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SUMMARY

The quantum properties of matter waves, in particular quantum correlations
and entanglement are an important frontier in atom optics with applications in quan-
tum metrology and quantum information. In this thesis, we report the first observa-
tion of sub-Poissonian fluctuations in the magnetization of a spinor 8’Rb condensate.
The fluctuations in the magnetization are reduced up to 10 dB below the classical
shot noise limit. This relative number squeezing is indicative of the predicted pair-
correlations in a spinor condensate and lay the foundation for future experiments
involving spin-squeezing and entanglement measurements.

We have investigated the limits of the imaging techniques used in our lab, absorp-
tion and fluorescence imaging, and have developed the capability to measure atoms
numbers with an uncertainly < 10 atoms. Condensates as small as ~ 10 atoms were
imaged and the measured fluctuations agree well with the theoretical predictions. Fur-
thermore, we implement a reliable calibration method of our imaging system based
on quantum projection noise measurements.

We have resolved the individual lattice sites of a standing-wave potential cre-
ated by a CO; laser, which has a lattice spacing of 5.3 pm. Using microwaves, we
site-selectively address and manipulate the condensate and therefore demonstrate
the ability to perturb the lattice condensate on a local level. Interference between
condensates in adjacent lattice sites and lattice sites separated by a lattice site are

observed.



CHAPTER 1

INTRODUCTION

In a gaseous Bose-Einstein condensate (BEC), all the atoms occupy the same quan-
tum state. In a simplified quantum mechanical picture, the atoms can be thought
of as particles that simultaneously have a wave-like character described by the de
Broglie wavelenth Ay = h/v/2mmkpT, where m is the mass of the particles, T is the
temperature, h is the Planck constant, and kg is the Boltzman constant. At high tem-
peratures (e.g. room temperature), the de Broglie wavelength is very small and the
atoms can basically be considered as classical point-like particles. As the temperature
is lowered \;p increases and eventually becomes comparable to the inter-particle sep-
aration. At this temperature, the particles are no longer distinguishable and bosons
start to form a Bose-Einstein condensate in which every particle posseses an identical
spatial wavefunction; the coherent superposition of these wavefunctions results in a
macroscopic coherent matter wave.

The experimental realization of BEC in 1995 [1, 2, 3, 4] was a very significant
achievement in the field of atom optics. In analogy to a coherent optical field, a BEC
can be considered as a source of coherent or “laser-like” atoms [5], which when coupled
out of the trap form a so-called atom laser [6, 7, 8]. Although BEC is a quantum
mechanical phenomenon, it can be described by a classical matter wave field just as
a laser beam is described by a classical electromagnetic wave.

In the field of atom optics there recently has been much interest in the quantum
properties of matter waves, in particular quantum correlations and entanglement.
In analogy to quantum optics one could consider this the emergence of the field

of quantum atom optics. A variety of fascinating experiments with ultracold atoms



have demonstrated nonclassical effects in atomic fields by studying noise correlations.
These include the Hanbury-Twiss effect for bosons [9, 10], anti-bunching for fermions
[11, 12], correlations in a Mott-insulator [13], and atom pair correlations from molec-
ular disassociation [14] and from two colliding BECs [15]. Sub-Poissonian number
fluctuations have been directly observed in a BEC [16, 17, 18, 19], in a Mott in-
sulator [20], and in a degenerate Fermi gas [21] confirming the quantum statistics
of these quantum degenerate gases. Besides giving insight into fundamental princi-
ples of quantum mechanics, correlated systems are predicted to have a wide range of
applications such as quantum metrology and quantum information.

In quantum metrology, for example, measurements on an ensemble of uncorre-
lated particles are limited by quantum projection noise. This standard quantum
limit (SQL) originates from the Heisenberg uncertainty principle and fundamentally
limits the precision of measurements on independent atoms. However, by introducing
quantum correlations this limit can be surpassed. Spin states that are correlated and
demonstrate entanglement are defined as spin squeezed states (SSS) [22]. However,
it is important to note that the spin-squeezing requirement for metrological gain is
more stringent than for entanglement [23]. In dilute atomic gases, spin squeezed
states were first realized by transferring entanglement of nonclassical light to atoms
[24] and through quantum non-demolision (QND) measurements [25]. In a quantum
non-demolision measurement, the nondestructive measurements project the system
on a SSS. Using this method sub-projection noise measurements have successfully
been made in atomic clocks [26, 27, 28] and in atomic magnetometry [29]. Sub-
projection noise magnetometry has also been shown in a system of two entangled
atomic ensembles [30]. In this case the entanglement was generated by a light pulse.

In order to generate spin-squeezing through a unitary transformation, the Hamil-
tonian requires a nonlinear interaction term [22]. In a Bose-Einstein condensate

(BEC) the repulsive interaction between the atoms is nonlinear and can consequently



lead to spin squeezed states. A suppression of number fluctuations or so-called num-
ber squeezing has been indirectly observed in deep optical lattices and double-well
potentials where the on-site interaction leads to the localization of exact atom num-
bers at the individual lattice sites indicating the realization of Fock states [31, 32, 33,
34, 35, 36]. The number squeezing in a lattice potential has been measured directly
and spin-squeezing was verified [18]. The nonlinear interaction between the atoms
has also been exploited to create spin-squeezed states of a two-component BEC,
where the nonlinear interaction was controlled either by a Feshbach resonance [37] or
by changing the overlap of the two components [38]. Both these experiments show
that the classical precision limit (SQL) of a Ramsey interferometer can be surpassed
and therefore demonstrate that spin-squeezed states have the potential of improv-
ing quantum metrology measurements, such as atomic clocks, which currently use
Ramsey spectroscopy to define the current time standard.

In quantum optics, correlated photon pairs or entangled photon beams can be gen-
erated in nonlinear media through parametric down-conversion and four-wave mixing
[39, 40]. These ideas have been extended to the field of atom optics and consequently
have generated many proposals concerning the generation of atomic squeezed states
and demonstrating nonlocal Einstein-Podolsky-Rosen (EPR) correlations. Examples
of such proposals include [41, 42, 43, 44, 45, 46, 47, 48, 49], but the list is far from
complete. In the collisions of two or three BECs [50, 15, 51, 52, 53] the atom-atom
interactions play the role of the nonlinear medium resulting in the generation of the
coherent matter waves. Similarly, molecular dissociation can be considered an analog
to parametric down-conversion [14].

The experiments mentioned above exploit nonlinear elastic scattering processes
to generate spin-squeezing. However, as proposed in [41, 42|, spin-exchange collisions
can also create spin-squeezing and pair correlations. In a spin-1 BEC, the atomic

interaction not only has a density-dependent term but also a spin-dependent term,



which couples the different internal Zeeman levels and leads to spinor dynamics such
as spin-mixing. For example, in a spin F' = 1 BEC, spin-mixing occurs when two
mr = 0 atoms collide and become one mpr = —1 atom and one mr = 1 atom or
vice versa. This process also represents a type of four-wave mixing, and leads to cor-
related internal quantum states. A spin-1 3'Rb condensate used as a magnetometer
[54] has already shown to have a greater sensitivity per unit volume than supercon-
ducting quantum interference devices (SQUIDs). The spin-squeezing generated by
spin-mixing is predicted to potentially reduce the variance of the atomic magnetiza-

tion and nematicity as far as 20 dB below the standard quantum limits [55].

1.1 Contributions of this Thests

In this thesis, we report on the direct observation of sub-Poissonian fluctuations in
the magnetization of a spin-1 3 Rb condensate after spin-mixing from a pure F' =
1,mprp = 0 condensate. For 300 < N = N1+ N_; < 2300 atoms in the mp = +1
states, the fluctuations in the magnetization AM = A(N,; — N_;) are reduced up
to 10 dB below the classical shot noise limit. This is the first demonstration of sub-
Poissonian spin statistics in a spin-1 condensate and provides a solid foundation for
future experiments involving the demonstration of squeezing in a spinor condensate.

The detection of sub-Poissonian fluctuations requires an imaging system that can
detect atoms with a noise under the atom shot noise limit, which is equal to AN =
VN for N atoms. To reach this limit for small atoms numbers (N ~ 100), we
improved our imaging system by implementing a high numerical aperture lens (NA =
0.31) and investigating the limits of the imaging techniques used in our lab, namely
absorption and fluorescence imaging. As a result, we have been able to improve our
imaging resolution to ~ 3 pum and have developed the capability to measure atom
numbers with an uncertainty < 10 atoms.

In order to demonstrate the sensitivity of our imaging techniques, we excite a small



fraction of a F' = 1,mp = 0 condensate to the F' = 2, mpr = 0 ground state using
microwaves. In this experiment, we have been able to image condensates as small as
~ 10 atoms and the measured fluctuations agree well with the theoretical predictions
given the imaging noise, quantum projection noise, and the fluctuations of the total
atom number due to technical noise in the experiment. These measurements give
us confidence in our understanding of imaging noise. By measuring both the atoms
in the /' = 1 and the F' = 2 state, we can renormalize the number of atoms in
the F' = 1 state to the total atom number. This normalization eliminates the noise
due to fluctuations of the total atom number and allows us to measure the quantum
projection noise of the atoms in the ' = 2 state. Furthermore, we implement a
reliable calibration method of our imaging system based on quantum projection noise
measurements in a spin-1 system.

With the improved resolution, we have been able to resolve the individual lattice
sites of a standing-wave potential created by a CO, laser, which has a lattice spacing
of 5.3 pm. Additionally, we have shown that we can address and manipulate the
individual lattice condensates using microwaves. This single-site addressability allows
us not only to reliably count the atoms in a single lattice site, but also to modify and
perturb the condensate on a local level. We have verified the coherence of the site-
selective state-transfer to the F' = 2 hyperfine state by interfering adjacent lattice sites
and lattice sites separated by one site. The visibilities of fringes in the interference
pattern are on average 0.3 and 0.15, respectively.

In this thesis, we will start with the description of the experimental set-up and
procedure (Chapter 2). Then we will present the theory and the limitations of the
imaging techniques used in our lab, namely absorption (Chapter 3) and fluorescence
(Chapter 4) imaging. In Chapter 5, we present the experimental parameters of the
lattice BEC used in our experiments, our ability to address and manipulate single

lattice sites, and the interference of two independent lattice condensates. In Chapter



6 we will explain the concept of quantum projection noise, present our initial imaging
tests using small condensate in the F' = 2 state, and describe a calibration method
based on quantum projection noise. Before reporting on the observation of sub-
Poissonian fluctuations in the magnetization (Chapter 8), we will provide a brief
overview of the theoretical description of a spin-1 condensate (Chapter 7). Finally,
we will give a summary of our results and give an outlook on future experiments

(Chapter 9).



CHAPTER 11

EXPERIMENTAL PROCEDURE AND SET-UP

The first achievements of Bose-Einstein condensation (BEC) in dilute atomic gases in
1995 [1, 2, 3, 4] was made possible by previous advances in laser cooling, in particular
the first realization of a magneto-optical trap (MOT) in 1987 [56]. The MOT has
remained an important and very popular tool in ultra-cold atomic physics due to its
robustness and its ability to efficiently capture and cool millions of atoms at room
temperature to the microkelvin regime. In almost all BEC experiments up to date, the
atoms are pre-cooled using laser cooling techniques, before they are cooled to quantum
degeneracy through evaporation. Although laser cooling methods, in general, do not
produce atomic clouds cold and dense enough for the formation of BEC, they provide
a very reliable cold atom source necessary for loading a sufficiently large number of
atoms into the atom trap used for evaporation.

For the creation of a BEC, we use an all-optical approach, which was pioneered
in our laboratory in 2001 [57] as an alternative to a magnetic trap. The efficiency of
this all optical approach has since then been improved [58] and has proven to be a
simple and fast approach for creating atomic BECs. Optical dipole traps have two
important advantages over magnetic traps. Firstly, the trapping potential of optical
dipole traps, unlike that of magnetic traps, does not rely on the internal spin state of
the atoms. Under appropriate conditions, they are essentially spin-independent. They
therefore have the capability to trap atoms or molecules that are not susceptive to
magnetic trapping and are also well suited for studying internal dynamics, including
spinor dynamics. Secondly, optical dipole traps can provide a large variety of different

trapping geometries, such as multi-well potentials.
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Figure 2.1: Simplified Schematic of the Experimental Set-up.

Our experimental procedure is almost identical to the one used in previous 8'Rb
BEC experiments performed in our lab [58]. We start with a vapor cell MOT and then
load the pre-cooled atoms into the single focus of a CO, laser. By compressing our
COq, laser trap and reducing its trap depth, we evaporatively cool the atoms to BEC.
This chapter briefly describes our experimental procedure and set-up. A simplified

schematic of the experimental set-up is given is Figure 2.1.

2.1 Vacuum Chamber

BEC experiments require ultra-high vacuum in order to reduce collisions of the
trapped ultracold atoms with the background gas. If the trap lifetime is shorter
than the rethermalization rate during evaporative cooling, the trap will be depleted
before BEC is reached. The pressure in our vacuum chamber is between low 10~
and high 10~ Torr giving us a vacuum limited trap lifetime of about 10 s. Since our

evaporative cooling takes less than 3 s, this is sufficient for our experiments.

2.2 Atom Source

As a 3 Rb source we use a heated rubidium getter dispenser, which is turned on

together with a UV-lamp. The UV-light induces atomic de-absorption (light induced



atomic de-absoprtion, LIAD) [59] from the glass windows of our vacuum chamber,
which increases the background rubidium vapor pressure during the loading phase of
the magneto-optical trap (MOT) (see Section 2.3) and as a consequence increases the
number of atoms trapped. After the MOT is loaded both the dispenser and the UV-
light are turned off, since for the remaining experimental steps a lower background

pressure is favorable.

2.3 Magneto-optical Trap

Our experiments start with loading around 200 x 10° 8"Rb atoms from the thermal
background gas into a standard magneto-optical trap (MOT), which consists of three
orthogonal pairs of counter-propagating circularly polarized laser beams and a pair
of anti-Helmholtz coils (MOT coils).

In Figure 2.2, we show the detailed hyperfine structure of the D, transition line
of 8Rb and highlight the transitions relevant for the MOT operation. The cooling
beams of our MOT are detuned 25 MHz to the red of the F = 2 «— F’ = 3 cycling
transition for Doppler laser cooling. They act as an optical molasses slowing down
the atoms that enter the region of intersection. However, there is a small but non-
negligible probability that the atoms are off-resonantly excited to the F’' = 2 state
and consequently decay to the F' = 1 ground state. Once in the F' = 1 ground state,
the atoms no longer interact with the cooling beams and, as a result, are no longer
cooled or trapped. We therefore, in addition to the cooling lasers, apply a repump
laser resonant with the F' = 1 «— F’ = 2 transition. The repump laser pumps the
atoms that have decayed to the F' = 1 ground state back into the cycling transition so
they continue to be cooled. The typical intensity of our cooling beams is 35 mW /cm?
and of the repump beam is 4.7 mW /cm? and the 1/e? radius of the beams is 12.5 mm.

Our MOT coils provide a magnetic quadrupole field with a field gradient of about

7 G/cm along the axis of the coil, which creates a spatially varying Zeeman shift.
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Figure 2.2: 3Rb D, transition hyperfine structure [60]. The cycling transition and
the re-pump transition are used to form a MOT.
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The circular polarization of the cooling beams favors the o* transitions (Am = +1)
between the different Zeeman levels creating an imbalance in the scattering forces
between the counter-propagating o™ and o~ cooling beam. The handedness of the
polarization of the three orthogonal pairs of o™ - 6~ cooling beams is chosen such that
the resulting position dependent radiation pressure pushes the atoms to the center of
the trap and therefore traps and confines the atoms.

For more details on the mechanism of a MOT see [61, 62], for instance.
2.3.1 Diode Lasers

The laser light for the MOT beams is generated by a system of laser diodes and
a tapered amplifier (TA) [58], which are controlled by low-noise temperature and
current controllers to ensure frequency stability. We use a master-slave configuration
for both the repump and the cooling beams (see Figure 2.3 for a schematic of the
cooling beam set-up). The diode lasers serving as master lasers are set-up with a
diffraction grating (1800 lines/nm) in the Littrow configuration. The grating together
with the diode creates an external cavity, which allows the linewidth of the laser to be
reduced to below 1 MHz. The output frequency of the laser is fine-tuned by adjusting
the cavity length with a piezoelectric actuator (PZT) mounted behind the grating.
For long-term frequency stability, the master laser is locked to an atomic transition
of 8"Rb using frequency modulation (FM) spectroscopy on a saturated absorption
signal. Figure 2.4 shows a typical saturation spectroscopy set-up and the resulting
absorption and locking signals. We modulate the frequency of the laser light by a
small amplitude high frequency signal either by dithering the injection current of the
diode with a frequency ~ 6 MHz (as in the case of our cooling laser master) or the
RF frequency (~ 150 kHz) of an acousto-optic modulator (AOM) (as it is the case
for our repump master). Near an absorption line the FM will cause a modulation

of the absorption signal, which is detected by a photodiode. To first order, the
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absorption signal contains a DC term, which corresponds to the absorption signal
and a term oscillating at the modulation frequency, whose amplitude is proportional
to the derivative of the absorption signal. By making a phase-sensitive detection
relative to the modulating signal, we extract the derivative of the absorption signal.
The resulting error signal is fed to a lock-box, which contains a PI (proportional-
integral) controller. For optimal frequency stability, the proportional output is fed
back to the injection current of the diode for fast adjustments with a bandwidth of up
to 10 kHz and the integrator output is fed back to the PZT to compensate long term
drifts of the laser frequency. A schematic of the locking set-up is shown in Figure 2.5.
The master laser for the MOT is locked to the crossover of the F' = 2 +— F' = 3
and the FF = 2 +— F’ = 1 transitions and the repump master is locked to the
F =1<+— F’' = 2 transition.

A slave laser, unlike the master, does not have a diffraction grating and is not
actively stabilized using a lock circuit. Instead, the frequency of the slave diode is
set by injecting a small amount of power (a few hundreds of microwatts) from the
master laser into the slave diode. In order to prevent feedback into the master diode,
the slave diode is seeded through the rejection port of an optical isolator. If the
temperature and the current of the slave diode are adjusted properly, the frequency
of the slave output will follow the injection frequency without mode-hops. To verify
that the slave is stable and is properly coupled to the master, a small fraction of the
slave laser light is sent through a saturation absorption set-up.

For the cooling beams of the MOT, the output of the slave laser (~ 30 mW) is
seeded into a tapered amplifier (TA). The TA acts as a gain element, whose efficiency
is determined by how well the seed is coupled into the amplifier chip (i.e. the spatial
mode of the seeding beam), the power of the seeding beam, and the current driving
the TA chip. It is not necessary to monitor the frequency output of the TA, since

it acts merely as an amplifier and will, with proper injection, preserve the spectral
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Figure 2.4: Saturation absorption spectroscopy set-up and spectra of the Dy tran-
sitions. (a) A schematic of a typical saturation absorption spectroscopy set-up. (b)
The spectra of the Dy transitions of 8Rb and 8"Rb. (c) The saturated absorption
(black line) and FM (blue line) spectra of the F' = 2 +— F’ transitions for the
8Rb. (d) The saturated absorption (black line) and FM (blue line) spectra of the
F =1 <— F’ transitions for the 3'Rb.
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Figure 2.5: Schematic of the locking set-up.

properties of the injection laser. However, a tapered amplifier does emit a broad
spectral background due to amplified spontaneous emission (ASE), which is emitted
both in the forward and backward direction of the output direction. We operate
the TA with an injection power above saturation to reduce the fraction of ASE but
keep the injection power below 40 mW to prevent damages to the chip. For optimal
seeding of the TA, the injection beam is mode-matched to the backward ASE of the
TA. The optical isolators in our laser set-up prevent any unwanted feedback into the
laser diodes or the tapered amplifier, which can cause them to become unstable or,
in the worse case, cause permanent damage.

The acousto-optical modulators (AOM) in our set-ups are used as fast switches, to
control the laser beam power, or to shift the frequency of the laser beam by externally
controlling the radio-frequency (RF) power and the frequency to the AOM. In order
to quickly shift the frequency during an experiment, an AOM needs to be set-up in a
double-pass configuration (see Figure 2.6) to prevent the laser beam from steering, as
the diffraction angle of the beam depends on the RF to the AOM. Such a double-pass
configuration allows us to shift the frequency of our cooling beams from —5 MHz to

—250 MHz relative to the cycling transition, which is crucial for the temporal dark
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Figure 2.6: Schematic of a double passed AOM.

MOT during the final stage of the MOT.
2.3.2 Magnetic Coils

The magnetic fields and field gradients are controlled by three orthogonal pairs of
Helmholtz coils (bias coils) and two pairs of anti-Helmholtz coils (gradient coils),
respectively.

The bias coils are used to cancel ambient magnetic fields (such as the Earths
magnetic field or other stray fields generated by equipment in lab) and to apply
external magnetic fields necessary for the experiment. These bias coils, made of
copper wire, are wrapped directly onto the flanges of the vacuum chamber keeping
the experimental set-up compact and uncluttered. As a result, however, the coils are
not in a perfect Helmholtz configuration.

The gradient coils used for the MOT formation are aligned along the direction of
gravity. The position of the MOT, and consequently also its overlap with the CO,
laser optical dipole trap, can be adjusted by moving the MOT coils relative to each
other. In our set-up, the bottom MOT coil has a fixed height but can be moved
left-right and in-out with a two dimensional translation stage, whereas the top MOT
coil can only be moved up and down. The second pair of gradient coils is aligned
along the CO, laser axis and allows us to address the single sites of a CO, laser lattice
using microwaves (see Chapter 5.2.2). One of the coils is mounted on a 3D translation

stage, so that the center of the gradient can be adjusted, while the other coil is kept
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fixed.

Magnetic field gradients are also used for Stern-Gerlach experiments on the spinor
condensate. The CO, laser dipole potential is turned off and the condensate falls
under the influence of gravity. During this time of flight (TOF) of the condensate a
magnetic field gradient is pulsed on, separating the different Zeeman states as they fall
under gravity. As a result, the individual spin components, which are now spatially
separated, are imaged and the spin populations of the condensate can be measured.
The initial spin populations of the condensate can be controlled by applying different
field gradients during the evaporation process. Generally, we use this technique to
create either a pure mp = —1 condensate or a pure mp = 0 condensate. A pure
mp = —1 condensate is achieved by applying a magnetic field gradient (~ 25 G/cm)
during the initial phase of the evaporative cooling. For a pure mpr = 0 condensate, we
apply a magnetic field gradient of 25 G/cm during the final stage of the evaporation
process removing the magnetic field sensitive spin projections from the trap.

Both set of gradient coils are made of copper refrigerator tubing and are water
cooled as they can get very hot (> 100° C) when run at full power without cooling.
They are both mounted as close to the chamber as practical and their inner diameters
are kept larger than the respective viewports so they dont reduce the optical access

to the chamber.

2.4 Trap-loading and Fvaporation

Our MOT is loaded for about 12 s, after which we implement a temporal dark MOT
technique in order to maximize the transfer of atoms into the purely optical trap
of the CO, laser. First, the intensities of the repump beam and the MOT beams
are lowered to 15 pW/cm? and 20 mW /cm?, respectively. Then, after 20 ms, the
MOT coils are turned off and the MOT beams are detuned to the red of the trapping

transition by 200 MHz for the last 40 ms of the dark MOT phase. As a result, the
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atoms are optically pumped into the lower (F' = 1) hyperfine ground state. Since this
state is decoupled from the MOT beams, the radiation pressure is reduced and higher
densities can be achieved. This is a crucial step for efficient loading as it increases
the effective overlap between the MOT and the optical dipole potential of the CO,
laser. At the end of the dark MOT phase all lasers except the CO, laser are turned
off. Using this technique, we typically load 12 x 10° pre-cooled atoms (~ 30 — 40 uK)
into an optical dipole trap formed by a single COs laser beam of 60 W focused to a
waist of 80 um. Immediately after loading our optical dipole trap, we continue to cool
the atom cloud using evaporative cooling until it condenses to a BEC. In evaporative
cooling, the atoms with higher-than-average energy are removed from the trap, while
the temperature of the remaining atoms decreases as they rethermalize through elastic
collisions in the trap.

We force evaporative cooling by ramping down the power of our CO4 laser. This
lowers the trap depth of the confining potential and consequently expels the hottest
atoms from the trap. Because a significant fraction (> 99%) of the trapped atoms
is removed during the evaporation process, it is necessary to start with a sufficiently
large number of atoms. Efficient evaporative cooling, however, also requires high
atomic densities to ensure a fast rethermalization of the remaining atoms. The large
initial waist of the single focus CO, laser creates a relatively large trapping volume,
which is advantageous for loading but only provides weak confinement. In order
to increase the atomic density, the trap is compressed immediately after loading by
adiabatically reducing the waist of the COs laser from 80 pm to 25 pum in less than
1's. As a result, the total evaporation time is less than 2.3 s [63, 64, 58]. Just above
the onset of quantum degeneracy, when the laser power of the single focus beam has
reached about 60 mW, a second counter-propagating CO, laser beam is adiabatically
ramped up to create a lattice potential. The trap depth of the lattice potential is then

lowered until BEC is achieved creating an independent array of BECs. Typically, the
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final power in each of the beams is 10 —30 mW. If we want to load a single lattice site,
we use an additional tightly focused 850 nm diode laser perpendicular to the CO,
laser trap axis to funnel the atoms to the position of the desired lattice site before
ramping up the lattice potential. This cross-trap is turned off as soon as the lattice

potential reaches its maximum depth.
2.4.1 CO, Laser Set-up

As mentioned above, the optical dipole trap used for evaporation and for trapping the
BEC is generated by a CO, laser, which has a wavelength of 10.6 microns. Since this
wavelength is very large compared to the resonance wavelength of the first excited
state of 8Rb (795 nm), the light field of a CO, laser can be regarded as a quasi-
static electric field polarizing the atom. The dipole potential, as for all optical dipole
traps, results from the dispersive interaction between the light field and the induced
electric dipole of the atom. In the quasi-static approximation, the dipole potential
is given by Uqip(7) = —astat! (7)/2€pc with the static polarizability asgat, and the
intensity of the laser I [65]. For the ground state of 8"Rb the polarizability is given
by Qgtar = 5.3 x 1073 m2C/V [60]. In the case of a quasi-electrostatic trap (QUEST),
as created by a CO, laser, the scattering rate is negligible making it an essentially
conservative trap. A 8"Rb atom trapped in a CO, laser with a trap depth of 100 uK,
for example, scatters 1.1 photons per hour, while our experiments are conducted in
less than 5 s.

The set-up of our COs laser is shown in Figure 2.7. The output of the CO, laser
that we use in our experiments (Coherent-DEOS GEM-100L) is about 100 W. We
split off 5% of the beam power from our main beam in order to obtain a second
counter-propagating beam for generating a lattice potential. The lattice spacing of
the CO, laser lattice potential is 5.3 microns, which is sufficiently large to optically

resolve the individual lattice sites and to address them individually [66]. Both beams

19



—

Water-cooled Telescope
Beam Dump / \ ‘_I_\

Flipper
D / Mirror
bl Y
HeNe / CO Beam
JV % Translation Stage
. 95 % Hel
ﬁ\ ¥ Beam Splitter ene
Laser

Motorized Combiner “ @

Dump

&

Figure 2.7: Schematic of the CO, laser set-up.

pass through acousto-optic modulators (AOMs), which allow us to independently
control the power in each of the beams. The RF power to the AOMs, and thus the
power in the corresponding COs laser beams, are controlled using a variable gain
amplifier and can be fully turned off using an RF switch. To ensure a frequency-
stable lattice potential, we use the —1 diffraction order for both beams and use the
same RF source for both AOMs. Following the AOM, the main CO, laser beam
passes through an adjustable telescope and then enters the vacuum chamber, where
it is focused onto the MOT with a 3.8 cm focal length aspheric lens. The first lens
of the telescope is mounted on a motorized translation stage, so that the beam waist
can be changed from large, for optimal loading, to small, for efficient evaporation.
The second lens in the telescope and the third lens, the lens mounted in the chamber,
remain fixed. The initial position of the first lens is chosen to maximize the trapping
volume of the single focus trap for loading. As illustrated in Figure 2.8, this loading
configuration is achieved by minimizing the size of the CO, laser beam at the third
lens. To compress the trap for evaporative cooling, the first lens is moved toward the

second lens of the telescope increasing the beam size at the third lens and therefore
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Figure 2.8: Schematic of trap compression mechanism due to the zoom-lens tele-
scope. (a) The COy laser is slightly converging after passing through a telescope
formed by lenses 1 and 2. This results in a small beam radius on the input side of
lens 3 and a large beam waist at the trap location. (b) After trap loading, the trap
is compressed by increasing the beam radius at lens 3. This is done by moving lens
1 towards lens 2.

creating a tightly focused trap. The position of the trap moves about 1 mm as the
beam waist of the trap is changed. The second beam used to generate the lattice
potential also passes through a telescope before entering the vacuum chamber and
passing through a 3.8 cm focal length aspheric lens. The telescope is used to adjust
the location of the beams focus inside the chamber, so that it overlaps with the focus

of the compressed single focus trap.

2.5 Microwave and RF source

We manipulate the spin state of the condensate using microwave and/or radio fre-
quency (RF) radiation. In order to be able to control the transitions between the
different Zeeman levels in the F' = 1 and F' = 2 hyperfine ground states, we apply an

external magnetic field during the microwave or RF pulse. This lifts the degeneracy of
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Figure 2.9: Zeeman splitting of the hyperfine ground states. The magnetically
allowed transitions between the F' = 1 and F' = 2 states are indicated with blue solid
arrows. The dashed green arrows show the RF transitions within the F' = 1 manifold.
the Zeeman levels ensuring that they are spectroscopically resolvable. The microwave
radiation is tuned to the hyperfine splitting of the ground state (=~ 6.835 GHz) and
is used to drive transitions between the F' = 1 and F' = 2 states, whereas the RF
radiation is used to drive transitions within the F' = 1 hyperfine manifold. The capa-
bility to apply both RF fields as well as microwave fields allows us to create arbitrary
coherent superpositions of the Zeeman states in the F' =1 and F' = 2 ground states.

The exact dependency of the Zeeman shift on the magnetic field is given by the
Breit-Rabi formula (see [60] or Equations 7.7 for the F' = 1 ground state). For low
fields, the shifts are linear with the magnitude of the magnetic field to first order, and
are given by Fmp - 0.7 MHz/G for the F' = 1 (F = 2) manifold, respectively. Figure
2.9 shows the Zeeman splitting of the ground F' = 1 and F' = 2 hyperfine states
for low magnetic fields, and indicates the magnetically allowed transitions. Since we
know that dependence of the Zeeman energy levels on the magnitude of the magnetic
field, we can measure the magnetic field by taking a microwave spectrum.

The microwave radiation is generated by a frequency synthesizer (HP E4422B),
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Figure 2.10: Schematic of the microwave set-up.

which is referenced to a global positioning system (GPS) stabilized quartz oscillator
(EndRun Technology Preecise Gfr.). It is then doubled (Marki Microwave D0204LA),
amplified (Mini-Circuits ZFL-7G and Varian TWT VZC6961K1DFGJ), and is finally
directed towards the condensate using a homemade cylindrical horn (see [58]. The
set-up is illustrated in Figure 2.10. We use two microwave generators in order to
be able to pulse on two different microwave frequencies and/or powers in rapid suc-
cession as it takes over 500 ms to set the output of the frequency synthesizer using
computer control. In order to apply a simple square pulse, the microwave radiation
is turned on and off using a fast switch (Mini-Circuits ZYSWA-2-50DR) with a pulse
generator (Stanford Research Systems DG535) after the frequency and the amplitude
of microwaves has been set with the function generator. The frequency spectrum of
a square pulse is proportional to the sinc-function (sinc(x) = sinx/z). To change the
frequency spectrum to a more Gaussian shape without the “feet” of the sinc-function,
we shape the amplitude of the pulse by modulating the output of the function gen-
erator with an arbitrary pulse generator (Stanford Research Systems DS 345). The
desired pulse shape is pre-programmed into the pulse generator.

The RF radiation is generated by a homemade coil, which is driven by a frequency

generator (Standford Research System DS345). The coils is made of 2 turns and has
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Figure 2.11: Schematic of the RF set-up.

a diameter of 8.9 cm. The coil is put in parallel with an adjustable capacitor to
maximize the transmission of the radiation for a given frequency and prevent over-
heating. The capacitor value for a given frequency is determined by maximizing the
amplitude of the RF. Again, we use a switch (Mini-Circuits ZYSWA-2-50DDR) to

pulse on the radiation. A schematic of the RF set-up is shown in Figure 2.11.

2.6 Imaging

We probe the atomic cloud using either fluorescence or absorption imaging. In both
imaging methods, the atoms are illuminated with laser light tuned to the cycling
transition. We simultaneously pulse on the repump laser, in order to image the
atoms in the F' = 1 state or to prevent the atoms from leaving the cycling transition.
For fluorescence imaging we use the MOT beams to probe the atoms, whereas for
absorption imaging we use a separate probe beam. More details on absorption and
fluorescence imaging are given in Chapters 3 and 4, respectively.

To diagnose the MOT and the efficiency of our trap-loading, we use fluorescence
imaging with a 1:1 imaging system. The signal is recorded on a CCD camera that is
mounted diagonally above the chamber. The probe time is 100 us.

The imaging set-ups used for taking higher quality images are shown in Figure
2.12. The images are recorded on with a high performance scientific CCD camera.
The models of the cameras used are Andor iXon DV887DCS-UV and Andor iKon-M
DU934N-BR-DD). The imaging lens has a focal length of 50 mm (Linos HALO 03

8904) and is mounted inside the chamber. The next lens is adjusted such that the
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Figure 2.12: Schematic of our imaging set-ups. (a) shows the imaging set-up used
for the experiments described in Chapter 5. The magnification can be changed by
using different microscope objectives. (b) shows the imaging set-up used in the rest
of the thesis. The magnification of the imaging system is 10x.

absorption probe beam is re-collimated after this lens. The set-up allows us to probe

the atomic cloud both with fluorescence and absorptive imaging.
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CHAPTER II1

ABSORPTION IMAGING

Quantum degenerate gases are traditionally imaged using absorption imaging because
this method provides a reliable image of the density distribution of the atom cloud and
therefore can give insight into the physical properties of the ultracold atom cloud. For
example, in the first BEC experiments the existence of a condensate was confirmed by
absorption images of the atom cloud after its release from a non-spherical trap [1, 2].
The density distribution showed an anisotropic expansion, which is characteristic for
a BEC and is absent in a thermal cloud (which expands isotropically independent
of the trap shape). Even today, the achievement of quantum degeneracy is usually
verified through a measurement of the density distribution of the atom cloud either
after a ballistic expansion or within the trap. Absorption imaging therefore continues
to be an important tool for probing ultracold atom clouds. The increasing interest in
quantum correlations has motivated the improvement of absorption imaging. For ex-
ample, atom pair correlations from molecular disassociation [14] were demonstrated
by measuring density-density correlations in an atom cloud. Another example in-
cludes the observation of sub-Poissonian number fluctuations and spin-squeezing in
a BEC [18], which required measuring the number of atoms in two adjacent lattice
sites. In this experiment, the atom noise was reduced to 10-12 atoms. Fluorescence
imaging does not provide the same spatial resolution as absorption imaging because
the atom cloud is generally distorted and blurred during the imaging. As a result,

fluorescence imaging is not usually used to measure local density fluctuations.
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In order to measure small number of atoms (< 100), fluorescence imaging is gen-
erally used because it provides a higher signal-to-noise ratio in this regime. For ex-
ample, in the experiment described in [16], both absorption and fluorescence imaging
are employed. For atoms numbers of order 1000 or larger, absorption imaging is used,
whereas for lower atom numbers fluorescence imaging is used. In order to probe the
small condensates using fluorescence they are, in this case, transferred into a MOT
and are probed for 100 ms. This technique is capable of detecting atoms at the single
atom level. Other experiments that have demonstrated the ability to detect single
atoms using fluorescence imaging include [67, 68, 69]. In all the examples mentioned,
the atoms are held in tight traps and are probed for long times (from ~ 100 ms to
~ 1s).

We investigate the limits of both of these imaging methods, in order to determine
the imaging method that gives us the best signal-to-noise for our experiment.

In absorption imaging the atoms are illuminated by a single probe beam and
the shadow cast by the atoms is imaged on the CCD camera (see Figure 3.1). As
the probe beam passes through the atom cloud, the atoms absorb photons out of
the probe beam reducing its intensity. The atom cloud is, in this case, detected by
imaging the transmitted probe beam intensity I’. To quantify the fraction of light
that is transmitted, it is necessary to additionally take a reference image of the probe
beam profile, i.e. an image without the atoms Iy. This chapter describes the theory,

calibration, and limitations of absorptive imaging. The derivation for the theory is

based on [62, 70].

3.1 Theory

Consider a beam of light with uniform intensity I and angular frequency w incident on
a cloud of atoms with a uniform density n. As the light passes through an infinitesimal

slice of the cloud with thickness Az, the atoms absorb photons out of the beam with
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Figure 3.1: Schematic of the absorption imaging set-up.

the probability no(w)Az, where o(w) is the absorption cross-section. The absorption
cross-section characterizes the probability that a photon is absorbed by an atom. In
a simple model, it can be interpreted as the target area covered by an atom, i.e. the
light “sees” the atom as a disk with area o(w) (see Figure 3.3). The absorption cross-
section depends on the angular frequency of the incident light w and is maximum for
on-resonant light oo = o(wp). The fraction of intensity that is lost as the beam passes
through the thin slice corresponds to the absorption probability Al /I = —no(w)Az.

Consequently, the attenuation of the beam due to the atoms can be described by

% = —no’((,u)f = —K(W)I, (31)

where k(w) is the extinction coefficient. This equation is also known as Beer’s law
[71].

Beer’s law only applies to the limit of low-intensity light that leaves most of
the atom population in the ground state (N =~ N,). For intense light, however, a
significant fraction of the atom population is excited out of the ground state reducing
the probability of absorption. Additionally, once in an excited state, an atom can
undergo stimulated emission, which leads to a gain in intensity. For a two-level system,
the rate of stimulated emission is equal to the rate of absorption. The two processes
therefore have the same cross-section (o(w)) and equation 3.1 can be modified to take

into account saturation effects:

= —k(w)I = —(nyg — ne)o(w)1, (3.2)
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Figure 3.2: Example of the raw data images taken in absorptiom imaging in order
to obtain an image of the atoms. (a) is an image of the shadow that the atom cloud
casts on the probe beam profile. This image is referred to as the signal image. In
order to determine the fraction of light the atoms absorb, it is also necessary to take a
reference image of the atom cloud (c), i.e. an image of the probe beam profile without
the atoms. (c) is an image of the atoms in units of the optical depth OD, which is
determined using Equation 3.9. This image shows the interference of two lattice sites
of a BEC after a time of flight of 7 ms, where the total number of atoms is N = 7800.
The image was taken with a probe power Iy &~ I?, and with a probe time of 100 pus.
The field of view is 176 x 96 pm?.
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Figure 3.3: Illustration of the theory behind absorptionimaging

where ny is the density of the atoms in the ground state and n. the density of the
excited state.
The conservation of energy requires that the energy absorbed is equal to the energy

emitted. In the steady state, this corresponds to
ngo(w)I(w) = neo(w)I(w) + nJlhw. (3.3)

I' is the decay rate of the excited state, i.e. the rate of spontaneous emission. Given

the conservation of atom numbers n = n. + n,4, equation 3.3 can be re-written as

1

ng — Ne = nw, (34)
1 + Isat(w)
with the saturation intensity I, for a two-level atom defined by
r
=hw
1., =2 3.5
t(w) a(w) ( )

Using equations 3.3 and 3.4, we can relate the attenuation of the incident beam to
n, the total atom density of the cloud. For resonant incident light, Beer’s law in the

presence of saturation can therefore be expressed as

dr L
d: T,

sat

(3.6)

where oy = o(wp) is the on-resonance absorption cross-section and I2, = I (wp) is

the on-resonance saturation intensity.
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In general, the atomic density of the ultracold cloud is not uniform but varies in
space n(x,y, z). Similarly, the intensity profile of the probe beam is not necessarily
uniform I = I(z,y,z). In this case, the probe beam can be regarded as a collection
of rays, each of which has a uniform intensity and each of which interacts with a
separate small region of the atom cloud with a uniform density. Beer’s law applies
as long as the path of each ray through the cloud is known and its attenuation can
be measured. Ideally, each of the rays enter and exit the cloud at the same (z,y)
coordinates such that the attenuated ray (measurement with atoms) and the un-
attenuated ray (reference measurement without atoms) follow the same path through
the imaging system and hit the CCD camera at the same location. Integration of

equation 3.6 gives the expression of the optical depth

OD(z,y) = ogn(z,y) = —In gg’ z; — [’(az,y)jg [O(I’y), (3.7)

sat

where 7i(z,y) = [ n(z,y,z)dz is the column density, I'(z,y) (Io(z,y)) is the intensity
profile of the incident probe beam without (with) the atoms. In the low-intensity

limit (I' << I?

sat

), the optical depth (defined in Equation 3.7) reduces to the optical

density, which is defined as

I'(z,y)

Lo(t.y)’ (3.8)

od(xz,y) = —1In

The local column density n(z,y) can be determined by imaging the probe beam
on a CCD camera in the presence and in the absence of the atoms. The two above
images are referred to as the signal S’(x,y) and reference Sy(z,y) image, respectively.
In practice, however, it is also necessary to take a third image, a background image
Sp(x,y) without the probe beam. By subtracting this background from both the
signal and the reference image, contamination of the probe image due to stray light
and the camera background is eliminated. Without correcting for the background,

the column density would be underestimated. In terms of the actual measurements
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made, the local column density is determined by

OD(z,y)

0o

n(z,y) = (3.9a)

(3.9b)

Om@w:_m(”%w—&@w>_gmw—%@@

So<l',y) _Sb(xvy) IO ’

sat
where 5% is in units of camera counts. For low-intensity imaging, only the relative

S"(,y)—Sp(@,y)

is measured. In this case, the conversion of
So(z,y)—Sp(z,y)

transmission T'(x,y) =
photons to camera counts is irrelevant, i.e. the column density can be determined
without knowing the camera efficiency, the losses through the imaging system, or the
solid angle.

Furthermore, the local column density can be integrated in order to obtain the

total number of atoms N, i.e. the column densities of the individual camera pixels

are summed up

N = /ﬁ(x,y)da:dy - ZﬁpmdApm _ Ao ZOD(pi:c), (3.10)

0o

pix pix

where OD(pix) is the optical depth measured at a given pixel, Ay, = A%?/m? is the
effective area of a pixel, m is the magnification of the imaging system, and A% is the

PIT

physical area of a camera pixel.

3.2 Limatations

In this subsection we discuss potential limitations of absorption imaging.
3.2.1 Optically Dense Clouds

In the derivation of the optical depth, we have assumed that the atomic cloud is dilute
enough so that atoms in the next layer of thickness Az are not in the shadow of the
previous layer. In optically thick clouds, the atoms can “hide” behind the previous
atoms and therefore do not interact with the probe light. This will cause a reduction
in the absorption signal. Additionally, we have ignored the fact that the photons

scattered out of the probe beam can be reabsorbed by other atoms in the cloud. The
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rescattering of photons causes the atoms to spend more time in the excited state and
therefore to absorb less photons from the probe beam. This rescattering of photons
is more likely for denser clouds and can be neglected for optically thin clouds.
Optically dense clouds can also magnify errors caused by other limitations of the
imaging system, for example the the maximum observable optical density (see Section
3.2.6). These effects will be discussed separately in the individual subsection. In order
to ensure a proper counting of the atoms, we therefore generally let the condensate

expand to an optical depth of < 2.
3.2.2 Atom Motion

The above derivation of the optical depth did not take into consideration the motion
of the atoms. For a condensate, the assumption that the atoms are stationary is,
in general, valid. However, the condensate is often imaged after a time of flight ¢
of several ms. As the condensate falls under the influence of gravity, it will gain a
velocity v = gt with ¢ = 9.8 m/s. For a probe time 7 and a transverse observation
to, this causes the image to blur by z = v7. For a time of flight of ¢ = 10 ms and a
probe time 7 = 100 us, z = 9.81 pm.

Besides blurring the image, any motion of the atoms along the probe beam can
Doppler-shift the atoms out of resonance. This can become a problem as the atoms
are heated during imaging (see Subsection 3.2.4). The effect of the atom’s motion on
the absorption can be taken into account by using the Doppler-shifted cross-section
o(w — k - 7), where k is the wavevector of the probe beam and @ the velocity of the
atom. For a two-level system, the absorption cross-section is given by

1
U —7
14 ()

o(A) = (3.11)

where A = w — k- 7 is the detuning and I" is the linewidth of the two-level system. If
the atoms a velocity of 2.4 m/s along the direction of the probe beam, the absorption

cross-section is reduced by 50% as a result of the Doppler effect. If the atoms have
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a velocity distribution f(¢), the correct absorption cross-section can be determined
by Oeorr(w) = [ f(¥)o(w — k - 7)d7, where the integration goes over all velocities.
The reduction in the absorption cross-section can be corrected by replacing the ideal
absorption cross-section with an effective cross-section o.sf = 0o/a in Equation 3.7
More details on this method of correction are

and keeping in mind that I/ = oI°

sat sat*

given in Section 3.3.
3.2.3 Dispersion

The interaction of the atoms with light can be described by the complex index of
refraction of the atoms n,.; = v/1 + 4mna, where « is the static polarizability and n
the density of the atoms. For a two-level system (in the rotation wave approximation)

the index of refraction n,.; —1 < 1 can be written:

ogn 1 0
=1 — 12
n’r‘@f + Qk |:1 +52 1 +52:| (3 a)
= np + ik, (3.12b)

where 0 = 2A/T" is the detuning in half linewidths and & is the wavevector of the
incident light. Here we have assumed the limit of a a weak probe intensity. To correct
for saturation effects 4% has to be replaced by 6% + I/l in the denominator [72].
For non-zero detunings the real component of the index of refraction is unequal to 1
and therefore causes the cloud to refract. The imaginary part & reduces the intensity
of the light and is therefore also referred to as the extinction coefficient. We note
that this definition of the extinction coefficient is slightly different that the one given
in Equation 3.1, where it was defined with respect to the reduced intensity. After
traveling through an atom cloud of thickness z, the electric field of the incident light
is given by

E' = ekrreiz By = emkRagiknrz gy — i (3.13)
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where t is the transmission and ¢ is the overall phase shift. The phase shift due to
the atoms is ¢ = kngrz — knyacuum? = k(ng — 1)z and is given by

fLO’O 0

T T

(3.14)

The refraction angle for a cloud of atoms with a diameter d and a maximum phase
shift ¢ can be estimated as 2¢A/md. If the phase shift is less than 7/2, the refraction
angle is smaller than the diffraction angle A/d due to the finite size of the object.
If the refraction angle is larger than the diffraction angle, the spatial resolution of
a diffraction limited imaging system will be degraded [72]. The refraction angle is
maximum for a detuning of A = £I'/2 and is given by ¢ = —%. Therefore for optical
depths OD = noy > 27, diffraction effects become significant and reduce the imaging
resolution. This can cause errors when trying to determine the total number of atoms
(see Section 3.2.5). Additionally, the diffracted rays that are not collected by the
imaging system will appear as false absorption signals. The magnitude of this effect
depends on the density and therefore will vary across the cloud. As the refraction is
not uniform across the cloud, it will not only affect the absolute measurement of the
density but also relative measurements. In summary, dispersively dense atomic clouds
will reduce the imaging resolution and can make it difficult to reliably determine the

atom number. Ideally, the atoms are therefore probed with on-resonance light.
3.2.4 Heating of the Cloud

The heating of the atom cloud due to the recoil induced motion can blur the image
signal and reduce the absorption signal by Doppler-shifting the atoms out of reso-
nance. During imaging, the atoms will absorb photons out of the probe beam at the
scattering rate 7,. After absorbing a photon out of the probe beam, an atom will
acquire a velocity v,... = hk/m along the direction of the probe beam, where k is the
wavevector of the incident light and m is the mass of the atom. For the D»-line of

8TRD vy is equal 5.9 mm/s. After a probe time At, the atoms will have absorbed
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N,(At) = v,At photons and the velocity of the atom in the direction of the probe
beam will have increased by Av = v,..7,At. Neglecting the Doppler-shift of the
atoms due to the increase in the atom’s velocity, the velocity and the displacement
along the direction of the probe due to absorption can be written as v, = v,..7,7 and
z= %UNC%TQ. For every photon that is absorbed, the atom scatters a photon. After
each scattering event the atom will recoil opposite the direction of emission. Assum-
ing that the photons are scattered uniformly in all directions, the gain in velocity
can be modeled by a three-dimensional random walk in momentum space with a step
length of v, and step number N,(At) = v,At. The root mean squared velocity after
a probe time At is therefore equal to Avys = Vree \/m. Integrating the root mean

squared velocity along a given direction Av!™® = (vrec / \/5) \/pAt, we obtain the

T

3/2

resulting blurring x = %gvrec 7p7°'% of the atom cloud.

If we assume the incident probe intensity Iy = I2, then 7, = %, where I' is the

sat
linewidth of the transition. For a probe time 7 = 100 us (7 = 10 us), the atom cloud
will have a velocity v, = 5.6 m/s (v, = 0.56 m/s) in direction of the probe and will
have been pushed along this direction by z = 230 ym (z = 2.3 pm). For long probe
times the cloud will therefor be pushed out of the depth of focus. Additionally, the
cloud will have a root mean velocity vy yms = 0.105 m/s (vg rms = 0.033 m/s) and will
be blurred by z = 7.0 pm (z = 0.22 pm). This estimation of the blurring of the cloud
is an overestimation because we did not take into account the velocity distribution of
the cloud but simply considered the root mean squared velocity and did not correct
the scatter rate for the increasing Doppler-shift. It is also important to note that for
a trapped cloud the blurring is expected to be much less as the atoms are spatially
confined by the trap.

Besides blurring, the atom motion Doppler-shifts the atoms our of resonance A =

—k-7 and therefore causes dispersion (see Subsection 3.2.3) and reduces the absorption

signal (see Subsection 3.2.2). For a velocity v, = 5.6 m/s (v, = 0.56 m/s) along the
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probe direction, the Doppler shift in units of the half linewidths is 2A/T" = 2.4 (0.24).
As a result, the absorption cross-section is reduced to 15% (95%) of the on-resonant
cross-sections (see Equation 3.11).

In summary, the efficiency of absorption imaging is limited by the heating of
the cloud. This limitation puts an upper bound on the probe time 7 and we there
generally do not use probe times longer that 100 us. The probe power affects the
velocity through the scatter rate ,, which saturates at g for Iy — oco. The heating
of the atom cloud is therefore less dependent on the probe power compared to the

probe time.
3.2.5 Imaging Resolution

A fundamental limit in absorption imaging is the imaging resolution. Not only does
the imaging resolution limit the quality of the image, but it also limits the ability to
reliably count the total number of atoms. The number of atoms N; (in a region of
uniform density) does not linearly depend on the relative transmission of the probe
beam intensity T; = I'/I, but is given by

A
Ni = —— |:0d2 +

0o

I — 1, A I
[mto] — {— InT; + [T°(1 ~T)|, (3.15)
0

g0 sat

where we have simply rewritten the optical depth (see Equation 3.7) in Equation 3.10
in terms of the relative transmission of the probe beam intensity. The total number
of atoms N = > . N; (in a cloud with a non-uniform density) cannot simply be
determined by measuring the total relative transmission of the probe beam, because
>.,InT; # In) ", T;, the superposition principle does not hold and the total number
of atoms N = > . N; (in a cloud with a non-uniform density) cannot simply be
determined by measuring the total relative transmission of the probe beam. As
mentioned in Section 3.1, the derivation of the optical depth can be extended to non-

uniform clouds by considering the light as a collection of rays that each interact with

a small uniform section of the cloud. However, it is necessary to keep track of each
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of these individual rays and measure the atom number for each uniform section.
The imaging resolution determines how well one can destinguish between the
different rays. The image of an object that is smaller than the imaging resolution
will be smeared out approximately to the resolution limit. Consider N atoms with
a uniform density that are imaged on an area A; with a uniform probe intensity I,.
The optical density will be given by od = —In(1"/I). If this cloud of atoms is smaller
than the resolution limit, its image (or more precisely its shadow) will be smeared out
over a larger area A,. Let us assume that this area is twice as large as the original
area A; and that the smearing of the image effectively acts like binning. In this case,

the measured optical density od,,cqs Will be

I I 1 od
Odpeas = —In -0 = od — m( +2€ ) : (3.16)

So the atom number will be underestimated, and this underestimation is larger for
clouds with a larger optical density. For a reliable quantitative analysis, it is therefore
necessary that the column density of the atom cloud is uniform on the length scale

of the imaging resolution and the pixel size.
3.2.6 Maximum Observable Optical Density

A common limitation of any absorption imaging system is the maximum observable
optical density. Any light collected by the camera that cannot be absorbed by the
atoms will reduce the observed optical density and cause a systematic error. The two
most common sources are off-resonant light in the probe beam and probe-light that
does not pass through the atomic cloud, yet scatters onto the camera and fills in the
shadow of atoms. Any off-resonant scatter not part of the probe can be subtracted
out by taking a background with the probe beam off.

The frequency spectrum of diodes and tampered amplifiers often have a broad
pedestal of light (~ 10 nm wide) that is not in the main frequency mode of the laser.

Since our probe beam is from a diode laser, we expect off-resonant light to reduce our
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maximum observable optical density. Additionally, the maximum observable optical
density can be limited by probe light scattered off of objects other than the atoms:
such as any dirt, dust, or any other imperfections of the optical elements in the
imaging system. Since this light is scattered mainly in the forward direction, it is
collected by the camera and can therefore fill in the shadow cast by the atoms and
make the optical density appear smaller than it actually is. This effect is increased for
spatially smaller atomic clouds, since a smaller forward scattering angle is necessary
for light scattered near the edge of the clouds shadow to fill the center. Similarly,
probe light reflected off of objects can indirectly scatter onto the camera and cause a
reduction of the observable optical density. Especially, optical elements with a poor
anti-reflection coating can cause the probe light to reflect off of multiple surfaces and
into the camera. In general, a smaller probe beam and smaller magnification will
reduce the unwanted scattering into the camera. It is difficult to make a precise
measurement of the off-resonant light scattered into the imaging system because it
depends on the individual imaging system, can vary across the image, and can vary
with the size of the cloud. The best estimate can be made by imaging a large and
dense object and measuring the maximum observable optical density. An example,
of such a measurement is shown in Figure 3.4, where we image a wire and determine
the maximum observable density to be ~ 3.5. In this case, the maximum density
is limited by scattered light. For an atom cloud the maximum observable density is
potentially higher because off-resonant light in the probe beam will further reduce
the maximum observable density.

The limit on the maximum observable optical density leads to an underestimation
of the number of atoms in the cloud. By modeling the maximum observable optical
density as light that is present in the probe light but cannot be absorbed by the atoms
independent from the source, one can take this effect into account and can correct

the measured atom number. The total intensity of the probe light Iy can be written
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as the sum of two terms: light that can be absorbed by the atoms I,..s (referred to as
resonant light in this section) and light that cannot be absorbed by the atoms I, fyes
(referred to as off-resonant light in this section): Iy = I es + Ioffres. When the probe
light passes through the atoms, only the resonant part of the beam will absorb light

and the total probe intensity will be reduced to
I'= Lese ™ + Lyjres. (3.17)

As a result the optical density measured od,,eqs is given by

Ires —od Io res
ody s = —In ( € F lops ) . (3.18)
]res + Ioffres

The maximum optical density od,,.. is observed when all of the resonant is absorbed

and can be written as

Ioffres
odpoge = —In | —————— ] . 3.19
(Ires + Ioffres) ( )

Solving the above equation for the actual optical density od of the atoms and sub-
stituting in the maximum observable optical density od,,., one gets the corrected

optical density odo

Q*Odmeas _ efodmaz
dcorr =—1 3.20
: () (3.20)
and the actual optical depth OD,,,, is given by
—od, IO
ODcorr = 0dcorr + (1 —€ wrr) . (321)

I
The maximum observable od,,., can be measured by imaging a large and optically
dense cloud. The center of the large cloud will have a flat top where the od is
saturated at the maximum value. Depending on the imaging system, typical values
for od,,.; range from 2.0 - 3.5. If 1% of the probe beam is off-resonant light, the
maximum measurable optical density is given by od,.. = —In(0.01) = 4.6. For

example, a condensate with an optical depth OD = 2.86, that is probed with an

40



intensity Iy ~ I2, has an actual optical density od = 2. If the maximum observable
density is od,,q = 3, the raw measurement will given an optical density od,,eqs = 1.72
and an optical depth OD = 2.54, which underestimates the number of atoms by 10%
if image is not corrected for the maximum observable density.

For optically dense clouds (od > 0dnasx/2), 0dmeqs approaches od,,., and the cor-
rection factor between od,,.qs and od... becomes large increasing the potential for
error. Effects such as the spatial structure of the scattered light and its dependence
on the size and position of the atomic cloud become important. In order to ensure

a proper measurement of the atomic number, the expansion of the cloud should be

increased until od < od,4: /2.
3.2.7 Multilevel Structure

In the above derivation of the optical depth, we have assumed a two-level atom.
However, in reality, there are five Zeeman levels in the ' = 2 ground state and seven
Zeeman levels in the F' = 3 excited state of a ¥Rb atom. So, depending on the
polarization of the light there are many allowed electric dipole transitions, whose
strengths vary. The relative strengths of the different transitions are determined by
the hyperfine dipole matrix elements. By probing the atoms with circularly polarized
light that propagates along the atoms’ quantization axis, we exclusively drive the
Amp = +1 (Amp = —1) transition, also referred to as the o (o7) transition.
As a result, the atoms cycle on the F' = 2, mp = 42 «— F' = 3, mp = 43
(F =2, mp=—-2+— F' =3, mp = —3) transition and the system is effectively
reduced to a two-level system. Additionally, this cycling transition has the advantage
of having the maximum absorption cross-section.

In practice, however, it is very difficult to perfectly control the polarization of the
probe beam. The quality of the polarization is limited by the quality of the optics,

such as polarizing beam cubes, waveplates, and the viewports of the chamber. The
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Figure 3.4: In a bench test, we image a wire in order to illustrate the effects of light
scatter and probe beam intensity variations on an absorptive image. (a) and (b) show
the probe beam intensity profile after passing through a wire. (b) was rescaled to
show that light is filling in the shadow of the wire. In a perfect imaging system, the
shadow of the wire should be totally blackened out, because it is an opaque object.
We determined the optical density ((c) and (d)) after taking a reference image (not
shown here). The maximum optical density of the wire is 3-4, which corresponds to
the maximum observable optical density of this imaging set-up. The patterns in the
background of the image (c) are caused by variations in the probe beam intensity
profile. (¢). The patterns also manifest themselves on the image of the wire (c).
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polarization of the probe beam is therefore not guaranteed to be purely circularly
polarized. Moreover, the propagation direction of the probe beam is not necessarily
aligned with the magnetic field, which defines the quantization axis. In either of
these two cases, there is a probability to also drive the Ampr = 0 and the Amp = —1
(Amp = +1) transitions, which leads to a smaller overall absorption cross-section.

For the transition of the atoms between the levels we have assumed the steady
state. In reality, however, it takes a finite amount of time to reach the steady state,
and this time is of the order of lifetime of the excited state 1/I" = 26 ns. As long as
as the probe time is at least 10 times longer than the lifetime, we can safely assume
the steady state.

The absorption signal will also depend on the initial distribution of the populations
in the Zeeman levels. Before reaching the cycling transition the atoms need to be
optically pumped to the stretched state mp = +2 (mp = —2). Ideally, the time
to spin-polarize the atoms is much less than the total probe time as otherwise the
absorption signal is reduced and dependent on the initial Zeeman state of the atom.
When we image atoms in the F' = 1 state, we pulse on a repump beam in order to
transfer the atoms to the F’ = 2 state, from which they decay to the F' = 2 state.
As a result, the atoms will be randomly distributed among the Zeeman levels of the
F = 2 state as they are being imaged. For more details on optical pumping see [60].
To ensure the steady state and reduce the fraction of time it takes the atoms to be
pumped to the stretched state, we use probe times equal to or larger than 10 us.

The imperfections described above all reduce the absorption cross-section. Rather
than separately quantifying of all the mechanisms reducing the absorption cross-
section (including the heating of the atoms cloud described in Section 3.2.4), we can
experimentally determine the effective absorption cross-section through a calibration
of our absorption imaging system. The details of this calibration method are explained

in more detail in Section 3.3.
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3.2.8 Photon Shot Noise

In the previous subsection, we described the mechanisms limiting the absorption
signal. In the next two subsections, we will address the noise present in absorption
imaging. The fundamental limit in detecting atoms using absorption imaging is given
by the photon shot noise of the probe beam, or more precisely by the shot noise of
the electrons that are counted by the camera as a result of the incident photons. The
photon shot noise on a pixel is ogy = N, = ¢NN,, where ¢ is the quantum efficiency
of the camera and N, is the number of photons incident on the pixel, and N, = ¢}V,
is the number of photons converted to electrons. In terms of the probe intensity [
the photon number is given by N, = (IT7Ap,;/hwy), where 7 is the probe time, A,
is the effective area of a pixel, and hwy is the energy of a single photon. The noise on

a pixel in units of the atom numbers (N,) is given by
ON, \’ ON,\*
o® (N,) = <W) O-IQDSN,of,Ng + (W) OI%SN,of,Né7 (3.22)

where N? and N! are the number of electrons counted for the pixel of the reference
and signal image, respectively. Taking derivatives and using the equation 3.5, the

noise can be written in terms of the probe intensity of the reference I” and signal I

A I\ I° '\ (1
2N = g (1) Sty () (20 3.23
o (Na) aoqu ') I Iy 10, (3:29)

Using this equation the photon shot noise on a pixel can be determined. Preferably,

the atom noise is written in terms of the total number of atoms N, imaged on the
pixel and the incident probe beam I,. However, the equation for the number of atoms

(on a pixel)

A [ T (I'— 1)
N, = S L O [ T S—A 24
% (“Io+ 0, (3:24)

cannot be analytically solved for the transmitted intensity I’. Therefore the noise has

to be determined numerically for a given experimental setting. The behavior of the
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Figure 3.5: Graph of photon shot noise in absorption imaging as a function for the
probe intensity.

noise is illustrated in Figure 3.5, and the noise curve is plotted in units of

[ (3.25)
0'05(]7'

where N,;, is the total number of pixels in the region of interest. The pixels are
assumed to be independent and therefore the noise adds in quadrature. The photon
shot noise depends on the size of the region of interest N,;; A;;, which is determined
by the size of the condensate. For lower photon shot noise, it is therefore preferable
to work with the shorter time of flights. For 7 = 10 us (7 = 100 us), ¢ = 0.9,

NpizApim =90 qu, ]0 == IO

o, and OD = 1, the noise on a pixel is 38 atoms (12 atoms).

The photon shot noise depends most strongly on the probe time and the size of
the condensate. It is important to note that the probe time cannot be arbitrarily
increased as this leads to heating of the condensate (see section 3.2.4). Similarly, the
atom numbers in a cloud cannot be reliably counted for arbitrary dense clouds (see
Sections 3.2.1, 3.2.5, and 3.2.6).

For a small number of photons incident on a pixel, the shot noise of the probe
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beam opgy can be comparable to the readout noise of the camera (0.4, ~ 10 electrons
per pixel). For example, for a camera with ¢ = 0.9 (¢ = 0.32) if 110 (310) photons
are incident on a pixel, the resulting shot noise is 10 electrons per pixel. In this case,
the camera noise cannot be neglected but has to be taken into account. So the total
noise on a pixel in equation 3.18 should read 02, ,,, = %4y + 02, instead of simply

o%¢y- In our example, this would be o34, = 200 electrons.
3.2.9 Technical Limitations

In order to have shot noise limited absorption imaging, it is crucial to suppress the
shot-to-shot variations in the probe beam intensity profile. Potential errors due to
long term experimental drifts are eliminated by taking the reference and the signal
image in rapid succession. The time between reference and signal generally is limited
by the pixel readout of the camera. The first image has to be read by the camera
before the second one can be taken. In this case, the time between images is around
200—300 ms. The limitation due to the readout rate can be circumvented by masking
part of the chip, quickly shifting the first image to the masked region, and storing it
there while the second image is taken. After taking both images the camera can then
slowly readout both images. The minimum time between images is now determined
by the vertical shift speed of the camera and can be reduced to a few ms.

Any patterns on the probe beam, such as interference patterns or scatter from
imperfections in the imaging system, can manifest if there are high frequency vibra-
tions in the imaging set-up. It is therefore important to use high-quality optics in
the imaging system and to avoid using any devices that can cause vibrations, such as

shutters during (and slightly before) imaging.

3.3 Calibration

To account for the mechanisms that reduce the effective absorption cross-section

(such as heating of the atom cloud Subsection 3.2.4, off-resonant light Subsection
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3.2.6, and the multilevel structure of the hyperfine levels see Subsection 3.2.7), we
introduce the dimensionless parameter o and define the effective saturation cross-
section o.pf = op/a [70]. As a result, the effective saturation intensity is given by
I = all, (see equation 3.5). Inserting the effective cross-section and saturation
intensity into Equation 3.7, the total number of atoms in the cloud N can be recast

in the form

(3.26)

—1
0o nfo(%y) UOIO

sat

N = Apm Zﬁ(x,y) = —Apm

PiT piT

[a I'(x,y) | I'@,y) = To(x,y)

The number of atoms N in the cloud is an intrinsic property of the cloud and does
not depend on the probe intensity. We therefore can determine the value of a by
measuring N versus various different probe intensities. For each image, we calculate
the number of atoms N («) for different values of v ranging from 1 to 4.0. The value of
« for which the atom number N remains constant over the whole range of probe beam
intensities is the correct calibration parameter. In practice, the calibration parameter
« is the one that has the minimum standard deviation of the atom numbers over the
range of incident intensities used to image the cloud.

Examples of such a calibration are shown in Figure 3.6. In this experiment, we
measured the calibration parameter for different orientations of the magnetic field.
In the first case, the magnetic field is aligned with the probe beam and in the second
case it is perpendicular to the probe beam. We find a« = 2.2+ 0.1 and o = 2.7+ 0.1,
respectively. This result clearly illustrates the sensitivity of absorptive imaging on
the orientation of the magnetic field. The absorption cross-section is reduced by a
factor of 1.22 for a magnetic field perpendicular to the probe beam compared to the
case where it is parallel to the probe. In both cases, the absorption cross-section is
reduced compared to the ideal value. This is in part due to the sidebands of the probe
caused by the modulation of the laser current. The sidebands are detuned 6 MHz ( =
the frequency of the modulation) from resonance and constitute approximately 28%

of the total probe power. The resonant cross-section for this detuning is reduced by
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Figure 3.6: Calibration of the absorption imaging set-up. The BEC is imaged with
a range of different probe intensities. For each image, the total number of atoms N
is determined for several values of . The calibration was done for both a magnetic
field parallel ((a), (b)) and perpendicular ((c), (d)) to the probe beam. The error
bars shown in the graph are the experimental standard deviation, and each data point
is an average of 22 experimental runs. The actual calibration constant is found by
finding the value for o that gives the minimum standard deviation of the data sets
AN(a) (see (b) and (d)). The absorption calibration constant was determined to be
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a=22+0.1and o = 2.7 £ 0.1, respectively.
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~ 30% (see Equation 3.11). The overall absorption cross-section is reduced by 20%.
In our calibration, we have determined that the absorption cross-section is reduced
by =~ 50% compared to the ideal value. Therefore we assume that are also other
factors contributing to the reduction in the absorption cross-section. For example,

the heating of the atom cloud.
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CHAPTER IV

FLUORESCENCE IMAGING

Fluorescence imaging relies on detecting the photons the atoms re-emit as they are
being probed. In our experiment, we use all of the MOT beams to illuminate the
atoms. The scattered light, or a fraction thereof, is then collected and focused on
a charged coupled device (CCD) camera to form an image (see Figure 4.1). The
quality of the image is, in part, determined by the fraction of the scattered light that
is collected by the imaging system; the larger the fluorescence signal, the larger the
signal to noise ratio. Ideally, we only collect light emitted by the atoms because light
from other sources, such as the probe beams (in our case the MOT beams) or the

room lights, adds noise to the fluorescence signal of the atoms.

4.1 Theory

The interaction of a two-level atom with radiation of angular frequency w close to reso-
nance can be described by the optical Bloch equations (OBE) (see [61]). For a closed
two-level system (with ground state g and excited state e) including spontaneous

emission, the OBE can be written in terms of the population difference w = pgg — pee

UL

< f1 — Fluorescence Image

Figure 4.1: Schematic of the fluorescence imaging set-up.
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Figure 4.2: Example of a fluorescence image. This image shows the interference of
two lattice sites of a BEC after a time of flight of 7 ms, where the total number of
atoms is N = 7800. Because the atoms are probed from multiple directions with a
large probe power I & 301, the atom cloud is distorted and the image is blurred.
As a resutl, unlike for absorption imaging (see Figure 3.2(c)), the interference pattern
can not be resolved. The probe time was 100 s and the field of view is 176 x 96 pm?.

This images was taken with a camera with ¢ = 0.32.

and the optical coherence pey = p.:

dw

== —Tw =i (Qp, =~ Qpey) +T (4.1a)
dpeg r . 1wS)
9 | A — 4.1
o (2 i )peg+ 5 (4.1b)

where I' is the decay rate of the excited state, {2 the on-resonance Rabi frequency,
A = w—uwy is the detuning from resonance, and p;; are the elements of the the density

matrix
Pee  Peg
p= : (4.2)
pge pgg

For the steady-state case dw/dt = dp.,/dt = 0, and the resulting equations can be

solved for the population p.. of the excited state:

1—w 0% /4
pee:( ): 5 2/ T (4.3)
2 A2+ Q0%2/24+T12%/4
Defining the on-resonance saturation parameter
so=2|Q/T?=1/1°, (4.4)
with the saturation intensity given by
hw
0, =—=2 (4.5)

sat = 197¢2’
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the excited state population can be re-written as

o 80/2
1450+ (2A/)F

Pee (4.6)

In the steady state the excitation rate is equal to the decay rate of the excited state
population due to spontaneous emission. Hence an atom interacting with radiation

scatters photons with a scatter rate

o 80F/2
1480+ (2A/T)

Tp = I‘pee (47)

In fluorescence imaging we determine the number of atoms in a cloud by counting
the number of photons with a CCD camera. More precisely, the scattered photons
are converted to electrons on the sensor of the CCD camera. The efficiency of the
conversion is referred to as the quantum efficiency ¢. The camera then counts the
number of electrons N, that are generated due to the incident photons. Since the
photons are randomly scattered in all directions, only a small fraction of the photons
(= 1%) is collected by the imaging system. The maximum fraction of photons that can
be collected is determined by the solid angle of the maximum cone of light collected
by the imaging system. For an apex angle 26 the imaging lens subtends the solid
angle 4msin?(f/2) and has the numerical aperture NA = sin(d) (for vacuum). For
small angles @ the solid angle is approximately 47(0/2)? ~ 4rNA?/4 and the fraction
of photons collected by the imaging lens is approximately NA?/4. Consequently, the

total number of atoms N, is given by

4N, 1
N, = 5—. (4.8)
gNA® 7

As mentioned earlier, in the steady state the number of photons absorbed is equal
to the number of scattered. Therefore the same photons that are counted as missing
in absorption imaging are scattered in fluorescence imaging. However, in fluorescence
imaging only a small fraction of the photons are collected and so the signal strength

in fluorescence imaging is much weaker for the same probe power.
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4.2 Limatations

In this chapter, we discuss the limitations of fluorescence imaging. Some of the
limitations are very similar to those given in absorption imaging, such as corrections
due to the atomic motion, optically dense clouds, or the multi-level structure of the
transition. For the sake of completeness these limitations will be mentioned and
discussed briefly in this chapter, and the differences will be pointed out in more

detail.
4.2.1 Optically Dense Clouds

In the above derivation, we have neglected the fact that the probe beams lose intensity
as they travel through the cloud. For high probe intensities and sufficiently optically
dilute clouds, however, the reduction in probe intensity as the beam passes through
the cloud does not lead to a noticeable reduction in the scatter rate. Consider the

scatter rate for on-resonant light

. So r
14502’

Tp (4.9)

which saturates to T'/2 for very high intensities Iy >> I2,. For example, a probe

beam with intensity of 30 I°

o that travels through an atom cloud with an optical

depth OD = 23 is reduced by ~ 75% to the value 7.7 I°

ot~ Lhe resulting reduction

in the scatter rate, however, is only ~ 10%. In this example, we have use a very
dense atom cloud. A more reasonable value for the optical depth is OD = 5. In this

case, the probe intensity is reduced by 16% to 25 I°

oy and the resulting reduction

in probe intensity is less than 2%. For high probe intensities (and reasonably dilute
atom clouds) we can therefore safely assume that the intensity of the probe beams
remain constant as they travel through the cloud. This example also illustrates that
fluorescence imaging with high probe intensities is relatively insensitive to intensity

fluctuations.
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It is important that the cloud is sufficiently optically dilute not only to ensure
that the intensity does not decease significantly as the probe beams travel through
the cloud but also to prevent the re-scattering of photons. In an optically dense cloud,
the photon scattered by an atom can be reabsorbed by another atom in the cloud.
As a result, the scattered photon never leaves the cloud and is not accounted for. In

this case the number of atoms will be underestimated.
4.2.2 Atom Motion

As in the case of absorption imaging, in the above derivation the motion of the
atoms has been neglected, which in general is a safe assumption for a condensate.
The heating of the atom cloud during imaging can Doppler-shift the atoms out of
resonance and therefore reduces the scatter rate (see Equation 4.7), although for
high probe intensities this effect is negligible as the linewidth is significantly power

broadened. For example, if we probe the atoms with a probe intensity 30 I, for

sat
100 ws, the atoms will acquire a root mean squared velocity v = 0.15 m/s (see
Subsection 4.2.3) along a given direction. For a probe beam along that direction the

detuning as a result of the atom motion in units of line halfwidths is 2A/I" = 0.06,

which for a probe intensity 30 I2, reduces the scatter rate by < 1%.
4.2.3 Heating of the Cloud

Every time an atom absorbs or emits a photon it will experience a recoil, which
increases its kinetic energy. In fluorescence imaging we probe the cloud with pairs
of counterpropagating beams, namely the MOT beams. This prevents the cloud
from being pushed along a single direction as is the case in absorption imaging.
However, in order to eliminate any residual push or distortions of the cloud, the
probe beams need to be carefully balanced, which is technically challenging. As a
result, fluorescence imaging is not well suited for determining the shape of small

clouds or for resolving small structures. Independent of the probe beam alignment
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and the distributions of probe beam intensities, the cloud will heat up as it scatters
photons. After a probe time 7 the atom will have acquired a root mean squared

rms

velocity along a given direction v = (vrec / \/§) /p7 and the image will be blurred

by x = %Umc 7,732, (For more details see Section 3.2.4) For our experimental

. and 7 =100 ps, vI™* = 0.15 m/s and x = 9.9 pm.

parameters, Iy ~ 30/° .

If long probe times (2 ms )are necessary, for example in order to image single
atoms in a trap, the probe beams can be detuned to the red of the cycling transition.
The probe beams then create an optical molasses as in the case of a MOT. The
atoms will therefore not continue to heat up with increasing probe times but will be
cooled to a few tens of uK. This method can be used for continuous observation of
small atoms numbers in a sufficiently deep trap (for example see [69]). If the trap is

shallower than the temperature of the optical molasses the atoms will eventually boil

out of the trap and are lost.
4.2.4 Imaging Resolution

The spatial resolution of a fluorescence image is in most cases limited by the distortion
and the blurring of the cloud due to the probe beams. Fluorescence imaging is
therefore mainly used to count atoms and not to resolve structures within the cloud.
Because the signal, namely the number of photons scattered, depends linearly on the
number of atoms, the spatial resolution does not affect the ability to reliably count
the number of atoms. As a result, binning the pixels on the camera chip does not
introduce errors in determining of the atom number. However, an imaging set-up
with a higher numerical aperture is still desirable because it collects a larger fraction
of the scattered photons and therefore increases the signal to noise ratio (see Section

4.2.6).
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4.2.5 Multilevel Structure

As in the case of absorption imaging, we have assumed an ideal two-level system in
the derivation of the scattering cross-section, whereas in reality there are five Zeeman
levels in the F' = 2 ground state and seven Zeeman levels in the F’ = 3 excited state.
As a result, the scatterrate will depend on the polarization of the probe beams and
can also depend on the initial distribution of the populations in the Zeeman levels.
For fluorescence imaging we use the MOT beams which consist of three orthogonal
pairs of o - o0~ probe beams, each of intensity I,. For this complex system it is
difficult to determine the actual saturation intensity as the probe beams can interfere
and create lattice-like intensity maxima and minima. However, if one assumes that
the atoms are on average illuminated with a total probe intensity 6/, the polarization
of the light can be considered to be isotropic, i.e. it has equal components in all three
possible polarizations. In this case, the saturation intensity is independent of the
population distribution among the Zeeman levels and the system can be considered
to effectively be a two-level system. For the F' = 2 «— F’ = 3 cycling transition
12, = 3.576 mW /cm? [60].

Since we probe with high intensities (~ 6 x 20 mW /cm?), the scatter rate is nearly

its maximum (I'/2) and this minimizes errors in the estimation of the saturation

intensity.
4.2.6 Photon Shot Noise

The fundamental limit in counting the atom numbers in fluorescence imaging is given
by the photon shot noise of the scattered photons detected by the camera. For NV,
photons collected by the imaging system the photon shot noise is equal to odgy =
gN, = N., where ¢ is the quantum efficiency and N, the number of electrons counted
by the camera as a result of the incident photons. Given an imaging system with a

numerical aperture NA and given a scatter rate 7,, and a probe time 7 the photon

o6



shot noise in terms of the number of atoms N, is

4

=———N,. 4.10
qNA2’ypT ( )

U%’SN<NOL)

For 7 =100 us, v, = T'/2 =19.5 us™!, ¢ = 0.9, and NA = 0.22, opsn(N,) = 0.22¢/N,
and the signal to noise ratio is SNR = 4.64/N,. The SNR is equal to one for 0.047
atoms indicating that it is possible to detect single atoms if the noise is indeed limited

by photon shot noise.
4.2.7 Technical Limitations

In reality, fluorescence imaging is often limited by the technical noise of the camera or
the photon shot noise of unwanted background scatter. The camera noise is dominated
by the readout noise which is added to the signal in the process of reading out the
signal on a pixel. The readout noise is given in terms of electrons per pixel. For
the CCD cameras that we have used the readout noise is of the order of 10 electrons

(0% = 100 (e7)?). In units of atom numbers, the readout noise per pixel is

4 2
Tho(Na) = (m) Tho- (4.11)
p

Using the same parameters as above, the readout noise is oro(N,) = 0.22 atoms per
pixel independent of the number of atoms imaged. The total readout noise on an area
with N, number of pixels is oro(N,) = 0.22\/m atoms assuming that the noise
on the individual pixels is uncorrelated. In order to minimized the readout noise,
one can bin the pixels, 7.e. form super-pixels by combing the electrons of multiple
(adjacent) pixels into a larger bin, a super-pixel. For example, if 4 pixels are binned
into a super-pixel, the camera will only readout one signal for these 4 pixels instead
of 4 individual signals. As a result, the readout noise will be reduced by a factor of
V4 = 2 at the expense of the spatial information provided by the separate 4 pixels.
The noise due to unwanted background scatter is determined empirically by ac-

quiring images without atoms. Assuming that N°*9 = 4971 electrons are counted
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due to the background scatter after a the probe time 7, the resulting photon shot

noise in units of atom number is

1 2
Oipgscatt(Na) = (m) T, (4.12)

Notice that both the photon shot noise and the scatter scale as 1/7. Therefore the
scatter can not be reduced by increasing the probe time unlike the readout noise
which scales as 1/72. In our experiment, the background scatter currently limits the
noise floor of our imaging system (see Section 6.2).

Since the photon shot noise of the atom signal, the readout noise, and noise due to
the background scatter are independent of each other, the total noise in fluorescence

imaging can be written as
2 2 2 2
OTot = OpPSN + 0RO + Ubkgscatt' (413)

Currently, our imaging system is limited by a background scatter of approximately
8 atoms on an area of 290 x 208 um?. To reduce the readout noise the camera pixels,
are binned 16 by 16. (see Section 6.2). The noise due to background scatter can most
likely be further reduced by decreasing the size of the probe beams, which currently

have a 1/e? waist of 12.5 mm.

4.3 Calibration

In order to determine the actual value of the saturation parameter sy, we measure
the number NN, of photons scattered by the atom in terms of the detuning and fit the

data to the scatter rate (see Equation 4.7)

B A
1+ 59+ (2A/1)%

(4.14)

p

where the quantum efficiency, the numerical aperture, and probe time have all been
absorbed into the constant A. This is a very reliable method for determining the

saturation parameter. As it is independent of the collection efficiency of the camera
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Figure 4.3: Measurement of the saturation parameter in fluorescence imaging for
both a magnetic field parallel (blue circles and solid line) and perpendicular (red
squares and dashed line) to the probe beam. The error bars are experimental standard
deviation of 11 runs. The fit gives a saturation parameter of 30 = 2 and 32 + 1,
respectively, and agrees with the expected value. Given the margin of error and
experimental drifts, the saturation parameter can be considered to be independent of
the orientation of the magnetic field

and the number of atoms, it does not allow the determination of the collection effi-
ciency. The saturation parameter is determined for both a magnetic field along the
imaging axis and perpendicular to the imaging axis to test if, in this configuration,
there is any dependence of the scatter rate on the orientation of the magnetic field.
In both cases the magnitude of the magnetic field was 140 mG. The data is shown
in Figure 4.3. For a magnetic field parallel (perpendicular) to the probe beam, the
saturation parameter was found to be 30 £2 (32 £ 1). Given the margin or error and
experimental drifts, the saturation parameter can be considered to be independent of
the orientation of the magnetic field. This is to be expected as the atoms are probed
with three orthogonal pairs of counterpropagaging beams and therefore see the same

polarization in all directions. The value for the saturation parameter also agrees with

the expected value assuming isotropic polarization and given the power and beam
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waist of our probe beams. As a side note, this method cannot be used for determin-
ing the saturation parameter for absorption imaging as changing the detuning will
add diffraction effects making it difficult to actually measure the number of atoms or

more exactly the number of photons that are being absorbed.
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CHAPTER V

BEC IN A LATTICE

Bose-Einstein condensation in optical lattices [73] has been a continuously grow-
ing area of research. These systems are particularly interesting as model systems
of pure quantum mechanical effects. Applications range from the investigation of
solid-state systems (such as Bloch oscillations [74], Josephson junctions [75] and the
Mott-insulator phase transition [76, 32]), the study of low-dimensional quantum gases
[77, 78], the study of nonlinear effects (such as squeezed states [31]), to atom inter-
ferometry, just to mention a few. For a more complete review of this vast field see
[79, 80, 81]. In optical lattices the parameters characterizing the lattice potential,
such as its depth and shape, can easily be manipulated by changing the laser inten-
sity, geometry, and frequency. Due to this versatility they have become a widely used
tool in atom optics. Besides being an ideal testbed for quantum mechanical effects,
optical lattices can be used to store quantum information [82, 83].

The ability to address and manipulate the quantum state of the atoms trapped in
the individual sites of optical lattices opens up the possibility to perturb the system
on a local scale and has been demonstrated using light [84], microwaves [67], and
electron microscopy [85]. In addition to manipulating the quantum state, it’s also
important to be able to readout the local quantum state and to observe the local
density distribution.

In our experiment, we use one-dimensional CO, laser lattice with a lattice spacing
A/2 = 5.3 um. We discuss the trap parameters, the resolution of our imaging system,
our ability to address and manipulate single lattice sites using microwaves, and the

interference between two lattice sites in the condensate.

61



5.1 Lattice Trap Parameters

5.1.1 Trap Depth

The spatial mode of our CO, laser can be approximated with a TEMg, mode of a
Gaussian. The intensity of such a Gaussian beam traveling in the Z-direction focused

at z = 0 is expressed as

(5.1)

where

w(z2) = woy /1 + <i>2. (5.2)

Zr
Here P is the laser power, z, = mw?/\ is the Rayleigh range, wy, = w(0) is the
minimum beam waist, and X is the wavelength of the laser. In order to create a one
dimensional lattice, we counterpropagate two beams to create an interference pattern

with a distance A/2 between the maxima and minima of the resulting light intensity:

8P 2?4y
I(x,y,2) = ro(d) exp [_QW] cos”(2mz /). (5.3)
The corresponding trap potential is then
I(x,y,2)
U =aq———= 5.4
(5.0, = at 2L (5.40)
AU 2 2
= —OZeXp [—QSEW(—:)Z ] cos?(2mz/\) (5.4Db)
= (2)
where
1 16
AUy = ——2P (5.5)

is the trap depth. Here « is the static polarizability, and for 3'Rb ground states,
a=5.3x 107 m2C/V. After compression and forced evaporative cooling, the CO,
laser beam has a waist wy = 25 pum and a final power ~ 25 mW. The resulting trap

depth of the lattice is = 7 uK.
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Figure 5.1: Spectrum of the resonances in the parametric heating of the atoms in
the optical lattice. The lower two resonances are at the radial and at twice the radial
trapping frequency and the higher two resonances are the axial and at twice the axial
trapping frequency. The experimental conditions were changed throughout the scan
to take into account the different strengths of the resonances. The red line is taken
with an amplitude modulation of 10 % for 100 cycles, the blue line with a 20 %
modulation for 500 cycles, and the green line with a 10 % modulation for 500 cycles.

5.1.2 Trap Frequencies

When the temperature of the trapped cloud is much lower than the trap depth, the
potential can be expanded around (z,y, z) = (0,0, 0) and can be approximated with a
simple harmonic oscillator. For the condensate, the typical values of the temperatures
are a few hundred nK, which is over ten times smaller than the trap depth, therefore

the harmonic oscillator approximation is applicable. The trap frequencies are

o FM} v (56)

2 )
m. O (2..)=(0,0,0)

i

where r; = x,y, z, and m is the mass of the atoms. The frequencies of the middle

lattice condensate are

16U,
Wy = it (5.7a)
Ug(27T)2

Given the typical CO5 laser parameters above, the trap frequencies are expected to

be w, = 27 x 340 Hz and w, = 27 x 3500 Hz, where z is along the CO, laser axis.
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The trap-frequencies can be verified using parametric heating [86]. The equation of

motion of a sinusoidally driven harmonic oscillator is
i =wj(1+ AsinQt) x, (5.8)

where wy is frequency of the harmonic oscillator (in our case the trap frequency), A is
the modulation amplitude, and €2 the modulation frequency. When the modulation
frequency is twice the trap frequency €2 = 2wy or a sub harmonic thereof, i.e. Q =
2wp/n where n is an integer, the energy of the oscillator grows exponentially. As a
result, the atoms are heated up and are boiled out of the trap. An example of a trap
frequency measurement for the trap parameters given above is shown in Figure 5.1.
We modulate the trap frequency by modulating the power of the COy by 10 - 20 %
for 100 - 500 cycles and then measure the remaining number of atoms in the trap.
For both the radial and the axial trap frequency we observe significant trap loss for
Q) = 2wy and 2 = wy. The measurements for the radial and axial trap frequencies are

wp, = 21 x 240 Hz and w, = 27 x 2.5 kHz, respectively.
5.1.3 Thomas-Fermi Radii

A condensate at zero temperature is described by the Gross-Pitaevskii equation in a
mean-field approximation. Within the Thomas-Fermi (T-F) approximation [87], in
which the kinetic energy term (also referred to as the quantum pressure) is neglected,
the density in the trap is given by

nrp(r) = max [(ﬂ) ,O} : (5.9)

g
where U (7) is the trap potential, u the chemical potential, g = 47h%a/m the two-body
interaction strength, a the s-wave scattering length, and m the mass of the atoms.
In this case, the interaction between the atoms is modeled as a contact potential,

which is valid if the mean particle spacing is less than the scattering length a. For a
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harmonic external potential

1
Ulz,y,z) = §m(wzx2 + Wy + w,2%) (5.10)
and
3. 2
(e, ,7) = P [(1 - ZR—) ,o] -
with
Ri= |2 (5.12)

defined as the Thomas-Fermi radii. Using the normalization condition N = [ n(7) d*r,

the chemical potential is calculated as

15m2ml/2 2/5

where N is the total number of atoms in the condensate, w = | /o w,w, is the mean

trap frequency. The column density is obtained by integrating over one of the coor-

5, 3/2
(1 -y %) ,0] . (5.14)

1=,y

dinates

4
ﬁTF<$7 y) = ?/;Rzmax

In terms of the atom number N and the T-F radii R;, the density distribution and

the column density are given by

15N g2
nre(x,y,x) = mmax [(1 — Z R_Z2> ,0] , (5.15a)

1=T,Y,%

3/2
. 5N i r2
Y =T,y i

respectively. For typical parameters of our trap, i.e. frequencies (w,,w,) = 2w X
(340,3500) Hz, N = 4000, we get p = 260 nK, and (R,, R,) = (3.3,0.32) pm and
the peak density ng = p/g = 6.9 x 10'* atoms/cm?. The lifetime of the condensate
was determined to be ~ 1.3 s.

The T-F radii defined above are strictly speaking only valid for a condensate

in a trap. However, the time of flight radii are simply described by the following
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parameterization and equation of motion [88]:

with
M) = ﬁ (5.17)

and ¢ = x,y, 2. In general, these equations have to be integrated numerically for a
given set of trap frequencies w;. As a result, the time of flight density profile is a simple
rescaling of the in situ spatial density (Equation 5.15) where R;(0) is substituted by

R;(t) for a given time of flight ¢.

5.2 Addressing Single-Sites
5.2.1 Imaging the lattice

For a better imaging resolution, we mounted our imaging lens, a high aperture laser
objective (HALO) with a numerical aperture NA = 0.31 and focal length f = 50 mm,
inside the chamber. The diffraction limit of a lens is given by Rayleigh’s criterion
for just-resolvable diffraction patterns. The minimum separation x,,;, of two-just-

resolved objects near the focal plane of the lens is given by

1.22\

x NA (5.18)

where X is the wavelength of the imaging light. In our case, A = 780 nm and we
expect Ty, = 1.5 pm. This would allow us to resolve the single lattice sites, which
are separated by 5.3 pm. To check the resolution, we did a bench test by imaging
a target (AirForcel951 target) with structures of known width and separation (see
Figure 5.2). The test imaging system consisted of our imaging lens (a HALO with
f =50 mm), an achromat lens with a focal length f = 500 mm and a CCD camera
with a physical pixel size of 16 pm. A visual assessment of the target image clearly

shows that structures less than 2.8 um can be resolved. It is important to note that
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Figure 5.2: Image of an imaging target in order to estimate the imaging resolution
of the system. The group of small lines on the left have the following widths and
spacings starting from the top: 2.2 pym, 2.5 pym, 2.8 pym, 3.1 pym, 3.5 pm, 3.9 pm.
The pixel size in the image is 1.6 gm limiting the resolution of the image.

the resolution of the target image is most likely limited by the pixel size of the camera
as a pixel corresponds to 1.6 pum in this set-up.

To image the individual lattice sites of our condensate, we use a 20x microscope
objective together with a telescope consisting of our imaging lens and a lens identical
to the imaging lens (see Figure 2.12(a)). An example of the full lattice condensate and
for a single lattice site imaged for 15 us with a probe power ~ 1012 , is given in Figure
5.3(a) and 5.3(b), respectively. The Thomas-Fermi radius of a lattice condensate
in the axial direction is only ~ 0.32 pum, which is significantly smaller than the
diffraction limit z,,;, = 1.5 pm of the imaging lens. Therefore, we will not be able to
accurately count the atoms in situ using absorption imaging. Apart from the size of
the condensate, the peak optical density for NV = 4000 atoms in a lattice site is 880,
which is over two orders of magnitude higher than the maximum observable optical
density (see Chaper 3.2.6).

Firstly, the diffraction effects visible in the condensate images Figure 5.3 are a
result of the high density of the atoms in the lattice and the limited imaging resolution
compared to the axial size of the condensate. Secondly, we suspect that our actual
imaging resolution is reduced to ~ 3 mm by a misplacement of the lens inside the

camera with respect to the trap location. The suspicion is based on the location of the

image formed with our imaging system. Our simple 10x imaging set-up (see Figure
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2.12(a)) consists of the imaging lens (f; = 50 mm) and an achromat (fo = 500 mm).
The distance of the achromat with respect to the imaging system is chosen such that
the probe beam is re-collimated after the achromat (d = f; + f») , so that the system
can be used for both fluorescence and absorption imaging. If the condensate is in
the focal plane of the imaging lens, the image of the condensate is expected to form
fo = 500 mm after the second lens. In actuality, the image is formed 1100 mm after
the second lens. Doing a simple ray-trace [89], we conclude that the condensate is
not actually in the focal plane of the imaging lens but is slightly closer. The ray-trace
estimates the distance between the condensate and the imaging lens to be 44 mm,

which would indicate that the imaging lens is positioned 6 mm too close to the trap.
5.2.2 Addressing single sites with microwaves

We can address and manipulate the individual lattice sites separately using mi-
crowaves. The experiment starts with a pure mp = 0 lattice condensate. We then
apply a microwave m-pulse resonant with the F' =1, mp =0 ¢— F =2 mp = —1
transition. The atoms are then imaged using absorption imaging with light resonant
with the F' = 2 +— F’ = 3 hyperfine transition. As a result, the atoms remaining
in the F' = 1 state are dark in the image. In order to spectroscopically resolve the
individual lattice sites, we apply, similar to [67], an inhomogeneous magnetic field of
the form

B(¥) = (B,, By, B.) = (0,0, By) + (—g, —g,z)B' (5.19)

with By = 2 G, B’ = 20 G/cm, and 2 along the COy laser axis. This magnetic field
introduces a position-dependent hyperfine transition frequency via the Zeeman effect
and therefore allows us to site-selectively address the individual condensates using
microwaves (see Figure 5.3). We create this magnetic field with a pair of gradient
coils whose symmetry plane is shifted 10 mm along the CO, laser axis with respect

to the condensates. The relatively large homogeneous offset field By ensures the
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Figure 5.3: In situ images of the lattice condensates after the following manipu-
lations: (a) a pure F' = 1,mp = 0 lattice condensate with no microwave manipu-
lation, (b) excitation of a single lattice site from the F' = 1,mp = 0 state to the
F = 2,mp = —1 using microwaves, (c) excitation of a single lattice site to the
F = 2 mp = —1 state and removal of these atoms with light resonant with the
F =2 <+— F’" = 3 transition. In images (a) and (c) the atoms in the F' =1,mp =0
are transferred to the F' = 2, mp = 0 before imaging.
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degeneracy of the different microwave transitions and more importantly reduces the
variation of the magnetic field strength along the radial direction of the condensates.
In the discussion below, unless otherwise specified, we work with the hyperfine states
F=1mrp=0and FF =2 mrp = —1. The offset field shifts the transition frequency
from the FF = 1,mp = 0 «— F = 2.mpy = —1 by —1.5 MHz with respect to
the unperturbed value of 6.834 GHz. The gradient field along the lattice produces
a position-dependent frequency shift of 1.4 kHz/um, corresponding to a 7.5 kHz
frequency shift between two adjacent lattice sites compared to a frequency shift in
the radial direction of a condensate of less than 1.5 Hz. To excite the atoms to
the F' = 2, mp = —1 state, we use a m-pulse with a Blackman shaped microwave
amplitude A(t) = Aeg(0.5 cos(m[2t/T—1]) +0.08 cos(2m[2t /7 — 1] +0.42) for 0 < t < 7
[90]. We use a Blackman shaped pulse because its frequency spectrum (or probability
of transfer as a function of frequency) is very similar to that of a Gaussian function.
It does not have the “feet” of the sinc-function sinc(x) = sinz/z , the frequency
spectrum resulting from a square pulse. This helps prevent off-resonant excitation of
atoms in the adjacent sites that would otherwise occur for a square pulse. Since every
lattice site is filled, we also have to choose the pulse length carefully. For example, a
very long pulse will transfer all the atoms in the target site to the F = 2, mp = —1
state, but will also excite a large portion of the neighboring sites. Whereas a very
short pulse leaves the neighboring sites in their initial state but will only transfer a
fraction of the targeted condensate into the F' = 2 state. The optimal pulse for single
site addressability has a Fourier spectrum that has a high transfer probability over
the whole condensate and goes to nearly zero transfer probability at the neighboring
condensates. We found that a pulse length of 7 = 520 us works very well for our
experiment. The full width at half max of the frequency spectrum is 3.4 kHz and the
full spectral width is 7.5 kHz, so that the transition probability from the neighboring

sites is negligible. If the frequency of the pulse is resonant with the center of the
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Figure 5.4: Resolving single lattice sites using microwaves. The figure shows the
measured atom number versus the applied microwave frequency. The atoms were
imaged after a time of flight of 5 ms. The microwave pulse was a Blackman pulse
with 7 = 520 us.
lattice site, then the edges of the condensate, each R,/2 = 0.16 pum from the center,
are transferred with a probability of over 99.5 %. A full microwave spectrum of
the lattice condensate is show in Figure 5.4. For frequencies resonant with the half-
distance between two lattice sites the spectral width of the pulse is just large enough
to excite a small fraction of the two lattice sites and therefore the spectrum does not
fully go to zero between the lattice sites. In this experiment, the atoms were probed
after a time of flight of 5 ms, so that the optical density is low enough (=~ 2) to
properly count the atoms. In Figure 5.5, we show a comparison between spectra with
different pulse lengths, 7 = 520 pus and 7 = 1000 ps. For a pulse length 7 = 1000 us,
the full width (the full width at half max) of the frequency spectrum is 4.0 kHz
(1.8 kHz).

To illustrate the single-site addressability, we compare in situ images of a pure
unperturbed F' = 1, mp = 0 lattice condensate, a single site, and the lattice conden-
sate with a single site removed (see Figure 5.3). In all images the atoms are probed

with light resonant with the F' = 2 +— F’ = 3 transition such that only atoms in the
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Figure 5.5: Microwave spectra of a lattice condensate with different pulse lengths

(a) 7 = 520 us and (b) 7 = 1000 ps. The amplitude envelope of the pulses is a
Blackman pulse.
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F' = 2 hyperfine state interact with the light and are visible. The images above are
taken with a short probe pulse (15 us) in order to avoid blurring of the image due to
heating of the atoms. The probe intensity is I ~ 10I°,. We image the unperturbed
lattice condensate (see Figure 5.3(a)), by transferring the atoms in the lattice to the
F =2, mp = 0 on the clock transition. Before transferring a single lattice site to the
F =2 mprp = —1 state, we first determine the correct transition frequency by taking
a microwave spectrum across the condensate (see Figure 5.4 for an example). Figure
5.3(b) depicts the single lattice imaged without an additional microwave pulse on the
clock transition such that the rest of the lattice remains dark. The image clearly
shows a single lattice site. Alternatively, we can remove the atoms in this lattice site
and image the remaining lattice sites (see Figure 5.3(c)). This is done by pulsing on
the probe beam after the microwaves, such that the atoms in the F' = 2 state are
heated out of the lattice trap, whereas the atoms in the F' = 1 state are not affected
by the probe light and remain in the trap. We then take an image as described above.
The populations of the lattice site have been almost completely removed, while the
remaining lattice is only slightly perturbed. Due to the limitation of our resolution
and to diffraction effects it is difficult to quantitatively determine the efficiency of the
transfer from these images. In principle, we can manipulate any number of lattice

site. In the following section, for example, we excite two lattice sites.

5.3 Interfering two lattice sites

In a Bose-Einstein condensate, the atoms macroscopically occupy a single-particle
quantum state such that the whole condensate behaves as a coherent matter wave.
In [5], the macroscopic quantum coherence of the BEC was observed as a matter-
wave interference by releasing two spatially separated the condensates allowing them
to overlap during the time of flight. The period of the interference pattern from two

expanding condensates is given by the de Broglie wavelength of the relative motion
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of the two independent condensates

h
/\re = s 5.20
: MUrel ( )
where the relative velocity is determined by
d
Vpe] = ——. (5.21)
exrp

Here d is the separation of the condensates, m the mass of the atoms, and 7,, the
time of flight. In this experiment, we excite two lattice sites to the F' =2, mp = —1
state and let the condensates expand for 7., = 16 ms. The experiment is done both
of adjacent lattice sites d = 5.3 um (see Figure 5.6) and lattice sites separated by
lattice site d = 10.6 ym (see Figure 5.7).

For each setting the experiment is repeated 28 times. The probe power is &~ 212,

and the probe time 50 us. To analyze the data, we fit the axial density profile of the

condensate, with

F(z) = G(2) {1 + Acos (im + ¢)] : (5.22)

rel

where G(z) is a Gaussian envelope, A is the contrast of the interference pattern, and
¢ is the relative phase between the two condensate [91, 92]. The horizontal profile
is obtained by averaging over a vertical region of 50 pum (see Figures 5.6(a) and
5.6(a) for an example). The fitted periods of 14.0 um and 6.9 pm for adjacent lattice
sites and lattice sites separated by a lattice site, respectively, are in good agreement
with the expect values. In Figures 5.6(c) and 5.6(c), we summarize our results.
The average contrast observed for adjacent sites was 0.31, whereas for lattice sites
separated by a lattice site the average contrast was 0.15. In theory, the interference
of two condensates should give a fringe visibility of 1. In our experiment the visibility
of the frin