the condition xf = x2
i , between qi and qf , can

be computed by considering a small error δ in the value of qf , i.e., |δ|/qf << 1, as the

following approximate expression shows,

∆P 2(t) ≈ 1

2
(1− 2|c|/qi)

[
1 +

δ

qf

2|c|/qf
1− 2|c|/qf

sin2 ωfτ

]
.

In the alternative form

∆P 2(t) ≈ 1

2η

[
1 +

δ

qf
(η2 − 1) sin2 ωfτ

]
, (4.5)

we observe that to sustain a momentum variance squeezing of 1/(2η) it is necessary that

η2|δ|/qf << 1.
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Figure 4.3: Illustration of the classical phase portrait of the double-quench protocol. (a)
(X,P ) (red dot) satisfies symmetric condition with an arbitrary phase in the polar state
regime. The evolution creates squeezing in the final regime qf orbit (blue solid line) by
passing an intermediate qi orbit for a quarter period (black arrow line). (b)-(e) is the en-
sembles evolution in (X(t), P (t)). The surrounding circular and elliptical curves represent
the constant-energy level sets. The initial ensemble (b) satisfies the uncertainty relation-
ships at q = ∞. The ensemble rotates while squeezing in the intermediate regime (c). At
t = T , the phase space changes suddenly from q = qi (d) to q = qf (e), which locks the
squeezing amplitude and angle. This is in agreement with the quantum harmonic oscillator
description for achieving a time-stationary squeezed state.

A small error in control of the Zeeman energy value in the vicinity of the quantum critical

point leads to a quadratic sensitivity to noise fluctuations. In experiments, the value of c is

known to an accuracy of about 1% [14], while qf is controlled to the level of several parts

per million by the stability of the external magnetic field.

Analogous to the discussion in subsection 4.2.1, if we expand the system near ρ0 = 1,

we have two independent identical quantum harmonic variables (X,P ) defined as (−Sx/
√

2N ,

Qyz/
√

2N) and (Sy/
√

2N,Qxz/
√

2N). We focus on (−Sx/
√

2N,Qyz/
√

2N) due to the

uncorrelated initial condition and the identical dynamics. The numerical simulation ( Fig-

ure 4.4) shows that the double-quench protocol agrees with Equation 4.4 with a final time-

invariant ξ2
Qyz

. In Figure 4.5, the noise sensitivity from the numerical simulation is in good

agreement with Equation 4.5. The classical phase space picture in Figure 4.3 shows the
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Figure 4.4: The mean-field numerical simulation result is in good agreement with Equa-
tion 4.4. A time-stationary squeezing can be generated through a pair of quenches, which
maintains the squeezing after a few characteristic times.

evolution of an ensemble which passes from the initial state through a quarter period of

intermediate dynamics to the final state with the most eccentric level curves.

Schrödinger picture

In the Schrödinger picture the protocol achieves a transformation from the ground state of

the initial oscillator, whose quantum fluctuations are those of the polar condensate, to the

ground state of the final oscillator created by a pair of quenches. The Schrödinger picture

operators X and P can be written three separate ways in terms of annihilation and creation

operators for the polar condensate (a, a†), the intermediate oscillator (ai, a
†
i ) and the final

oscillator (af , a
†
f ), using the appropriate oscillator length scales xi and xf . Hence we can

easily see that the oscillator variables are related by an SU(1,1) transformation [68]

ai = µia− νia†, and a†i = µia
† − νia,
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Figure 4.5: Comparison of Equation 4.5 with the mean-field simulation dynamics. We plot
ν = 2 max(∆P 2(t)) − 1/η as the oscillation amplitude of sin2 ωfτ to illustrate the time-
dependent noise fluctuations for t > T when δ 6= 0. (a) ν as a function of δ/qf for η = 3.
The red circles are the result from the simulation versus the analytic result (black dashed
line). (b) The amplitude is bigger for higher squeezing η with δ/qf = 2%.

where µi := (xi + 1/xi)/2, νi := (xi − 1/xi)/2, and µ2
i − ν2

i = 1. To achieve the target

system discussed above we must control the Zeeman energy quenches so that xf = x2
i , and

in this special case the final and intermediate oscillator variables are similarly related by

af = µiai − νia†i , and a†f = µia
†
i − νiai.

Let the vacuum state of the polar condensate oscillator be denoted |Φ〉, so that a|Φ〉 =

0, and the vacuum state of the final oscillator be denoted |Ω〉, so that af |Ω〉 = 0. The

Schrödinger picture state vector at time t = 0 is |Ψ(0)〉 = |Φ〉, and the double quench

produces |Ψ(t)〉 = |Ω〉, for t ≥ T. To see this we introduce the Fock states {|n〉}∞n=0 of the

intermediate oscillator a†iai|n〉 = n|n〉.

Since for each n = 0, 1, 2, ...

〈n|µiai + νia
†
i |Φ〉 = 0
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it follows in the sudden approximation, that only even Fock states of the intermediate os-

cillator are generated in the first quench [69]

〈2n|Φ〉 = (−1)n
√

(2n)!
√
µi2nn!

(
νi
µi

)n
, n = 0, 1, 2, ...

A similar analysis shows that, 〈2n|Ω〉 = (−1)n〈2n|Φ〉. Using the sudden approximation

also for the second quench, with ωiT = π/2, gives

e−iωia
†
iaiT |Φ〉 =

∞∑
n=0

(−1)n|2n〉〈2n|Φ〉

=
∞∑
n=0

|n〉〈n|Ω〉

= |Ω〉,

so that the quarter period evolution between quenches prepares the final oscillator ground

state, and the time independence of the position and momentum squeezing is readily un-

derstood.

The high-energy polar state

In Figure 4.2(b) near the pole at 〈Q̂z〉 = −1, Equation 4.1 satisfies a quantum harmonic

approximation to leading order with mass m = (q/2)−1 and frequency ω2 = q(q + 2|c|)/4

in the high-energy polar state case (see section 4.5). The same double-quench sequence

as described above can also be applied in this case, and the theory goes through with the

redefinition of xf =
√
qf/(qf + 2|c|). All of the results for the low-energy polar state

now apply when |c| 7→ −|c|. The squeezing occurs in the position variable rather than the

momentum. As a result, the high-energy polar state exhibits spin-squeezing given by

ξ2
Sx =

∆S2
x

N
=
√
qf/(qf + 2|c|), (4.6)
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Figure 4.6: The comparison between the double-quench protocol and the adiabatic passage.
(a) q(t) (blue solid line) and qad (red dashed line) are shown as a function of t. (b) Fidelity
F is plotted for q (blue solid line) and qad (red dashed line). Note q reaches higher fidelity
of |Ω〉 in a shorter time compared to qad.

as qf → 0+.

4.2.2 Numerical treatment of full squeezing dynamics

To assess the limits of validity of the harmonic approximation and the role of finite sys-

tem size N , we numerically solve the full quantum spin-1 dynamics in the single mode

approximation (see section 2.5),

i~∂t|Ψ(t)〉 = Ĥ(q(t))|Ψ(t)〉

with Ĥ(q(t)) defined by Equation 4.1.

The time dependence of the magnetic field quench q(t) = qiχ[0,T )(t) + qfχ[T,∞)(t) is

used in the simulation with the relation 1 + 2c/qf = (1 + 2c/qi)
2 and ωiT = π/2 predicted

by the harmonic approximation. The ground state of the final oscillator, denoted |Ω〉 above,

can be compared to the numerically computed lowest eigenvector of H(qf ).

The quench dynamics may be compared to those of an alternative time-dependence
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governed by the adiabatic passage function, t 7→ qad(t) [13]. The latter is determined by

taking an initial value of q = 20|c| and then optimizing the computed ground state fidelity,

defined below, over a set of linear decreasing functions of time in the first time interval. The

procedure is then repeated over the sequence of time intervals, to ensure that the fidelity

with respect to the instantaneous Hamiltonian ground state at each step exceeds 99.9%. We

note that this method outperforms the linear q ramp [14], the Landau-Zener ramp [70, 71,

72, 73] and the exponential ramp [74].

To verify that we achieve the many-body ground state, the computed fidelity F =

|〈Ψ(t)|Ω〉|2 is shown in Figure 4.6(b), where |Ω〉 is the numerically-computed lowest eigen-

vector ofH(qf ). In these simulations, the quench function t 7→ q(t) results in a final fidelity

F that satisfies 1−F < 10−6, with the squeezing parameter η ≈ 2, N = 103 and qf = 3|c|.

Although the overall quench sequence is apparently non-adiabatic, we can see the final state

is indeed the many-body ground state at q = qf . It is clear that the function t 7→ q(t) out-

performs the optimized adiabatic ramp fidelity and does so in a shorter preparation time.

For the squeezing variance factor η the preparation time is given by

T =
π

2ωi
=

π

2qf

η

η + 1

√
η.

By comparison, the adiabatic passage preparation time Tad can be estimated by the Landau-

Zener [70, 71] and Kibble-Zurek theories [75, 76], and is bounded by the relaxation time

Tad ≥
2π

ωf
=

2π

qf
η.

In Figure 4.6, this is illustrated for the case of η ≈ 2.

We note that similar numerical computations can be used to investigate the high-energy

polar state by employing the initial state |Ψ(t = 0)〉 = |N/2, 0, N/2〉 in the Schrödinger

equation and the relation 1− 2c/qf = (1− 2c/qi)
2 in the quench function t 7→ q(t).

91



0 0.5 1 1.5
10
-1

10
0

0.05|c|

0.3|c|

1|c|

0 0.5 1 1.5
10
-1

10
0

2.05|c|

2.3|c|

3|c|

(a) (b)

Figure 4.7: The system-size dependent effect (N = 103) on the shift of the QCP will
lead to time-dependent oscillations in the final regime. (a) ξ2

Qyz
versus t curves are plotted

for the low-energy polar state with qf ∈ [2.05|c|, 3|c|]; (b) ξ2
Sx

versus t curves are plotted
for the high-energy polar state with qf ∈ [0.05|c|, 1|c|]. By contrast with (a), there is no
time-dependent oscillation as the critical point has no system-size dependent shift.

Numerical investigation of finite N effects

When we consider finite atom number N , system-size effects become important. For the

high-energy polar state, the critical point is unshifted. For the low-energy polar state, qc is

a function of N and is shifted by an N dependent quantity

2− qc(N)/|c| = e1.462N−0.6467 =: f(N)

(see section 4.4). Note that as N → ∞, qc = 2|c| as assumed in the previous section.

In the harmonic approximation, we showed the time-dependent oscillation is suppressed

when η2|δ|/qf � 1. If we assume δ is caused by the N -dependent shift δ = qf (1 −

qc/|2c|) = qff(N)/2 2, then η2|δ/qf | = 0.02η2, where η2 takes the values (22, 32, 102) in

Figure 4.7(a), where N = 103. This simple approximation gives good qualitative agree-

ment with the numerical data. In Figure 4.7(b) by contrast, the high-energy polar state

2δ is estimated by the system-size shift from qf/qc(∞) = (qf − δ)/qc(N)
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Figure 4.8: The oscillation from Equation 4.5 is compared to the simulation results of
finite N . The black dashed curve is the estimation from imperfect final control assuming
δ/qf = 1 − qc/2|c|. The solid lines are from the finite N numerical quantum simulation.
The simulation shows qualitative agreement with Equation 4.5.

shows no oscillation in the final regime due to the absence of a system-size dependent

shift.

In the harmonic oscillator description, the maximum squeezing occurs at the QCP

where the frequency ωf → 0. However, there is a non-zero minimal energy gap ∆ be-

tween the ground state and the first excited state [48] due to the finite atom number for

the low-energy polar state. Thus the maximum squeezing computed by solving the ground

state of H(qf ) is limited by N as shown in Figure 4.9(a). The same maximum squeez-

ing limit occurs for the high-energy polar state with a non-zero minimal energy gap ∆E

between the highest and the second highest excited states [77] (see section 4.4).

The fidelity of target states generated with the double-quench protocol is summarized

in Figure 4.10 as a function of qf and N .
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Figure 4.9: The finite system-size effect on the maximum squeezing due to the non-zero
minimal energy gap. Analytic curves (black dashed lines) are compared with the full quan-
tum simulation of N ∈ [10, 2000] (solid lines). A sufficiently large N is necessary for
the preparation of a highly squeezed state in the low-energy polar state case (a) and the
high-energy polar state case (b).

94
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Figure 4.10: The fidelity of the target state is numerically computed as a function of atom
number N and qf : (a) low-energy polar state: as qf approaches 2|c|, large N is necessary
but not sufficient for large squeezing due to the shifted QCP. (b) high-energy polar state: as
qf approaches 2|c|, large N is sufficient for large squeezing due to the unshifted QCP.

4.2.3 Estimating the target state fidelity

In this section, we discuss a simple practical method to experimentally estimate the fidelity

of production of the final oscillator ground state ( |Ω〉 := |0〉) in the limit of large N (say

N ≥ 103). In practice, N ≈ 105 is commonly measured in a spinor condensate of 87Rb. If

the system is prepared in the final target ground state |0〉, the squeezing uncertainties will

be time-independent. On the other hand, if the system has an admixture of excited states,

then the squeezed and antisqueezed quadrature fluctuations will vary harmonically at the

frequency ωf and produce a modulation in time given by the oscillation of the variances

Osc[ξ2
µ], µ = Sx, Qyz, defined below. By a spectral analysis of the numerically-computed

wavefunctions, we find that only the ground and the first-excited states are significantly

occupied.

The simplest model which mixes an excited state component to the final oscillator

ground state is a coherent superposition in which the first excited state, |1〉, has probability
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pe,

|Ψ(t)〉 =
√

1− pe|0〉+ e−i(ωf t+φ)√pe|1〉,

with φ a relative phase.

We note the matrix elements for the final oscillator at q = qf are

〈0|∆X2|0〉 = −〈0|∆X2|1〉 =
1

2

√
qf

qf + 2c

〈1|∆X2|1〉 =
3

2

√
qf

qf + 2c
.

(4.7)
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Figure 4.11: As noted in subsection 4.2.2, Equation 4.7 is checked against a full numerical
computation of matrix elements of Ŝ2

x/2N = X2 and Q̂2
yz/2N = P 2 using the ground and

the first excited states of the final Hamiltonian. Here the subscripts (0, 0), (0, 1), and (1, 1)
are the states used for the bracket. We have obtained excellent agreement for all matrix
elements in the case of N = 103 and qf ∈ (2|c|, 10|c|].

The model predicts the mean-square oscillator fluctuations for |Ψ(t)〉 is given by, with
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as before 1− 2|c|/qf =: 1/η2,

〈Ψ(t)|∆X2|Ψ(t)〉

=
(

(1 + 2pe)− 2 cos(ωf t+ φ)
√
pe(1− pe)

) η
2

〈Ψ(t)|∆P 2|Ψ(t)〉

=
(

(1 + 2pe) + 2 cos(ωf t+ φ)
√
pe(1− pe)

) 1

2η
.

(4.8)

To compare the simple model with the full numerical solutions we should first check that

the ratio of the mean to the oscillation of the cos(ωt) harmonic is independent of x2
f =√

qf/(qf − 2|c|) and depends only on pe. In Figure 4.12(a), we show that this feature of

the model is indeed consistent with full numerical computations.

In Equation 4.8, the amplitude of cos(ωt) is defined as Osc[ξ2
µ] and follows the relation-

ship

(Osc[ξ2
Sx ]/η)2 = (ηOsc[ξ2

Qyz ])
2 = 4pe(1− pe), (4.9)

where ξ2
Sx

= 2∆X2 and ξ2
Qyz

= 2∆P 2. This result may also be compared with numerical

computations ( Figure 4.12(b)). Since in the model pe is directly related to the fidelity F

through pe = 1 − F , measurement of Osc[ξ2
µ] provides an estimate of the fidelity of the

final ground state.

4.3 Conclusion

In summary, we have discussed a protocol for the preparation of time-stationary squeezed

states in spin-1 BECs. The protocol simply involves a sequence of two reductions in the

Zeeman energy of the system in an external magnetic field, in order to tune the system

Hamiltonian close to a QCP. The proposed method appears to be simpler and faster than

the typical adiabatic techniques. We also propose a procedure to measure the fidelity of
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Figure 4.12: (a) The relative time-dependent oscillation in the final regime is com-
pared with the prediction from the coherent superposition model of Equation 4.8
(dashed lines). 2η〈∆P 2〉 are numerical simulated as the solid curves with {pe, qf} =
{0.01, 2.7}, {0.03, 2.1}, {0.05, 2.05}, N = 4000. (b) The relative oscillation amplitude
predicted by the coherent superposition model of Equation 4.9 (dashed line) and the
full quantum simulation show good agreement with each other. The correlation between
(ηOsc[ξ2

Qyz
])2 versus pe with η ∈ [2, 6] suggest we can use Osc[ξ2

µ] as an indicator of the
target state fidelity.
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the state preparation by monitoring the harmonic oscillation of the asymptotic squeezing

dynamics.

We expect the methods proposed in this paper may be applied to other similar many-

body systems, for example, anti-ferromagnetic spinor condensates with c > 0 [78, 74],

bosonic Josephson junctions [79] and the Lipkin-Meshkov-Glick model [80]. We believe

that the proposed method is ideal for experiments, and could enable the observation of

time-stationary squeezing in spin-1 systems for the first time.

4.4 Energy gap for finite system-size N

The energy gaps ∆ and ∆E and lowest energy eigenvectors are computed by numerical

diagonalization of Ĥ(q) as a function of q and N in the Fock state basis as mentioned in

subsection 4.2.2. The energy gaps are shown in Figure 4.13. Here the low-energy polar

state gap is defined to be ∆ := E1 − E0. Similarly the two highest energy eigenstates can

be computed with the energy eigenvalues of EN/2 and EN/2−1. The high-energy polar state

gap is computed as ∆E := EN/2−EN/2−1. The value of qc is system size-dependent for the

low-energy polar state case following the approximate relationship 2− qc/|c| = e3/2N−2/3

as plotted in Figure 4.14. From this qc is computed by finding the location of the minimal

energy gap over the simulated range. Using this relationship, the oscillation amplitude for

∆P 2 can be estimated assuming δ/qf = 1 − qc/2|c| from the quantum phase transition

point shift relation qf/2|c| = (qf−δ)/qc in Equation 4.5. The quantum phase transition for

the low-energy polar states is second order [81] while for high-energy polar states is first

order [77].
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Figure 4.13: The finite system-size effect on the QCP shift and the minimal energy gap.
Energy gap (a) ∆ and (b) ∆E are simulated for N ∈ [10, 2000]. (a) The QCP for the
low-energy polar state is system-size dependent. (c) The minimum energy gap Min(∆)
is proportional to N−1/3. (b) The QCP for the high-energy polar state is fixed when the
system size varies. (d) The minimum energy gap Min(∆E) is linearly correlated to N−1.
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Figure 4.14: The QCP shift in Figure 4.13 (a) is computed as a function of N . The dashed
curve is log(2 − qc/|c|) ≈ log(1/N)/3 + 3/2 (the least square linear fit gives log(2 −
qc/|c|) = 0.6467 log(1/N) + 1.462). This gives the estimation of the system-size when
applying the double-quench shortcut with good robustness.

4.5 Harmonic approximation for the high energy polar state

For q � 2|c|, the initial high-energy polar state of the Hamiltonian is the twin-Fock state,

which in the Fock basis can be written as |N/2, 0, N/2〉. The twin-Fock state also gives

a symmetric phase space distribution in {Sx, Qyz} and {Sy, Qxz}. Near the pole on the

〈Q̂z〉 = −1, Equation 4.1 can be approximated by

H =
2c− q

4

Ŝ2
x + Ŝ2

y

N
− q

4

Q̂2
yz + Q̂2

xz

N
+O(Ŝ4

µ, Q̂
4
µν).

The commutation relationships are 〈k|[−Ŝx/
√
N, Q̂yz/

√
N ]|k〉 = i+O(N/2−k)/N) and

〈k|[Ŝy/
√

2N, Q̂xz/
√

2N ]|k〉 = i+O((N/2−k)/N) when (N/2−k)� N . The conjugate

variables can be hence defined by neglecting the O((N/2− k)/N) terms as

X1 := −iŜx/
√
N, X2 := iŜy/

√
N,

P1 := iQ̂yz/
√
N, P2 := iQ̂xz/

√
N.

The quantum fluctuations are again controlled by two identical uncoupled quantum
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oscillators with Hamiltonian

H =
q − 2c

4
(X2

1 +X2
2 ) +

q

4
(P 2

1 + P 2
2 ).

With [Xα, Pβ] = iδα,β , we can identify the mass m = (q/2)−1 and frequency ω2 = q(q +

2|c|)/4. Under this definition, the double-quench treatment can be applied. In this case the

quantum variances for an initially prepared twin-Fock state are squeezed, time-independent

and Heisenberg limited for t ≥ T,

∆X2(t) =
1

2

1√
1 + 2|c|/qf

=
1

2

1

1 + 2|c|/qi

∆P 2(t) =
1

2

√
1 + 2|c|/qf =

1

2
(1 + 2|c|/qi).

4.6 Optimal control considerations

The optimal control method minimizing the preparation time T through the cost function

J(T ) =
∫ T

0
1dt proposed for thermal states in [59] also provides the time-optimal solution

to the transfer between initial and final oscillator ground states. In our system, the initial

polar condensate state is prepared in a large quadratic Zeeman energy q0 before t = 0. The

optimal control sequence is a three step jump between q0 and qf (or equivalently, between

x0 =
√
q0/ω0 and xf =

√
qf/ωf ) characteristic of the so-called “bang-bang” switching

between sup q(t) and inf q(t).
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For the initial condition x0 = 1 and τ := t− T ≥ 0, the phase space map (X,P ) 7→M(τ)(X,P ) is given by

M(τ) =
xf

1 + x2
f

 xf cos(ωfτ)−
√

1 + x2
f + x4

f sin(ωfτ),
√

1 + x2
f + x4

f cos(ωfτ) + xf sin(ωτ)

−x−1
f sin(ωfτ)− x−2

f

√
1 + x2

f + x4
f cos(ωfτ),−x−2

f

√
1 + x2

f + x4
f sin(ωfτ)) + x−1

f cos(ωfτ)

 .

This matrix still satisfies the condition ∆X2(t) = x2
f/2 and ∆P 2(t) = 1/(2x2

f ) although unlike our double quench protocol it is not a

symplectic transformation. The total time required to complete the optimal control is T = η
2qf

arccos
(
(1 + η2)/(1 + η)2

)
≈ √η/2|c|,

η → +∞. This time-optimal method has the same leading order dependence in η for the total time as the double-quench method but a

short-pulse variation in Zeeman energy is very difficult to achieve experimentally in a spin-1 BEC system. (see Figure 4.15).

For Zeeman energy values in the compact set q ∈ [qf , q0] the optimal control function is piecewise constant in time, as shown in the

figure. The case in which the oscillator is initially prepared in a coherent vacuum state corresponds to q0 →∞, so that the control values

lie in a non compact set q ∈ [qf ,∞). In this case the optimal control reduces to a constant function plus a Dirac measure in time.
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Figure 4.15: The optimal control function calculated for q0 = 100|c|, qf = 3|c|. The
evolution begins with a switch from q0 to qf at t = 0 and then a double switch qf → q0 →
qf over a very short interval below t/tc = 0.4.

4.7 Spin-1/2 systems

While the main focus in this paper is the spin-1 condensate, we can also apply our theory

to time-stationary quadrature squeezing in the spin-1/2 condensate, while previous works

have focused on time-stationary number squeezing [82, 83] or time-varying quadrature

squeezing [45]. For the spin-1/2 condensate we consider the Hamiltonian

Ĥ =
Λ

2N
Ĵ2
z − Ĵx

[42], where Ĵx,y,z are collective spin-1/2 operators and Λ is a dimensionless atom-atom

collision parameter. The classical phase space corresponds to the Bloch sphere. For Λ = 0,

the ground state of the Hamiltonian is the polar state having Jx = N/2 and isotropy with

respect to Jy and Jz. Near the Jx = N/2 pole, the Hamiltonian can be approximated by

Ĥ =
Λ + 1

2N
Ĵ2
z +

1

2N
Ĵ2
y +O(Ĵ4

z , Ĵ
4
y ).
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Since the commutation relation gives 〈[Ĵy, Ĵz]〉 = 〈iĴx〉 = iN/2 near the Jx pole, the

variables

X := Ĵy/
√
N/2, P := Ĵz/

√
N/2

are canonically conjugate. The system is accordingly described to leading order by the

quantum harmonic oscillator

Ĥ =
Λ + 1

4
P 2 +

1

4
X2.

We can identify the effective mass m := ((Λ+1)/2)−1 and the frequency ω :=
√

Λ + 1/2.

The quantum phase transition point is Λ = −1. The dimensionless length scale x =√
1/(mω) =

√
Λ + 1 of the oscillator is reciprocal to its momentum scale.

We consider a double quench protocol analogous to that discussed in subsection 4.2.1.

The double quench is described by the function

Λ(t) = 0χ(−∞,0)(t) + Λiχ[0,T )(t) + Λfχ[T,∞)(t)

and the time-stationary squeezing condition requires x2
i = xf and T = π/(2ωi), that is

Λf = Λ2
i + 2Λi and T = π/

√
Λi + 1. In this case, (X,P ) 7→ M(t)(X,P ), where M(t)

is given by Equation 4.3 as in the spin-1 case. The quantum variances for the initially

prepared polar state are squeezed, time-independent and Heisenberg limited for t ≥ T,

∆X2(t) =
1

2
(Λf + 1)

∆P 2(t) =
1

2

1

Λf + 1
.

Based on the analysis above, the spin-squeezing parameter in the original variables of the
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condensate can be described by

ξ2
Jy =

∆J2
y

N/4
= Λf + 1

which is squeezed as Λf → −1+ and

ξ2
Jz =

∆J2
z

N/4
=

1

Λf + 1

is squeezed as Λf → +∞. The analysis of the quantum fluctuations presented above is

valid in the limit as N → ∞. In common with the low-energy polar states of the spin-1

system, the quantum critical point Λ = −1 is shifted by an N dependent contribution,

which we do not consider further here.
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CHAPTER 5

SQUEEZED GROUND STATE EXPERIMENT

For quantum-limited metrology with N uncorrelated particles in an atomic clock or op-

tical interferometer for example, the uncertainty principle provides the standard quantum

limit (SQL) of relative measurement precision, 1/
√
N . An important frontier of research in

metrology is the development of techniques to surpass this limit using quantum squeezed

states or other entangled states [42, 43]. These techniques are expected to play an important

role in the next generation of quantum sensors [84, 85, 86]. Atomic Bose-Einstein conden-

sates (BECs) with internal spin degrees of freedom are a promising platform for creating

and characterizing atomic spin squeezed and other entangled states [87, 21]. These systems

feature strong collisional spin interactions, tunable Hamiltonians with quantum phase tran-

sitions (QPT) and low-noise tomographic quantum spin state measurement capabilities that

allow exploration of a wide range of interesting phenomena including squeezing [82, 11,

29], dynamical stabilization [15], parametric excitation [12], and studies of the quantum

phase transition [13, 88, 49] including Kibble-Zurek universality [14].

The focus of this section is the creation and investigation of Gaussian squeezed ground

states. These states arise naturally as the Hamiltonian is tuned near the symmetry-breaking

QPT and offer the advantage that the squeezed state properties are determined by the prop-

erties of the final Hamiltonian rather than the details of the non-equilibrium evolution and

are thus easier to characterize and control. In particular, the minimum squeezed quadrature

angle for the ground state has a fixed orientation independent of the Hamiltonian param-

eters such as density and magnetic field. In contrast, the minimum squeezing quadrature

angle in non-equilibrium methods is both time and atom number dependent [11], which

poses serious challenges for highly squeezed states. Finally, spin squeezed ground states

provide opportunities to more carefully investigate long-term evolution of entanglement in
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spin ensembles because the squeezing is now in a stationary state. A distinguishing feature

of the investigation described in this letter is the use of a double-quench shortcut [17] to ap-

proach the QPT that significantly shortens the state preparation time compared to adiabatic

methods. Decreasing the preparation time improves both the fidelity of the target state and

the detection limit due to uncorrelated atom losses.

For the 87Rb F = 1 hyperfine state, c < 0 meaning the condensate has a ferromagnetic

(FM) phase and a polar phase, separated by a QCP at q = 2|c| ≡ qc.
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Figure 5.1: The spin-1 states in the Ŝz = 0 subspace and their evolution can be visualized on a {Sx, Qyz, Qz} Bloch sphere. (a)
The initial state is an uncorrelated ground state at q � qc with symmetric uncertainties in Sx and Qyz. (b)-(f) following a sudden quench
to qi & qc at t = 0, the ground state remains polar, but the fluctuations evolve periodically along elliptical orbits with a frequency
ωi = 2π/T . (g)-(h) A second quench at T/4 to a suitably chosen qf will de-excite the condensate into a stationary squeezed ground
state. (i) Standard non-equilibrium method of generating spin-1 squeezing following a sudden deep quench across the QCP to the FM
phase [11, 28].
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We begin by describing the basic idea behind the experiment. The starting point is a

spin-1 condensate prepared in the mF = 0 Zeeman state at a high magnetic field such that

q = q0 � qc and the spin interaction term of the Hamiltonian can be ignored. This is

an uncorrelated ground state with Heisenberg uncertainty for the complimentary observ-

ables ∆Sx∆Qyz = N , where Ŝx is the collective spin operator in x direction, and Q̂yz is

the collective nematic operator between y and z direction. Throughout the text, operators

are indicated by carets, while the corresponding symbol without the caret indicated their

expectation value. The phase space of the system can be visualized on a Bloch sphere of

{Sx, Qyz, Qz} (see Figure 5.1) where the ground state is located at the Qz = 1 pole with

symmetric uncertainties in Sx and Qyz. In earlier demonstrations of spin-nematic squeez-

ing [11, 28], the squeezing was generated by non-equilibrium evolution from an unstable

fixed point following a deep quench across the QCP to the FM phase as shown in Fig-

ure 5.1(i). In this work, we are interested in creating squeezing in the polar phase in the

neighborhood of the QCP and, in particular, creating squeezing in the ground state of the

system with q & qc. We again begin with a sudden quench from q0, but now to a final

field above the QCP, qi & qc. At this field, the ground state remains polar in character,

but the spin interactions are no longer negligible and distort the semi-classical orbits of the

system into ellipses. Subsequent evolution of the initially symmetric uncertainties gives

rise to periodic squeezing and unsqueezing with a frequency ωi =
√
qi(qi − qc) as shown

in Figure 5.1(b)-(f) from the energy gap [12]. Of course, this is an excited state of the sys-

tem with dynamically evolving observables, in this case the uncertainties ∆Sx and ∆Qyz.

Although this state is not a ground state of the Hamiltonian Ĥ(qi), it is the ground state of

another Hamiltonian Ĥ(qf ) where qi > qf > qc. To end with the condensate in a ground

state, we perform a second quench with a timing and final field value chosen to match the

evolving state with the shape of the ground state of the final Hamiltonian. This second

quench results in the system in the ground state of Ĥ(qf ) as shown in Figure 5.1(g)-(h).

The ground state of Ĥ(qf ) exhibits squeezing in the variance ofQyz by an amount [17]:
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Figure 5.2: Time-stationary squeezing and periodic squeezing. (a) Measurement of
time-stationary squeezing in the ∆Qyz observable following the double quench sequence
q0 → qi → qf designed to create a squeezed ground state at qf (blue triangles). These data
are compared to a single quench q0 → qi (red circles), which exhibit periodic squeezing
and unsqueezing in ∆Qyz. Simulation results with c = −8.2 ± 0.1 Hz (blue shaded area)
are compared with the data. (b) Tomographic measurements of the fluctuations at t = T/4
(red circles) and at a much later time (t ∼ 3T/4) after the second quench (blue triangles).
The error bars indicate the standard deviation of measured variance determined from 100
repeated measurements per data point.
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ξ2
Qyz = ∆Q2

yz/N = 1/η, (5.1)

where 1/η =
√

1− qc/qf , and anti-squeezing by an amount η in the complimentary ob-

servable Sx. In order to end in the ground state, the second quench needs to occur at a

time T/4 = π/(2ωi) and qf needs to satisfy the relation (qi − qc)/qi = 1/η. Of course,

it is also possible to adiabatically ramp the Hamiltonian directly from q0 → qf , but the

double quench shortcut method is at least
√
η faster than the shortest adiabatic ramp time

Tadiab ≥ 2πη/qf (see [17] for details).

We now turn to the experimental measurements. We first investigate the single quench

non-equilibrium periodic squeezing following Figure 5.1(b)-(f). A condensate of 50k

atoms is prepared in themF = 0 state in an optical dipole cross trap at a high field, q0 = 5qc.

Following a sudden quench to qi = 1.16qc, the condensate is allowed to freely evolve. The

mean spin populations do not significantly change as the condensate is still in the polar

phase, however the spin fluctuations do evolve. In Figure 5.2(a), measurements of the time

evolution of ∆Qyz are shown that exhibit periodic squeezing and unsqueezing; measure-

ments of ∆Sx show complimentary behavior of periodic anti-squeezing (see Figure 5.3).

In Figure 5.2(b), tomographic measurements of the fluctuations at the point of maximum

Qyz squeezing (t = T/4) are shown. Each data point corresponds to a measurement at a

different quadrature phase θ = θs/2, where θs is the relative phase between mF = 0 and

mF = ±1 spin components:

ξ2
θ = ∆(Sx cos θ +Qyz sin θ)2/N. (5.2)

The data show up to −6 dB of squeezing and symmetric anti-squeezing. The data are

compared with simulations that show good qualitative agreement; however, it is necessary

to scale the simulations by ξ2 = (ξ2
sim)0.7 to quantitatively match the observed squeezing.

In the figures throughout, the simulations are scaled to account for this discrepancy.
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The simulations agree with the experimental data qualitatively but require a correction

of ξ2 = (ξ2
sim)0.7 to match quantitatively. Interestingly, this correction is only required to

match the squeezing measurements in the neighborhood of the QCP. For squeezed state

generation using the deep quench method, the simulations match well without any adjust-

ments, as shown in Figure 3.48. We do not currently understand this discrepancy; perhaps

normally negligible effects such as magnetic anisotropy [89] or dipolar interactions [90]

become significant near the critical point where the energy scale goes to zero.

We have also studied the periodic squeezing for different qi, as shown in Figure 5.3.

The temporal evolution rotates the distribution and creates periodic squeezing described by

ξ2
Qyz =

1 + cos(ωit)

2
+

1− cos(ωit)

2η
(5.3)

and ξ2
Sx

= 1/ξ2
Qyz

. As qi approaches qc, |ξ2
Sx
| and |ξ2

Qyz
| become bigger while ωi gets

smaller.

Also shown in Figure 5.2 are data taken following the double quench sequence q0 →

qi → qf designed to achieve the squeezed ground state of Ĥ(qf ). In Figure 5.2(a), the data

show that following the second quench to qf = 1.04qc, the time evolution of ∆Qyz remains

constant at the level of the maximum squeezing previously observed, as expected for the

ground state. The data are compared with a simulation result including a ±0.1 Hz uncer-

tainty in c. The precise values of T and qf are determined from the single quench data.

Tomographic measurements of the fluctuations of the ground state shown in Figure 5.2(b)

taken at a much later time (t ∼ 3T/4), are indistinguishable from measurements made

of the periodic squeezing at (t = T/4), as expected. Furthermore, in addition to a con-

stant squeezing amplitude, the maximum squeezing angle (the minimum quadrature angle)

θs,min = min{ξ2
θ |θs} = −π remains constant following the second quench. This is in stark

contrast to the deep quench method (Figure 5.1(i)) for which θs,min is a function of c, q

and evolves dynamically. The experimental data is corrected for the photon shot noise and

the background imaging noise and the detection limit of the squeezing is −7 dB. From the

113



Figure 5.3: The periodic quadrature variance data of (a) Sx and (b) Qyz. The insets show
the relative distance from the QCP. As qi approaches qc, |ξ2

Sx
| and |ξ2

Qyz
| become bigger

while ωi gets smaller. Solid curves are the simulation result with corrections. Inset: The
measured oscillation frequency from the data is converted into the energy gap ∆ = ~ωi and
it measures the distance between qi and qc.
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Figure 5.4: A squeezed ground state is generated with an adiabatic ramp. The adiabatic
passage is more robust but slower compared to the shortcut protocol. The inset shows the
spin-noise tomography measured at t = 355 ms. The simulations take the lifetime of the
BEC into consideration with τ = 3.2 s.

measurement of −6 dB of squeezing, it is possible to determine the entanglement breadth

of the spin ensemble [91, 29, 30]. From this, we can conclude that a non-separable (entan-

gled) subset of 600 particles is detected in the squeezed ground state. For comparison, we

have also used an adiabatic ramp method to create the squeezed ground state. It is clear

that the double quench method is superior, offering ≥ √η faster preparation and higher

squeezing by minimizing atomic losses.

A high fidelity −3 dB squeezing generated by the adiabatic passage is measured in

Figure 5.4. The assumption of constant atom number is no longer valid at timescale >

100 ms due to the finite lifetime (τ = 3.2 s) of our condensates. The simulation with

c(t) = −7.5 exp
(
− 2t/(5τ)

)
Hz is plotted in Figure 5.4. As the time increases, the spin

correlations loss σ2
loss = p(1 − p)N0 [10] due to the lifetime leads to smaller detecable

squeezing, where N0 is the number of atoms without loss and p = 1 − exp(−t/τ) is the

probability of atom loss. A two-step linear ramp is used to realize the adiabatic passage.

The adiabatic passage ramp takes 30 ms to ramp from B0 to 600 mG and then takes 200 ms

to ramp to Bf .

The degree of squeezing in the ground state increases as qf approaches qc according to
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Figure 5.5: Measurement of ξ2
Sx

versus t following the double quench sequence for
different qf . The solid lines are simulation results and the shaded regions reflect the sen-
sitivity of the simulations to the uncertainty in c = −8.5 ± 0.1 Hz. For the qf = 1.003qc
data (green squares), the uncertainty of c may lead to crossing over to the FM phase. Inset:
the fidelity of the ground state F determined from the residual oscillation of ξ2

Sx
after the

second quench. The maximum fidelity that can be detected (dashed line) is limited by the
detection noise.

Equation 5.1 because the semi-classical orbits near the pole become more elliptical (Fig-

ure 5.5). In Figure 5.5, noise measurements are made for three different final qf values to

show this dependency. We measure the anti-squeezed quadrature ξ2
Sx

instead of the squeez-

ing in ∆Qyz to avoid limitations due to the detection noise limit. The sensitivity of the final

state on the uncertainty in c (and hence qc) increases at higher anti-squeezing amplitudes

as shown by the shaded envelopes on the simulation curves. Tomographic measurements

in Figure 5.7 confirm that the maximum squeezing angle θs = −π is independent of qf .

Following the second quench, any residual oscillation of the measured fluctuations

A =
(
max(ξ2

Sx
)−min(ξ2

Sx
)
)
/2 is an indication of imperfect transfer into the ground state.

Using a simple harmonic oscillator model [17], and defining F = |〈Ψ(t)|Ω〉|2 as the fi-

delity of the targeted ground state |Ω〉 of Ĥ(qf ), the fidelity can be determined from the
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Figure 5.6: Measurement of the long-term evolution of ξ2
Sx
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Qyz

in the squeezed
ground state. The simulations (solid lines) include the effects of atom loss c(t) = (−8.7±
0.1) exp(−2t/5τ) Hz. Here qc = 2|c(0)| is the critical point in the beginning of dynamics.
The detection limit is dominated by the uncorrelated atom loss σ2

loss (black dashed line)
after 600 ms. The blue and red dashed lines are the maximum and minimum variance
of the deep-quench squeezed state [11]. The inset shows ∆S2

x (red circles), ∆Q2
yz (blue

squares) and N (green triangles) versus t.

oscillation amplitude through:

F ≈ 1− (A/2η)2. (5.4)

Using this result, we determine that F > 98% for squeezed ground states as shown in Fig-

ure 5.5 inset. The tolerance to the oscillation is high because a small amount of excitation

can lead to significant noise fluctuation. F is lower at bigger ξ2
Sx

because the sensitivity to

c robustness increases. The maximum fidelity that can be detected is limited by the noise

detection uncertainty.

In Figure 5.6, the long-term evolution of the squeezed ground state is measured. Atom
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loss due to the finite lifetime of the condensate leads to a decrease in peak density n0, with

n0 ∝ N2/5 in the Thomas-Fermi model [92]. This in turn affects the spinor dynamical rate

and the QCP because qc ∝ c ∝ n0. Hence, as the condensate decays, one expects that

qf/qc will increase, leading to a decrease in the squeezing. The data in the figure show

this trend and compare well with simulations that include exponential atom loss with a

time constant τ = 3.2 s thus leading to the attenuation of the squeezing amplitude. The

ground state maintains squeezing for over 2 s, and spin-noise tomography shows that the

minimum squeezing quadrature angle remains fixed at θs,min = −π throughout the entire

evolution. The atom loss also degrades the squeezing due to uncorrelated atom loss [10].

This limit to the squeezing is also included in Figure 5.6 as σ2
loss. The uncorrelated loss

becomes more important at longer timescales comparable to the condensate lifetime. The

inset shows directly the time evolution of the variances ∆S2
x and ∆Q2

yz together with the

exponentially decaying total atom number, N .

The extra spin-noise tomography data for the stabilized squeezing in the main context

is plotted in Figure 5.7. It is evident that the squeezed ground state has a fixed θs,min = −π

that is independent of qf and t. One of the attractive features of our method is that no

searching is needed to align the minimum squeezing direction to the detection variables.

The double quench method can be easily adapted to (pseudo) spin-1/2 systems such as

bosonic Josephson junctions (BJJs) governed by a Hamiltonian of the form Ĥ = αĴz
2
+Jx.

It can also be employed for spin-1 condensates with c > 0 [78, 74, 93, 94, 89] such as for

sodium condensates. These systems have a QCP at q = 0 but lack a continuous quantum

phase transition. The result in this paper can be also extended to other systems similar

to ours, such as bosonic Josephson junction systems [79] and the Lipkin-Meshkov-Glick

model [80].

In summary, this is the first realization of spin squeezed ground states in a spin-1 BEC

within the proximity of the quantum phase transition point and provides a solid founda-

tion for the application of our protocol. The result shows metrology improvements at a
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Figure 5.8: A non-separable subset of 150 particles (red dot) is detected in the squeezed
ground state based on the entanglement breadth measurement. The corrected spin length
based on λ = 850 nm laser pollution (black dot) shows a 600 particles entanglement. Inset:
Measurement of the spin length under different experimental conditions. Green bars are the
measurement in the CO2 trap which sets the detection limit for the maximum spin length.
Blue bars are the data inside the cross trap at the condition q � qc. The red bars are the
measurements for a −6 dB squeezed ground state.

lifetime scale and the maintenance of the maximum squeezing angle in good agreement

with theoretical predictions. Our method, implemented here near a second-order quantum

phase transition, can also be used as a tool to measure the quantum phase transition pre-

cisely. This is exceptionally useful in condensed matter systems [95], for example, it can

help answer the relationship between high-temperature superconductivity and the QCP in

copper-oxide [96, 97, 98].

We measure the entanglement of squeezed ground states through the entanglement

breadth as shown in Figure 5.8. The entanglement breadth in the basis of the spin-nematic

operators can be calculated in analogy with the Bloch sphere operators [29, 30]. The bound-

ary labeled by the number k is given by the state

|Ψ〉 = |ψk〉⊗n ⊗ |ψp〉 (5.5)

which is a product of n (= [N/k], integer part of N/k) copies of state |ψk〉 containing k
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nonseparable spin-1 particles and state |ψp〉 composed of the remaining p (= N −nk) par-

ticles. The state |ψµ〉 (µ = k, p) represents the ground state of the µ particles Hamiltonian

Hµ = (Ŝ(µ)
x )2 − λ(Q̂(µ)

zz − Q̂(µ)
yy )/2 (5.6)

The boundary points are obtained as

〈(Q̂zz − Q̂yy)/2〉 = n〈(Q̂(k)
zz − Q̂(k)

yy )/2〉|ψk〉

+ 〈(Q̂(p)
zz − Q̂(p)

yy )/2〉|ψp〉
(5.7)

(∆Ŝx)
2 = n(∆Ŝ(k)

x )2
|ψk〉 + (∆Ŝ(p)

x )2
|ψp〉

(5.8)

The spin length here is different from the Dicke state’s case because the spin vector is

well-pointed in the (Qzz −Qyy)/2 direction.

In the inset of Figure 5.8, the spin length |(Qzz −Qyy)/2| = 2N0−N is measured and

studied for different experimental conditions. The λ = 850 nm laser contamination at the

condition q � qc leads to a 1% fraction of atoms in mF = ±1 compared to the ideal case

in the sole CO2 laser trap. The squeezed ground state at qf & qc further reduces the spin

length by 1%. A non-separable subset of 150 (600 with correction) particles is detected in

the squeezed ground state in Figure 5.8.
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CHAPTER 6

OTHER THEORETICAL PROJECTS

6.1 All-microwave spin-1 control

The scheme for all-microwave control utilizes the time-delayed microwave pulses with dif-

ferent tones so that the transition degeneracies can be avoided by using the intermediate

states. The purpose of applying all-microwave control instead of the RF + microwave con-

trol [16] is to convert the magnetic field fluctuation effect from phase (first-order sensitivity)

to detuning (second-order sensitivity). This allows the measurement of noise tomography

with ~S 6= 0 state with a high-fidelity target state.

Figure 6.1: All-microwave scheme and 4-level system. For 87Rb, |g〉 is |F = 1〉 and |e〉 is
|F = 2〉.

The Hamiltonian of the all-microwave control is

H(t) =
~Ω1(t)

2
(|e0〉〈g0|+H.c.) +

~Ω2(t)

2
(a|e0〉〈g+1|+ b|e0〉〈g−1|+H.c.), (6.1)

where Ω1,2(t) is the Rabi rates for different tunes and H.c. stands for Hermitian conjugate.

Here |a|2 + |b|2 = 1 is the normalized ratio of Rabi rates between ±∆ transition.
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Figure 6.2: Gate sequence.
∫ τ1

0
Ω1(t) = π (π pulse) brings all atoms from the initial state

|g0〉 to all atoms in |e0〉.
∫ τ2

0
Ω2(t) = Θ transfers atoms in to |g+1〉, |g−1〉) with a ratio

|a|2/|b|2. Another π pulse afterwards brings the rest of atoms back to |g0〉.

The gate sequence is shown in Figure 6.2 and the resulting state is derived as following.

After the first π pulse, where Ω1t1
2

= π
2

and t = t1,



e0(t)

g+1(t)

g0(t)

g−1(t)


=



−i

0

0

0


. (6.2)

All atoms are transferred into |e0〉 with an extra −π/2 phase. Then the two-tones pulse

provides σ± transitions, where Ω2t2
2

= Θ
2

and t = t1 + t2,



e0(t)

g+1(t)

g0(t)

g−1(t)


= −i



cos(Θ
2

)

−ia∗ sin(Θ
2

)

0

−ib∗ sin(Θ
2

)


. (6.3)

A sin2(Θ/2) proportion of atoms is in |g+1〉, |g−1〉) with a ratio |a|2/|b|2. The relative phase

is also encoded in the coefficient a∗ and b∗. The second π pulse bring all atoms back to the
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spin-1 manifold, t3 = π
Ω1

and t = t1 + t2 + t3,



e0(t)

g+1(t)

g0(t)

g−1(t)


=



0

−a∗ sin(Θ
2

)

− cos(Θ
2

)

−b∗ sin(Θ
2

)


. (6.4)

The atoms in |g0〉 get an extra π phase due to the entire evolution. For a spin-1 system, the

global phase φglobal can be ignored:


ξ+1

ξ0

ξ−1

 = eiφglobal


√

1−ρ0+m
2

ei
θs+θm

2

√
ρ0√

1−ρ0−m
2

ei
θs−θm

2

 = −


a∗ sin(Θ

2
)

cos(Θ
2

)

b∗ sin(Θ
2

)

. (6.5)

As a result,

ρ0 = cos(
Θ

2
)2,m = (|a|2 − |b|2) sin(

Θ

2
)2,

θs = −(φa + φb), θm = −(φa − φb).
(6.6)

To achieve a known target state, the all-microwave pulse sequence needs to satisfy

Θ = 2 arccos(
√
ρ0), |a| =

√
(1 +

m

1− ρ0

)/2, |b| =
√

(1− m

1− ρ0

)/2,

φa = −θs + θm
2

, φb = −θs − θm
2

.

(6.7)
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Figure 6.3: An illustration about using Equation 6.7 to generate a randomly-generated
target state.

The Bloch sphere is represented by the spin vector ~S = (〈Sx〉, 〈Sy〉, 〈Sz〉), where

〈Sx〉 =
√
ρ0(
√

1− ρ0 +m cos(
θs + θm

2
) +

√
1− ρ0 −m cos(

θs − θm
2

))

= cos(
Θ

2
) sin(

Θ

2
)(
√

1− (|a|2 − |b|2) cos(φa) +
√

1 + (|a|2 − |b|2) cos(φb)),

〈Sy〉 =−√ρ0(
√

1− ρ0 +m sin(
θs + θm

2
)−

√
1− ρ0 −m sin(

θs − θm
2

))

=− cos(
Θ

2
) sin(

Θ

2
)(−
√

1− (|a|2 − |b|2) sin(φa) +
√

1 + (|a|2 − |b|2) sin(φb)),

and 〈Sz〉 =m = (|a|2 − |b|2) sin(
Θ

2
)2.

(6.8)
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The spin vector length is defined as |S|2 = |Sx|2 + |Sy|2 + |Sz|2

|S|2 =2ρ0((1− ρ0) +
√

(1− ρ0)2 −m2 cos(θs)) +m2

=2 cos(
Θ

2
)2 sin(

Θ

2
)2(1 +

√
1− (|a|2 − |b|2)2 cos(φa + φb)) + (|a|2 − |b|2)2 sin(

Θ

2
)4

(6.9)

A couple of special cases are discussed below to show how the control parameters change

the spin vector.

case 1: Θ = π,

〈Sx〉 = 〈Sy〉 = 0, 〈Sz〉 = |a|2 − |b|2, |S|2 = |Sz|2. (6.10)

By controlling |a|, 〈Sz〉 is altered.

Figure 6.4: Bloch sphere scan a when Θ = π, |a| modulates the spin vector length.
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case 2: |a| = |b| =
√

1/2,

〈Sx〉 = cos(
Θ

2
) sin(

Θ

2
)(cos(φa) + cos(φb))

〈Sy〉 =− cos(
Θ

2
) sin(

Θ

2
)(− sin(φa) + sin(φb))

〈Sz〉 =0

|S|2 = sin(Θ)2(1 + cos(φa + φb))/2

〈Sx〉
〈Sy〉

=
cos(φa) + cos(φb)

sin(φa)− sin(φb)
= cot((φa − φb)/2).

(6.11)

Θ and φa+φb modulate the overall spin length. φa−φb modulates the direction of the spin

vector in Sx, Sy plane.

Figure 6.5: Bloch sphere φa and Θ scan when |a| = |b| = 1/
√

2. φa modulates the spin
vector length and at the same time magnetic phase. Θ modulates the spin vector length
while maintains the magnetic phase.

From the perturbation analysis, the sensitivity of the fidelity F of target state to the
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parameters is studied.

F =|〈a′|a〉|2

≈|1 + a∆a sin2(
Θ

2
)(e−2iφa − e−2iφb)|2 = 1 +O(∆a),

F =|〈Θ′|Θ〉|2

≈|1− 1

2
∆Θ2|2 = 1 +O(∆Θ2),

F =|〈φ′a|φa〉|2

≈|1 + i|a|2∆φaa sin2(
Θ

2
)|2 = 1 +O(∆φa),

(6.12)

where a′ = a+ ∆a, Θ′ = Θ + ∆Θ, and φ′a = φa + ∆φa.

The experiment can be done by adding a mixer and an arbitrary function generator

into the microwave circuits before the amplifier as shown in section 3.6. The arbitrary

function generator is programmed with three tones to satisfy the parameters calculated in

this section.

6.2 Periodic two-axis squeezing

The concept of squeezed spin states (SSSs) and the general principles have been estab-

lished by [99]. Two mechanisms have been proposed in that paper. One-axis twisting

(OAT) works as the building block for spin squeezing. Then, a two-axis counter-twisting

mechanisms (TAT) is introduced as a natural extension of OAT and it is shown to further

reduce quantum noise. Inspired by the work of [100, 101, 102] on spin-1/2 systems, we

extended the idea to a spin-1 system. In this section, we present a way to produce TAT in a

spin-nematic squeezed system by Floquet driving [103].

In the case q = 0, Equation 4.1 generates OAT for an atomic sample prepared in

|0, N, 0〉.

ĤOAT =
c

2N
Ŝ2 (6.13)
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To further reduce quantum noise, simultaneously twisting about two orthogonal axes in

opposite directions is introduced. Equation 6.14 creates TAT for initial state |0, N, 0〉.

ĤTAT =
c

2N
(Ŝ2 − (Q̂2

yz + Q̂2
xz)) =

c

2N
(Ŝ2

x − Q̂2
yz + Ŝ2

y − Q̂2
xz) (6.14)

HOAT , HTAT and HSN are displayed in Figure 6.6, using the mean-field method.

Figure 6.6: The level sets of a) ĤSN , b) ĤOAT and c) ĤTAT . The black lines are the separa-
trix and the squeezing axis. The blue (red) lines indicate lower (higher) energy compared to
the separatrix. Magneta points are the quasi-probability distribution of temporal evolution.
Initial distributions squeeze along the separatrix. ĤOAT and ĤTAT have bigger squeezing
amplitude compared to ĤSN because the separatrix goes through great circles of SN sphere.

In order to generate the two axis squeezing Hamiltonian from HSN , the method of peri-

odic driving is applied. Our idea for transforming the SN squeezing to the TAT makes use

of multiple π/4 pulse affected with the coupling term ΩQ̂yz and periodically modulating

q. In the Rabi limit Ω� c
2
, the nonlinear interaction can be neglected while the collective

spin undergoes driven Rabi oscillation. A π/4 pulse corresponds to
∫∞
−∞Ω(t) = π/4 which

transforms R−π/4(Q̂yz)e
iŜx

2

Rπ/4(Q̂yz) = ei((Q̂zz−Q̂yy)/2)2 , where Rπ/4(Â) = e−iÂπ/4. The

Hamiltonian after transformation becomes

ĤF = −i log(R−π/4(Q̂yz)ĤOATRπ/4(Q̂yz))

=
c

2N
[(
Q̂zz − Q̂yy

2
)2 + (

Ŝy + Q̂xy√
2

)2 + (
Ŝz − Q̂xz√

2
)2].

(6.15)
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When the system evolves under ĤSN for time t1 and then ĤF for time t2 for a single

period, the evolution operator becomes

Û = e−it1ĤSN e−it2ĤF

≈ e−i(t1ĤSN+t2ĤF )exp(t1t2/2[ĤSN , ĤF ] +O(t1t2))

(6.16)

due to Baker-Campbell-Hausdorff formula. Expanding for small t1, t2, exp(t1t2[ĤSN , ĤF ]+

O(t1t2)) ≈ 1. Hence we end up with U = e−i(t1ĤSN+t2ĤF ) and Un ≈ e−in(t1ĤSN+t2ĤF ) =

e−it(αĤSN+βĤF ). Here α, β are the relative scale of t1 and t2 compare to the period length

T = t1 + t2.

The coefficients (α, β, q) are chosen to be (13
29
, 16

29
, 3

26
c) to create the effective TAT

Hamiltonian.

ĤEFF =
13

29
(
c

2N
Ŝ2 +

3c

26
Q̂zz) +

16

29

c

2N
Ŝ2
F ≈

1

2

13

29
ĤTAT . (6.17)
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Figure 6.7: Spin squeezing parameter at different pulse numbers Nc = 10 (upper), 100
(middle), and 1000 (lower) in black solid lines compared with the Ĥ ′OAT = 13

29
HOAT in blue

dash-dot line and the Ĥ ′TAT = 1
2

13
29
ĤTAT dynamics in red dashed lines, all for N = 100

atoms.

To compare with the Floquet drive results with the OAT and TAT results, we consider

the case N = 100 numerically. The number of cycles of pulses Nc is used to calculate the

time of one period tc = |c|t
2π
/Nc. To make the comparison on the same time scale, the TAT

and OAT model are modified to be Ĥ ′TAT = 1
2

13
29
ĤTAT and Ĥ ′OAT = 13

29
ĤOAT in Figure 6.7.

In Figure 6.7, results for Nc = 10, 100, 1000 are displayed. With the increase of pulse

number Nc, the Floquet dynamics approaches and eventually settles down closely to the

effective dynamics of ĤTAT .
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6.3 Fast generation of Dicke-like states

Dicke states are one of the entangled states that can beat the standard quantum limit to

the Heisenberg limit. For spin-1 Dicke states, they can be represented as an annulus on

the generalized Bloch sphere. Recently, a couple of breakthroughs [30, 49] is done by

successfully generating Dicke-like states, which take advantage of all three components

and thus offer higher interferometric sensitivity. The main difference between the Dicke-

like states and Dicke states is that Dicke states are no longer a singly occupied ground state

of the Hamiltonian H = −S2. Instead, it can be a combination of hundreds of excitation

states as long as the angular momentum 〈L2〉/N2 ≈ 1.

So far, the main method of generating the Dicke-like states is by quasi-adiabatically

going across the phase transition, which requires a complicated ramp sequence as well

as a long evolution time. In this section, a non-adiabatic shortcut is introduced to generate

Dicke-like states with significant metrological gain. A single-step quench to q ≈ 1|c| across

the quantum phase transition produces the largest anti-squeezing (angular momentum).
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Figure 6.8: (a) By using a single step quench time evolution from q = +∞ to near q = 1|c|,
the max anti-squeezing searched with θs scan (Equation 5.2) is 〈L2〉/N2 = 0.8 which is
only 1 dB smaller than the Heisenberg limit. c = −8.5 Hz is used in the simulation. (b)
The spin-noise tomography of the maximum anti-squeezing. The tomography suggests that
the max angular momentum direction is at θs = 0, which means the max anti-squeeizng is
in Sx and Sy direction.

From the excitation spectrum in the Dicke basis (the eigenstates of H = −S2), the

initial state |0, N, 0〉 is at the highest excitation state of the system. After a certain amount

of evolution time (70 ms), the non-equilibrium state has a strong overlap with the ground

and low-excited states, where the angular momentum is maximized.
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Figure 6.9: The excitation spectrum of the q = 1|c| evolution in the Dicke basis.

Using the semi-classical simulation, the max anti-squeezed state is visualized in the

Bloch sphere.

Figure 6.10: (a) Ensemble points simulated with the semi-classical method are plotted in
the Bloch sphere. (b) Histogram of the state in the Sx variable which can be measured in
an experiment.
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Similar to the double quench used for the squeezed ground state, a second quench can

also be applied to the Dicke like state to generate time-stationary anti-squeezed q(t) =

+∞χ(−∞,0)(t) + qiχ(0,T )(t) + qfχ(T,+∞)(t). A second quench to qf = 0|c| at the max

anti-squeezing point is simulated in Figure 6.11.

Figure 6.11: (a) S2
z noise measurement with RF rotation angle θRF . (b) qi = 0.9|c| gives

the best time-stationary anti-squeezed state.

6.4 Gap opening induced by the finite system size effect

As shown in the Figure 4.13, the finite system size will lead to the gap opening effect.

This effect is essential for going across the quantum phase transition adiabatically within a

relatively short time against the lifetime of the system, which has been studied in 23Na [94].

For 87 Rb, the entire region can be divided into three. In the regime, q = +∞ → 3|c|, the

nonadiabatic shortcut from the squeezed ground state can be applied disregarding the atom

number change. Similarly, a nonadiabatic shortcut q(t) = 1|c|χ(0)(t) + 0.5|c|χ(0,T )(t) +

0|c|χ(T,+∞)(t) utilizes the coherent oscillation in the regime q = 1|c| → 0|c|. In the regime

q = 3|c| → 1|c|, the energy gap plays a significant role and total ramp time varies as the
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atom number changes.

Figure 6.12: Piecewise ramp optimization for a threshold fidelity Fthre = 99.9%. Each
optimization step asks for the fastest speed of a linear ramp to achieve the instantaneous
ground state fidelity above Fthre. The time required to finish the ramp is shortened with a
smaller atom number.

There exists a universal relationship for the numerical optimized ramp sequence, all

sequences overlapped when plotting q versus tmin(∆)2. Here min(∆)2 is the minimum

energy gap (at the quantum phase transition) between the ground state and the first excited

state. An analytic explanation can be derived based on the Landau-Zener theory [104]. The

Landau-Zener parameter is defined as

LZ :=
|v|

min(∆)2
,

which determines the excitation probability of a two-level system across the phase transi-

tion. dt = d∆/(LZ min(∆)2) because v = d∆/dt. As a result, the total ramp time

T =
1

LZ min(∆)2
(∆ini −∆fin)
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can be estimated based on the excitation probability and the minimum energy gap because

the initial and final energy gap is the same. From the above equation, T min(∆)2 should be

a constant for the same fidelity of the ground state, which agrees with Figure 6.13.

Figure 6.13: All traces overlap with each other when plotting q versus tmin(∆)2. This is
the universal relationship for the numerically optimized ramp.

If the final state generated isn’t 100% fidelity, the oscillation of ρ0 can be used to mea-

sure the energy gap and the fidelity. In Figure 6.14, the oscillation shows great agreement

with the energy gap.
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Figure 6.14: The energy gap is measured by detecting the ρ0 oscillation frequency after
holding the state at the target q. The circles are the measured oscillation frequency (con-
verted into energy) and the solid line is the numerically calculated gap.

The oscillation amplitude ∆ρ0 can be analytically derived from the perturbation theory.

Assuming the excitation is only in the first excited state |ψ1〉, the final wave function can

be expressed as |ψ〉 =
√

1− pe|ψ0〉+
√
pe|ψ1〉. Consequently,

∆ρ0 = 2
√
pe(1− pe)〈ψ0|ρ0|ψ1〉 = 2

√
pe(1− pe)

√
∆

8|c|N
,

which can be used to estimate the fidelity of the ground state.
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CHAPTER 7

OTHER EXPERIMENTAL PROJECTS

7.1 Mini MOT

This is a project done by collaborating with Thomas Dellaert and Bharath Hebbe Mad-

husudhana. The purpose is to create a miniaturized MOT setup that is portable due to the

size and small laser power required. This setup can also be used to test the laser locking

quality.

A pair of anti-Helmholtz coils with 20 windings each works as the MOT coil. The cur-

rent required to generate the gradient is 8.4 A. The vacuum chamber is sealed by pinching

off a cooper tube instead of a valve. An ion pump is included in the system to provide an

ultrahigh vacuum.

Figure 7.1: Mini MOT vacuum chamber setup.
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One ECDL is used to work for both cycling and repump transitions. The laser beam

is expanded into a 1.5 cm diameter. A minimum of 2.3 mW in cycling transition and 8.2

µW in repump transition is needed for generating MOT. The laser is locked on the cycling

transition. The repump transition is created by using an electro-optic modulator (EOM)

with the model Jenoptik 635. The EOM is modulated by phase with a 6777 MHz RF

source with an amplifier (ZVE-8G 30dBm). The insertion loss of EOM is -6 dB which

means the output beam power is 25% of the input beam. To avoid the interfering problem

between the carrier frequency of EOM and the cycling transition when input with a single

fiber, an extra AOM is added. The 0th order of AOM is used as the cycling transition beam.

Figure 7.2: Single ECDL setup with EOM generates both the cycling and repump transition
frequency.

7.2 EOM laser

This is a project done by collaborating with Mikai Hulse. One major problem of ECDL

laser locking is its narrow tunable range. AOMs can only provide 100 MHz range compared
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to the locked point which is typically an absorption feature of 87Rb. One way to further

improve the tunable range to GHz is by replacing AOMs with EOMs.

Figure 7.3: Setup for using the laser after the EOM to perform a satspec. The satspec
before the EOM is also used to show the comparison.

By applying different RF frequencies, the satspec after the EOM shows a direct differ-

ence compared to the satspec before the EOM.
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Figure 7.4: Satspec with applied modulation 1.22 GHz. (Yellow) Reference satspec setup.
(Blue) Post EOM setspec setup.

To characterize the sideband and carrier power ratio, A Fabry–Pérot cavity Figure 3.9

is used. By measuring the resonance peak height on the oscilloscope, the relative power is

measured as a function of import modulating power.

Figure 7.5: The relative power of the sideband and the carrier frequency at 2 GHz modula-
tion frequency
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7.3 Double MOT

This is a project done by collaborating with Maryrose Barrios. The purpose of this project

is to use the 2D MOT as a cold atom source instead of a dispenser. This will enable a higher

vacuum and thus a longer lifetime for the condensate. The 3D MOT chamber is a glass cell,

as a result, the MOT coil doesn’t need to be water-cooled due to the close spacing between

the MOT coils. Furthermore, the all-glass cell lead to small scattering from the imaging

beams.

Figure 7.6: Double MOT vacuum chamber setup.

The 2D MOT takes the most laser power due to the expanded cigar beam shape. A

push beam sends atoms through a small hole to the 3D side, where the slow atom source

is recaptured by the MOT beams. An atom number of 6× 109 can be loaded within 10.5 s
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and the lifetime of MOT is about 20 s.

Figure 7.7: Double MOT laser setup.

Another advantage of using the all-glass cell is that the dipole traps optics are placed

outside the chamber. A YAG fiber laser with λ = 1064 nm (seed laser YLD-0.01-1064-

LP-SF + amplifier YAR-20k-1064-LP-SF) is used to load the atom from the Dark MOT

stage. An 8.5 W (15 W out of fiber) of λ = 1064 nm is focused by a 100 mm lens into the

chamber. About 5× 105 atoms are trapped inside the dipole trap. The alignment is helped

by using a cycling beam to blow atom away in the dark MOT center and then overlap the

λ = 1064 nm with the cycling beam.

To sum up, this project is a successful trial for going to more complicated setup with

further improvement. The problem still needs to be conquered is the instability of the 3D

MOT, which comes from the long trajectory under gravity between the 2D MOT to 3D

MOT. A shorter distance will help. Also, the TA will be better used by having its free space

coupled by the slave laser instead of after the fiber coupling.
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7.4 Antenna with circularly-polarized microwaves

This is a project done by collaborating with Matthew Boguslawski. This project aims to use

the circularly polarized microwave to apply a gate that does not care about the frequency

degeneracy of ±∆ transition. In the actual experiment, the antenna used is a spiral antenna

due to its simplicity. Here another antenna with better circular polarization is demonstrated.

Figure 7.8: Two dipole antennas are constructed to be orthogonal to each other. Two
antennas are displaced along the axis direction so that there is no interference. The phase
of microwaves entering each antenna is modulated by using a mixer.

The quality of linearly and circularly polarized microwaves is examined using a receiv-

ing linear polarized antenna and measuring the receiving power against the rotation angle.

The measurement of Malus’s law indicates good linear polarization (25 dB contrast) of

each antenna while showing the 90◦ difference between antennas.
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Figure 7.9: Individual antenna measurement shows Malus’s law.

By changing the relative phase difference between the microwaves that input into the

antenna, the maximum and minimum power received is balanced. The difference between

the two power indicates how good is the circular polarization.

Figure 7.10: The minimum axial ratio between the max and min power is 0.4 dB which is
better than the commercial linear-to-circular polarizer. The opposite handedness of circular
polarization can be generated by shifting the phase of 180◦.

7.5 DBR laser

This is a project done by collaborating with Julia Cohen and Tetsuro Ishida. This project

aims to replace the ECDL laser with the distributed Bragg reflector (DBR) laser to achieve

better thermal stability, a larger free spectrum range, and a simpler laser locking method
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with a large tunable range. The DBR laser (Photodigm ph780DBR Mercury package)

has a passive grating controlled by the current and the temperature. The current and the

temperature controller are from Vescent (D2-105). The temperature can be thus stabilized

to ±25 µK at the 1 s scale.

Table 7.1: A beam waist measurement of the DBR laser. The astigmatism is fixed by the
cylindrical telescope. The aspherical collimation is optimized by adjusting the Y waist
close to the near-distance result. The cylindrical telescope is adjusted to have the smallest
X waist.

X waist (µm) Y waist (µm)

Near distance (after isolator) 401.46 1485.4

Far distance 1m for below measurement

Aspherical collimation 1098.4 1150

1:1 50mm cylindrical telescope 615.28 1230

After anamorphic prism 594.41 598.3
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Figure 7.11: (a) The case of the current controller needs to be connected to the ground of
the laser to avoid the ground loop. (b) The DBR laser has a free spectrum range of 20 GHz
without the mode hop. All 87Rb and 85Rb features can be shown at the same time. (c)
Wavelength as a function of temperature. (d) Wavelength as a function of current.

7.5.1 sub-Doppler DAVLL

To further improve the simplicity of the error signal generation, we switch from the FM

method to the dichroic atomic vapor laser lock (DAVLL) method. A sub-Doppler DAVLL

[105, 106] is applied to generate the error signal at a Doppler-free satspec. This method

requires about 10 G along the Rb cell direction which is generated by a solenoid. The

magnetic field shifts the resonance of σ± transition by 2µBgFBz/h and the subtraction

between the σ± signal gives the effective first-order derivatives.

The lock quality is estimated from the noise on the error signal. Two DBR lasers

are locked to 3,1 crossover and 3,2 crossover accordingly, the bandwidth of DBR1=1.5

MHz and DBR2= 1.5 MHz. As a result, the bandwidth of the heterodyne signal has

FWHM=
√

1.52 · 2 = 2.1 MHz agrees with the 2 MHz measured data.
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7.5.2 DAVLL: Permanent magnet

To generate an error signal with a large tunable range (1 GHz), a DAVLL locking method

is needed. This method does not require Doppler-free satspec and requires a magnetic field

of about 100 G. A solenoid is not a great tool to generate such a strong field due to the

fact of too many windings and the heat generated affecting the Rb cell temperature. To

solve this problem, permanent magnets replacement is applied. Here are some permanent

magnet configurations that are used.

Figure 7.12: (a) A pair of ceramic plate magnets with a small hole in the center. Each plate
is an attachment of 4 smaller plates (4 × 6”) (b) A pair of ceramic ring magnets (100 mm
outer diameter, 60 mm inner diameter, 20 mm thickness). (c) Four NdFeB magnets rod (
1/2” diameter, 6” length). Each rod is an attachment of three cylinder magnets (2” length).
From the center axis to the center of the rod is 2.088”.

That configuration is found by performing the analytic calculations and numerical sim-

ulations. The cylindrical magnets along the center of the axial z direction have a field:

Bz =
Br

2
(

L+ Z√
R2 + (L+ Z)2

− Z√
R2 + Z2

),

where Br is the flux density (Ceramic 5 = 3950 and NdFeB 35 = 12300), L is the thickness,

R is the radius, and Z is the distance from the surface. It is very similar to a pair of

Helmholtz coils where ∂Bz/∂z = 0 happens at R = D, where D is the distance between

the magnets. As a result, the plate magnets are chosen to be 8× 12× 1/4” with D = 5.7”.
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The ring magnets can be calculated with the equation

B(z) =
Br

2

[(
Z + L√

(Z + L)2 +R2
1

− Z√
Z2 +R2

1

)
−

(
Z + L√

(Z + L)2 +R2
2

− Z√
Z2 +R2

2

)]
,

where R1 is the outer radius and R2 is the inner radius. There are not a lot of commercial

options for ring magnets with a large radius, so we use the available options and optimized

the distance (D = 2.825”) to minimize the gradient.

The four-rod configuration is directly simulated using the method in [107]. This con-

figuration turns out to be most compact and easy to be mounted with optics mounting

hardware. The measurement of all three configurations shows great agreement with the

theoretical curves.

Figure 7.13: Magnetic field measurement along the center axis of different configurations.
The solid curves are from the theory while the circles are measured with the Hall effect
sensor.

Using the above configurations, the DVALL method generates a stable error signal that

can be used to lock a laser with a large tunable range.
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Figure 7.14: The DVALL method generates a splitting of σ± signal by 900 MHz. The
change of the locking voltage to the error signal can now span the range of GHz.

7.6 New chamber

This project aims to improve the current vacuum setup to achieve a longer lifetime of BECs

and a simultaneous imaging system with lower background noise. The setup is designed to

have a minimum change to the current system.
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Figure 7.15: A 2D MOT setup is added as the slow atom source. This will improve the
vacuum in the 3D MOT chamber. The 2D MOT is installed in the vertical direction to avoid
the gravity curved trajectory of the atomic beam. The imaging lens inside the chamber can
work with its full NA due to the cloud falling along the imaging axis. An extra high NA
lens is installed to utilize the 6” window. Due to the 75 mm diameter of the aspherical
lens, the TOF will not lead the cloud far from the imaging axis thus leading to less imaging
distortion.

152



CHAPTER 8

OUTLOOK

In this thesis, we have been focused very deep into a spinor Bose-Einstein condensate

within m = 0 subspace and investigated squeezed ground states. This is started with a

question about how we manipulate the quantum system and achieve the target state, Hamil-

tonian, etc. to realize purposes such as metrology, simulation, and computation. There are

limited options of interactions that nature provides us with. However, humans are not only

trying to study nature but also using the knowledge we learned to further construct possi-

ble systems. In this chapter, we will look at the possible future direction from a broader

perspective.

8.1 Experimental techniques

In this thesis, we are using the existing tools to make the experiment work. Nevertheless,

there are plenty of places that can be further improved. The λ = 850 nm laser that is

used for the cross trap configuration can be replaced with a further detuned wavelength

(for instance, λ = 1064 nm) to achieve a lower photon scattering rate and a stabler trap

alignment. The vacuum quality and the loading time can be further improved with a 2D

MOT slow atom source. The number of lasers can be further reduced with DBR lasers.

The laser power can be actively feedback and stabilized. The trim coils can be designed

to satisfy the Helmholtz conditions to minimize the possible gradient. The IGBT can be

replaced with metal–oxide–semiconductor field-effect transistor (MOSFET) to avoid the

large induction induced current while the SG and MOT coils can be powered with the

same power supply. The imaging method can be further improved by introducing the third

aperture to apply the three-beam imaging method [47]. The fast laser on/off switching can

be done with a better method (such as motorized laser power attenuators) without losing
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a fair amount of power through AOMs. The control sequence can be optimized with non-

even sampling rates.

8.2 Research directions

The reason that we limit our study within the m = 0 subspace is that the initial state

|0, N, 0〉 can be generated robustly by the purification process. To further explore interest-

ing physics outside this subspace, a robust protocol to prepare a different initial state that

is accurate up to the quantum noise level needs to be designed. The experiments related to

them 6= 0 subspace are spin-1 state noise tomography and gap opening due to the non-zero

magnetization.

Another direction that can be studied is to flip the sign of the interactions in the spinor

condensate. q can be flipped with a microwave dressing. c can be flipped by transferring

atoms into F = 2 level because it is anti-ferromagnetic. At the same time, F = 2 level

is more accurately described by the spin-2 dynamics. Theories and experiments are less

studied which leaves a lot of open questions: What is the commutation relationship of the

25 operators space? What will be qualitatively different between the spin-1 and spin-2

spin-mixing dynamics? Can the control of q and c together engineer Hamiltonian to create

time-reversal dynamics or two-axis squeezing?

Last but not least, there are still some hard problems to be tackled even within them = 0

subspace. The Dicke state is still a state hard to be generated due to the phase transitions.

The potential solution is to find a shortcut for generating such states such as non-adiabatic

evolution or deterministic excitation to a highly excited state at the polar phase. In an ideal

world, we should be able to generate any eigenstate of the many-body Hamiltonian but the

truth is we are still far away from this goal. This means a lot of further studies can be

conducted in the future.
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