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Non-equilibrium dynamics of an unstable quantum
pendulum explored in a spin-1 Bose–Einstein
condensate
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A pendulum prepared perfectly inverted and motionless is a prototype of unstable equilibrium

and corresponds to an unstable hyperbolic fixed point in the dynamical phase space. Here, we

measure the non-equilibrium dynamics of a spin-1 Bose–Einstein condensate initialized as a

minimum uncertainty spin-nematic state to a hyperbolic fixed point of the phase space.

Quantum fluctuations lead to non-linear spin evolution along a separatrix and non-Gaussian

probability distributions that are measured to be in good agreement with exact quantum

calculations up to 0.25 s. At longer times, atomic loss due to the finite lifetime of the

condensate leads to larger spin oscillation amplitudes, as orbits depart from the separatrix.

This demonstrates how decoherence of a many-body system can result in apparent coherent

behaviour. This experiment provides new avenues for studying macroscopic spin systems in

the quantum limit and for investigations of important topics in non-equilibrium quantum

dynamics.
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T
he inverted pendulum represents a hyperbolic fixed point,
which is an unstable equilibrium in the classical limit.
Phase orbits passing close to these points have exponen-

tially diverging periods, and the orbits passing exactly through
these points form a separatrix between librational and rotational
motion of the pendulum with an infinite period. If the pendulum
is prepared perfectly in this orientation, the classical equations of
motion predict that it will not evolve. In reality, if perfect
preparation was possible, thermal fluctuations of the pendulum
would still perturb the pendulum from the metastable orientation
and lead to oscillation. Even at zero temperature, unavoidable
quantum fluctuations would lead to evolution1,2. Although
mechanical pendulums operating at the quantum limit are
currently unavailable in the lab, it is possible to study quantum
many-body systems that have similar dynamical behaviour3–5.

The equilibrium states, domain formation and spin
dynamics of spinor condensates have been studied in many
experiments6–17. In particular, observation of coherent spin
oscillations have confirmed the mean-field pendulum model for
small condensates4,9,10. Spin evolution has been previously obser-
ved from metastable spin states in many experiments6,8,13–17,
however, the experiments have not yet demonstrated spin
dynamic in agreement with quantum calculations, except in the
perturbative, low-depletion limit at very short times (where a
Bogoliubov expansion around the mean field can be used)12,13,17,
or for conditions where the mean-field approach suffices. Here,
we are able to observe quantum spin dynamics that agree
well with quantum calculations and demonstrate a rich array of
non-Gaussian fluctuations.

The experiment uses spin-1 atomic Bose condensates6,18,19 with
ferromagnetic interactions tightly confined in optical traps such
that spin domain formation is energetically suppressed. In this
case, the non-trivial dynamical evolution of the system occurs
only in the internal spin variables, and the mean-field dynamics
of the system can be described by a non-rigid pendulum similar
to the two-site Bose–Hubbard model20,21. The system is fully
integrable in both the quantum22 and classical21,23 limits, and
provides the opportunity to explore non-equilibrium quantum
dynamics that are not captured by mean-field approaches,
and can be solved exactly with Schrödinger’s equation. The
condensate is prepared in a state corresponding to a hyperbolic
fixed point in the spin-nematic phase space. Although this state is
non-evolving in the mean-field limit, the quantum solution yields
intricate spin-mixing dynamics exhibiting non-linear quantum
revivals for zero magnetic field22 and a quantum carpet of highly
non-Gaussian fluctuations24. At finite fields, the dynamics are
similar25,26, although they occur on a timescale favourable for
experimental observation. In both cases, the evolution occurs along a
separatrix of the phase space and is driven by quantum fluctuations
that are absent from the mean-field theory solutions23,26.

Results
Spin population evolution. The experiment begins with a rubi-
dium-87 condensate, initialized in the f¼ 1, mf¼ 0 hyperfine
ground state and held in a high magnetic field. The condensate is
rapidly quenched through a quantum phase transition by
lowering the field27,28, whereby the initial state is now a highly
non-equilibrium but metastable state of the final Hamilitonian.
The condensate is then allowed to freely evolve and the spin
populations are measured for different evolution times. The
experiment is repeated many times so as to acquire sufficient
statistics to determine the full probability distributions of the
populations. The main results of the paper are shown in
Fig. 1 (top), which shows the measured probability density of the
relative population of the mf¼ 0 state, r0, versus evolution time.

The experimental results are compared with a quantum
calculation using the spin interaction Hamiltonian22,24–26,29:

H¼ l½ð2N̂0� 1ÞðN̂1þ N̂� 1Þþ 2âw0âw0â1â� 1

þ 2âw1âw� 1â0â0� þ qðN̂1þ N̂� 1Þ: ð1Þ

in the Fock basis, |N1, N0, N� 1S, where Ni are the number of atoms
in the three spin-1 Zeeman states. Here, âi are the bosonic
annihilation operators and N ¼ âwi âi are the corresponding number
operators. l (o0 for ferromagnetic interactions) and q(pB2)
characterize the inter-spin and Zeeman energies, respectively. The
spin-dependent binary collisions restrict the dynamical evolution to
states that conserve both the total number of atoms Ni¼SiNi and
the projection of angular momentum along the quantization axis
M¼N1�N� 1. Starting from the initial state |0, N, 0S, consisting of
all N atoms in the mf¼ 0 state, the evolution is constrained to final
states of the form Spcp|p, N� 2p, pS. Hence, the solution to the
quantum many-body problem is fully enumerated by the time
dependence of the Fock state amplitudes, cp(t). To compare the
measurements to the theory, we note that the measured probability
density of r0¼N0/N is effectively a determination of the
probabilities |cp|2, averaged over the experimental detection
resolution.

The experimental results are in good overall agreement with the
quantum calculation, particularly for early times. Both the
experiment and theory exhibit a long pause (80 ms) before
any population evolution is apparent. After this pause, the spin
population executes a regular damped oscillation.

Non-gaussian distributions of spin populations. It is clear that
the mean and standard deviation (s) are insufficient to fully
characterize the distribution of r0 for both the experiment and
theory, since for much of the evolution the mean does not pass
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Figure 1 | Time evolution of spin populations. Probability density of the

fractional population of the condensate in the mf¼0 state, r0, as a

function of time. The curves show the mean, �r0 (black line) and±

s (blue lines). (a) Experimental data showing the results of 50 runs at each

evolution time placed into 40 bins. The mean and s curves have been

smoothed using a cubic spline. (b) Quantum calculation using the initial

atom number, magnetic field ramp and atom loss rate measured in the

experiment. The Fock state probabilities |cp|2, placed into 100 bins, are

plotted.
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through the highest probability density, indicating a significant
skew in the distribution. This point is reinforced in Fig. 2b, which
shows the full probability distributions for several evolution
times, along with the theoretical predictions. The highly non-
Gaussian nature of the distributions are a direct manifestation of
the quantum spin dynamics. To characterize the non-Gaussian
distribution, we determine several cumulants (linearly indepen-
dent alternatives to the central moments), kn from the data. The
mean, s and the third to sixth cumulants are shown in Fig. 3
compared with the quantum simulation. Overall, the mea-
sured cumulants are in good agreement with the predicted
cumulants from the simulation. The population revival in the
second oscillation predicted from the simulation is clearly seen in
the mean, s and third cumulant, but is less obvious in higher
cumulants.

Discussion
To understand the origin of the non-Gaussian fluctuations,
it is helpful to consider the semi-classical limit of the spin
Hamiltonian. Mean-field states of a spin-1 condensate can be
written as c¼ (zþ 1, z0, z� 1)T where zi¼

ffiffiffiffi
ri
p

eiyi and ri¼ |zi|2¼
Ni/N are the fractional spin populations. The conservation of
magnetization m¼ (N1�N� 1)/N constrains the populations
r±1¼ (1� r0±m)/2, and for the m¼ 0 case that is relevant for
these experiments, the spin dynamics are determined by the mean
field equivalent to equation 121.

H¼ jcj
4
½x2þðx2�1Þ cos ys� þ

q
2
ð1� xÞ ð2Þ

Here, x¼ 2r0� 1 and ys¼ yþ 1þ y� 1� 2y0 are canonically
conjugate variables and c¼ 2Nl is the spinor dynamical rate. This
Hamiltonian has the form of a classical non-rigid pendulum and
is similar to the double-well Bose–Hubbard model that has been
used to study Josephson effects in condensates3,5. The
Hamiltonian can also be written using a phase space of the
spin vector Si and nematic (quadrupole) tensor Qij matrix
operators for the spin-1 system: H¼ c0

P
i S2

i þ qQzz/2 (ref. 17).
The phase spaces for both of these forms are shown in Fig. 4,
where it is clear that the r0, ys phase space corresponds to a
projection of the spin-nematic phase space.

The initial state of the system following the quench is indicated
in the different phase spaces in Fig. 4 using quasi-probability
distributions of the initial state determined from the quantum
uncertainties17. On the spin-nematic sphere, the state corres-
ponds to a minimum uncertainty state centred at the pole. The
pole is a hyperbolic fixed point lying at the intersection of the
separatrix that separates the librational and rotational orbits
of the system. In the r0, ys phase space, the distribution in r0 is
tightly packed at the top of the phase space with random spinor
phase. In the absence of quantum fluctuations, the state initialized
exactly on the hyperbolic fixed point is non-evolving. However,
quantum fluctuations populate a family of orbits that straddle the
fixed point, and subsequent evolution leads to phase flow along
the unstable manifolds of the separatrix. In the short term, this
creates squeezed states with negligible change in r0 (ref. 17). As
evolution proceeds, the phase, ys, converges towards the
separatrix separating the librational and rotational trajectories,
and the population starts to evolve along it. The separatrix has a
divergent period21, and so the states disperse significantly due to
the different evolution rates of nearby energy contours. It is this
dispersion, together with the shape of the orbit, that gives rise to
the highly non-Gaussian probability distributions. For longer
times, the system evolves along the separatrix, which forms a
closed homoclinic orbit in the spin-nematic space.

Population evolution from the metastable state is exponentially
sensitive to initial population in the mf¼±1 states13. At the
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Figure 2 | Full probability distributions of q0. Evolution on the semi-

classical phase space (left column) and histograms of the measured spin

population, r0 (right) for different evolution times after the quench, 15, 130, 140,

170 and 240 ms. (a) The simulations use the semi-classical equations of

motion together with a quasi-probability distribution for the initial state. The

mean value for r0 and ys are indicated with a black dot. (b) The histogram bars

for each evolution time depict the measured probability density of r0 for over

900 experimental runs, and the red line represents the simulation. The purple

bar in each histogram represents the bin in which the mean of r0 is located.
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earliest evolution time studied (15 ms), the total population in
these states is measured to be o30 atoms, which represents an
upper bound limited by atom detection noise17. Initial
populations at this level affect the duration of the initial pause
and first oscillation minimum, but not the overall character of the
evolution24. According to simulation, our results are consistent
with no pollution (Supplementary Fig. S1 and Supplementary
Discussion, Effect of initial state impurities).

For evolution times beyond 4250 ms, it is necessary to include
the effects of atomic loss in the theory. The lifetime of the
condensate t¼ 1.8 s is only a factor of 10 larger than the spin
evolution timescale (B150 ms), hence one expects that loss has
an important role in the long-term dynamics. We explore this
question in Fig. 5, where we compare quantum calculations
without loss, quantum calculations including uncorrelated loss

and the experimental data. Uncorrelated atom loss is incorpo-
rated into the calculation using quantum Monte Carlo techni-
ques. The loss causes the overall magnetization M to execute a
random walk with a restoring tendency towards M¼ 0.

For the first 250 ms of evolution corresponding to the first spin
oscillation, the effects of loss are not discernible between the two
calculations, and the experimental data are in good agreement
with both. Beyond 250 ms, there are significant differences
between the two quantum calculations. The spin population of
the calculation without loss nearly returns to the initial value and
then experiences a long pause followed by complex multi-
frequency oscillations. The calculation with loss however exhibits
steady oscillations with one dominant frequency and a slowly
decreasing amplitude centred on the ground state populations. In
the semi-classical picture, the apparent damping of the
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Figure 3 | Evolution of q0 cumulants. The mean value of r0, s, and the third through sixth cumulants, kn, n¼ 3–6. The odd cumulants are on top, and the

even cumulants are on the bottom. In each plot, the black markers represent the results of 50 experimental runs, and the error bars are estimated using a

bootstrap method for the third cumulant and higher. The red curves are the prediction of the quantum simulation including loss.
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Figure 4 | Phase space. The evolution of the spin state following the

quench is depicted on two relevant phase spaces of the spin-1 system: the

{r0, ys} phase space (lower left), and the {Sx, Qyz, Qzz} spin-nematic Bloch

sphere (centre). The left illustration represents the initial state, while the

right illustration shows the system after a finite amount of evolution. The

distributions for both cases have been exaggerated for illustrative purposes.

A zoom-in of the hyperbolic fixed point at the pole is shown (top) with

arrows indicating the orbit directions. The r0, ys phase space represents a

Mercator projection of one of the degenerate hemispheres.
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Figure 5 | Long-term evolution of q0. The top graph shows the quantum

calculation without loss. The middle graphs shows the calculation including

the effects of uncorrelated atom loss. The bottom graph shows the

measured data. In each plot, the mean value is shown as a solid line, and

the shaded envelopes correspond to s.
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calculation without loss derives from the dispersion about the
separatrix in Fig. 2. The effect of loss is to eventually move the
orbits away from the separatrix, which turns off this dispersion
and leads to more regular oscillations.

Although the inclusion of loss into the model makes a
significant improvement in the agreement of long-term dynamics
(4250 ms) with the experimental results, it is clear that this
simple loss model is inadequate to fully replicate the measure-
ments at longer time scales. Although the experimental data and
the simulations with loss are qualitatively similar, there is clearly
more dissipation in the experiment as the amplitude of the
oscillations damp more quickly and the standard deviation
decreases. In future work, we intend to further investigate the
damping of the spin dynamics and its connection to thermaliza-
tion of isolated quantum systems subject to loss. Similar
investigations are ongoing using one-dimensional condensate
systems30–33, and it will be interesting to explore the similarities
and differences in these completely different systems.

Finally, we believe that our results point the way to future
explorations of quantum many-body spin systems, including
thermalization and ergodicity crossing a quantum phase transi-
tion34,35, investigations of Hamiltonian monodromy28 and other
non-linear phenomena, finite temperature effects and dynamic
stability. The combination of an exactly solvable Hamiltonian
with a quantum phase transition together with demonstrated
dynamics in the quantum regime should provide unique insights
to these important topics.

Methods
Experiment. We prepare a condensate of N¼ 38,500±500 87Rb atoms in the
|f¼ 1, mf¼ 0S hyperfine state in a high magnetic field (2 G). The condensate is
tightly confined in an optical dipole trap with trap frequencies of 250 Hz. To
initiate dynamical evolution, the condensate is quenched below the quantum
critical point by lowering the magnetic field to a value 210 mG and then allowed to
freely evolve for a set time. The trap is then turned off and a Stern–Gerlach field is
applied to separate the mf components during 22 ms time-of-flight expansion. The
atoms are probed for 400 ms with three pairs of orthogonal laser beams, and the
resulting fluorescence signal is collected by a CCD camera with 490% quantum
efficiency.

Simulations. The primary simulation method used to compare with the data is the
numerical integration of the second quantized form of the Hamiltonian equation 1
(Supplementary Methods, Second quantized calculations). Two different techni-
ques were used to model the loss in the system. The first method involved
decreasing the inter-spin energy, l, with the number of atoms (lpN� 3/5)
(Supplementary Methods, Loss models: scaling the inter-spin energy). The second,
more rigorous method involved the use of a quantum Monte Carlo techniques with
the collapse operators Ci ¼

ffiffiffiffiffiffiffi
1/t
p

âi (Supplementary Methods, Loss models: quan-
tum Monte Carlo).

The mean-field phase space diagrams in Fig. 2 were created using a semi-
classical simulation. Loss in this simulation was modelled similar to the first
technique used in the quantum simulations, with the spinor dynamical rate,
c¼ 2Nl and lpN� 3/5 (Supplementary Methods, Mean-field calculations: semi-
classical simulations). The quantum dynamics of the system were captured using
an appropriate quasi-probability distribution obtained from the quantum noise of
the initial Fock state (Supplementary Fig. S2 and Supplementary Methods, Mean-
field calculations: quasi-probability distributions).

The simulations use a spinor energy, 2lN ¼ � 2p�h�7:5 Hz, chosen to match the
population dynamics, and the other parameters (B, N) are chosen to match the
experimental conditions.
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